openssl-3/openssl-ec-56-bit-Limb-Solinas-Strategy-for-secp384r1.patch

2160 lines
78 KiB
Diff
Raw Normal View History

From 01d901e470d9e035a3bd78e77b9438a4cc0da785 Mon Sep 17 00:00:00 2001
From: Rohan McLure <rohanmclure@linux.ibm.com>
Date: Wed, 12 Jul 2023 12:25:22 +1000
Subject: [PATCH] ec: 56-bit Limb Solinas' Strategy for secp384r1
Adopt a 56-bit redundant-limb Solinas' reduction approach for efficient
modular multiplication in P384. This has the affect of accelerating
digital signing by 446% and verification by 106%. The implementation
strategy and names of methods are the same as that provided in
ecp_nistp224 and ecp_nistp521.
As in Commit 1036749883cc ("ec: Add run time code selection for p521
field operations"), allow for run time selection of implementation for
felem_{square,mul}, where an assembly implementation is proclaimed to
be present when ECP_NISTP384_ASM is present.
Signed-off-by: Rohan McLure <rohanmclure@linux.ibm.com>
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
Reviewed-by: Todd Short <todd.short@me.com>
(Merged from https://github.com/openssl/openssl/pull/21471)
---
crypto/ec/build.info | 2
crypto/ec/ec_curve.c | 4
crypto/ec/ec_lib.c | 8
crypto/ec/ec_local.h | 27
crypto/ec/ecp_nistp384.c | 1988 +++++++++++++++++++++++++++++++++++++++++++++++
5 files changed, 2027 insertions(+), 2 deletions(-)
create mode 100644 crypto/ec/ecp_nistp384.c
--- a/crypto/ec/build.info
+++ b/crypto/ec/build.info
@@ -59,7 +59,7 @@ $COMMON=ec_lib.c ecp_smpl.c ecp_mont.c e
curve448/arch_32/f_impl32.c
IF[{- !$disabled{'ec_nistp_64_gcc_128'} -}]
- $COMMON=$COMMON ecp_nistp224.c ecp_nistp256.c ecp_nistp521.c ecp_nistputil.c
+ $COMMON=$COMMON ecp_nistp224.c ecp_nistp256.c ecp_nistp384.c ecp_nistp521.c ecp_nistputil.c
ENDIF
SOURCE[../../libcrypto]=$COMMON ec_ameth.c ec_pmeth.c ecx_meth.c \
--- a/crypto/ec/ec_curve.c
+++ b/crypto/ec/ec_curve.c
@@ -2838,6 +2838,8 @@ static const ec_list_element curve_list[
{NID_secp384r1, &_EC_NIST_PRIME_384.h,
# if defined(S390X_EC_ASM)
EC_GFp_s390x_nistp384_method,
+# elif !defined(OPENSSL_NO_EC_NISTP_64_GCC_128)
+ ossl_ec_GFp_nistp384_method,
# else
0,
# endif
@@ -2931,6 +2933,8 @@ static const ec_list_element curve_list[
{NID_secp384r1, &_EC_NIST_PRIME_384.h,
# if defined(S390X_EC_ASM)
EC_GFp_s390x_nistp384_method,
+# elif !defined(OPENSSL_NO_EC_NISTP_64_GCC_128)
+ ossl_ec_GFp_nistp384_method,
# else
0,
# endif
--- a/crypto/ec/ec_lib.c
+++ b/crypto/ec/ec_lib.c
@@ -102,12 +102,16 @@ void EC_pre_comp_free(EC_GROUP *group)
case PCT_nistp256:
EC_nistp256_pre_comp_free(group->pre_comp.nistp256);
break;
+ case PCT_nistp384:
+ ossl_ec_nistp384_pre_comp_free(group->pre_comp.nistp384);
+ break;
case PCT_nistp521:
EC_nistp521_pre_comp_free(group->pre_comp.nistp521);
break;
#else
case PCT_nistp224:
case PCT_nistp256:
+ case PCT_nistp384:
case PCT_nistp521:
break;
#endif
@@ -191,12 +195,16 @@ int EC_GROUP_copy(EC_GROUP *dest, const
case PCT_nistp256:
dest->pre_comp.nistp256 = EC_nistp256_pre_comp_dup(src->pre_comp.nistp256);
break;
+ case PCT_nistp384:
+ dest->pre_comp.nistp384 = ossl_ec_nistp384_pre_comp_dup(src->pre_comp.nistp384);
+ break;
case PCT_nistp521:
dest->pre_comp.nistp521 = EC_nistp521_pre_comp_dup(src->pre_comp.nistp521);
break;
#else
case PCT_nistp224:
case PCT_nistp256:
+ case PCT_nistp384:
case PCT_nistp521:
break;
#endif
--- a/crypto/ec/ec_local.h
+++ b/crypto/ec/ec_local.h
@@ -203,6 +203,7 @@ struct ec_method_st {
*/
typedef struct nistp224_pre_comp_st NISTP224_PRE_COMP;
typedef struct nistp256_pre_comp_st NISTP256_PRE_COMP;
+typedef struct nistp384_pre_comp_st NISTP384_PRE_COMP;
typedef struct nistp521_pre_comp_st NISTP521_PRE_COMP;
typedef struct nistz256_pre_comp_st NISTZ256_PRE_COMP;
typedef struct ec_pre_comp_st EC_PRE_COMP;
@@ -264,12 +265,13 @@ struct ec_group_st {
*/
enum {
PCT_none,
- PCT_nistp224, PCT_nistp256, PCT_nistp521, PCT_nistz256,
+ PCT_nistp224, PCT_nistp256, PCT_nistp384, PCT_nistp521, PCT_nistz256,
PCT_ec
} pre_comp_type;
union {
NISTP224_PRE_COMP *nistp224;
NISTP256_PRE_COMP *nistp256;
+ NISTP384_PRE_COMP *nistp384;
NISTP521_PRE_COMP *nistp521;
NISTZ256_PRE_COMP *nistz256;
EC_PRE_COMP *ec;
@@ -333,6 +335,7 @@ static ossl_inline int ec_point_is_compa
NISTP224_PRE_COMP *EC_nistp224_pre_comp_dup(NISTP224_PRE_COMP *);
NISTP256_PRE_COMP *EC_nistp256_pre_comp_dup(NISTP256_PRE_COMP *);
+NISTP384_PRE_COMP *ossl_ec_nistp384_pre_comp_dup(NISTP384_PRE_COMP *);
NISTP521_PRE_COMP *EC_nistp521_pre_comp_dup(NISTP521_PRE_COMP *);
NISTZ256_PRE_COMP *EC_nistz256_pre_comp_dup(NISTZ256_PRE_COMP *);
NISTP256_PRE_COMP *EC_nistp256_pre_comp_dup(NISTP256_PRE_COMP *);
@@ -341,6 +344,7 @@ EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_C
void EC_pre_comp_free(EC_GROUP *group);
void EC_nistp224_pre_comp_free(NISTP224_PRE_COMP *);
void EC_nistp256_pre_comp_free(NISTP256_PRE_COMP *);
+void ossl_ec_nistp384_pre_comp_free(NISTP384_PRE_COMP *);
void EC_nistp521_pre_comp_free(NISTP521_PRE_COMP *);
void EC_nistz256_pre_comp_free(NISTZ256_PRE_COMP *);
void EC_ec_pre_comp_free(EC_PRE_COMP *);
@@ -552,6 +556,27 @@ int ossl_ec_GFp_nistp256_points_mul(cons
int ossl_ec_GFp_nistp256_precompute_mult(EC_GROUP *group, BN_CTX *ctx);
int ossl_ec_GFp_nistp256_have_precompute_mult(const EC_GROUP *group);
+/* method functions in ecp_nistp384.c */
+int ossl_ec_GFp_nistp384_group_init(EC_GROUP *group);
+int ossl_ec_GFp_nistp384_group_set_curve(EC_GROUP *group, const BIGNUM *p,
+ const BIGNUM *a, const BIGNUM *n,
+ BN_CTX *);
+int ossl_ec_GFp_nistp384_point_get_affine_coordinates(const EC_GROUP *group,
+ const EC_POINT *point,
+ BIGNUM *x, BIGNUM *y,
+ BN_CTX *ctx);
+int ossl_ec_GFp_nistp384_mul(const EC_GROUP *group, EC_POINT *r,
+ const BIGNUM *scalar, size_t num,
+ const EC_POINT *points[], const BIGNUM *scalars[],
+ BN_CTX *);
+int ossl_ec_GFp_nistp384_points_mul(const EC_GROUP *group, EC_POINT *r,
+ const BIGNUM *scalar, size_t num,
+ const EC_POINT *points[],
+ const BIGNUM *scalars[], BN_CTX *ctx);
+int ossl_ec_GFp_nistp384_precompute_mult(EC_GROUP *group, BN_CTX *ctx);
+int ossl_ec_GFp_nistp384_have_precompute_mult(const EC_GROUP *group);
+const EC_METHOD *ossl_ec_GFp_nistp384_method(void);
+
/* method functions in ecp_nistp521.c */
int ossl_ec_GFp_nistp521_group_init(EC_GROUP *group);
int ossl_ec_GFp_nistp521_group_set_curve(EC_GROUP *group, const BIGNUM *p,
--- /dev/null
+++ b/crypto/ec/ecp_nistp384.c
@@ -0,0 +1,1988 @@
+/*
+ * Copyright 2023 The OpenSSL Project Authors. All Rights Reserved.
+ *
+ * Licensed under the Apache License 2.0 (the "License"). You may not use
+ * this file except in compliance with the License. You can obtain a copy
+ * in the file LICENSE in the source distribution or at
+ * https://www.openssl.org/source/license.html
+ */
+
+/* Copyright 2023 IBM Corp.
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ *
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * Designed for 56-bit limbs by Rohan McLure <rohan.mclure@linux.ibm.com>.
+ * The layout is based on that of ecp_nistp{224,521}.c, allowing even for asm
+ * acceleration of felem_{square,mul} as supported in these files.
+ */
+
+#include <openssl/e_os2.h>
+
+#include <string.h>
+#include <openssl/err.h>
+#include "ec_local.h"
+
+#include "internal/numbers.h"
+
+#ifndef INT128_MAX
+# error "Your compiler doesn't appear to support 128-bit integer types"
+#endif
+
+typedef uint8_t u8;
+typedef uint64_t u64;
+
+/*
+ * The underlying field. P384 operates over GF(2^384-2^128-2^96+2^32-1). We
+ * can serialize an element of this field into 48 bytes. We call this an
+ * felem_bytearray.
+ */
+
+typedef u8 felem_bytearray[48];
+
+/*
+ * These are the parameters of P384, taken from FIPS 186-3, section D.1.2.4.
+ * These values are big-endian.
+ */
+static const felem_bytearray nistp384_curve_params[5] = {
+ {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF},
+ {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a = -3 */
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFC},
+ {0xB3, 0x31, 0x2F, 0xA7, 0xE2, 0x3E, 0xE7, 0xE4, 0x98, 0x8E, 0x05, 0x6B, /* b */
+ 0xE3, 0xF8, 0x2D, 0x19, 0x18, 0x1D, 0x9C, 0x6E, 0xFE, 0x81, 0x41, 0x12,
+ 0x03, 0x14, 0x08, 0x8F, 0x50, 0x13, 0x87, 0x5A, 0xC6, 0x56, 0x39, 0x8D,
+ 0x8A, 0x2E, 0xD1, 0x9D, 0x2A, 0x85, 0xC8, 0xED, 0xD3, 0xEC, 0x2A, 0xEF},
+ {0xAA, 0x87, 0xCA, 0x22, 0xBE, 0x8B, 0x05, 0x37, 0x8E, 0xB1, 0xC7, 0x1E, /* x */
+ 0xF3, 0x20, 0xAD, 0x74, 0x6E, 0x1D, 0x3B, 0x62, 0x8B, 0xA7, 0x9B, 0x98,
+ 0x59, 0xF7, 0x41, 0xE0, 0x82, 0x54, 0x2A, 0x38, 0x55, 0x02, 0xF2, 0x5D,
+ 0xBF, 0x55, 0x29, 0x6C, 0x3A, 0x54, 0x5E, 0x38, 0x72, 0x76, 0x0A, 0xB7},
+ {0x36, 0x17, 0xDE, 0x4A, 0x96, 0x26, 0x2C, 0x6F, 0x5D, 0x9E, 0x98, 0xBF, /* y */
+ 0x92, 0x92, 0xDC, 0x29, 0xF8, 0xF4, 0x1D, 0xBD, 0x28, 0x9A, 0x14, 0x7C,
+ 0xE9, 0xDA, 0x31, 0x13, 0xB5, 0xF0, 0xB8, 0xC0, 0x0A, 0x60, 0xB1, 0xCE,
+ 0x1D, 0x7E, 0x81, 0x9D, 0x7A, 0x43, 0x1D, 0x7C, 0x90, 0xEA, 0x0E, 0x5F},
+};
+
+/*-
+ * The representation of field elements.
+ * ------------------------------------
+ *
+ * We represent field elements with seven values. These values are either 64 or
+ * 128 bits and the field element represented is:
+ * v[0]*2^0 + v[1]*2^56 + v[2]*2^112 + ... + v[6]*2^336 (mod p)
+ * Each of the seven values is called a 'limb'. Since the limbs are spaced only
+ * 56 bits apart, but are greater than 56 bits in length, the most significant
+ * bits of each limb overlap with the least significant bits of the next
+ *
+ * This representation is considered to be 'redundant' in the sense that
+ * intermediate values can each contain more than a 56-bit value in each limb.
+ * Reduction causes all but the final limb to be reduced to contain a value less
+ * than 2^56, with the final value represented allowed to be larger than 2^384,
+ * inasmuch as we can be sure that arithmetic overflow remains impossible. The
+ * reduced value must of course be congruent to the unreduced value.
+ *
+ * A field element with 64-bit limbs is an 'felem'. One with 128-bit limbs is a
+ * 'widefelem', featuring enough bits to store the result of a multiplication
+ * and even some further arithmetic without need for immediate reduction.
+ */
+
+#define NLIMBS 7
+
+typedef uint64_t limb;
+typedef uint128_t widelimb;
+typedef limb limb_aX __attribute((__aligned__(1)));
+typedef limb felem[NLIMBS];
+typedef widelimb widefelem[2*NLIMBS-1];
+
+static const limb bottom56bits = 0xffffffffffffff;
+
+/* Helper functions (de)serialising reduced field elements in little endian */
+static void bin48_to_felem(felem out, const u8 in[48])
+{
+ memset(out, 0, 56);
+ out[0] = (*((limb *) & in[0])) & bottom56bits;
+ out[1] = (*((limb_aX *) & in[7])) & bottom56bits;
+ out[2] = (*((limb_aX *) & in[14])) & bottom56bits;
+ out[3] = (*((limb_aX *) & in[21])) & bottom56bits;
+ out[4] = (*((limb_aX *) & in[28])) & bottom56bits;
+ out[5] = (*((limb_aX *) & in[35])) & bottom56bits;
+ memmove(&out[6], &in[42], 6);
+}
+
+static void felem_to_bin48(u8 out[48], const felem in)
+{
+ memset(out, 0, 48);
+ (*((limb *) & out[0])) |= (in[0] & bottom56bits);
+ (*((limb_aX *) & out[7])) |= (in[1] & bottom56bits);
+ (*((limb_aX *) & out[14])) |= (in[2] & bottom56bits);
+ (*((limb_aX *) & out[21])) |= (in[3] & bottom56bits);
+ (*((limb_aX *) & out[28])) |= (in[4] & bottom56bits);
+ (*((limb_aX *) & out[35])) |= (in[5] & bottom56bits);
+ memmove(&out[42], &in[6], 6);
+}
+
+/* BN_to_felem converts an OpenSSL BIGNUM into an felem */
+static int BN_to_felem(felem out, const BIGNUM *bn)
+{
+ felem_bytearray b_out;
+ int num_bytes;
+
+ if (BN_is_negative(bn)) {
+ ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
+ return 0;
+ }
+ num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out));
+ if (num_bytes < 0) {
+ ERR_raise(ERR_LIB_EC, EC_R_BIGNUM_OUT_OF_RANGE);
+ return 0;
+ }
+ bin48_to_felem(out, b_out);
+ return 1;
+}
+
+/* felem_to_BN converts an felem into an OpenSSL BIGNUM */
+static BIGNUM *felem_to_BN(BIGNUM *out, const felem in)
+{
+ felem_bytearray b_out;
+
+ felem_to_bin48(b_out, in);
+ return BN_lebin2bn(b_out, sizeof(b_out), out);
+}
+
+/*-
+ * Field operations
+ * ----------------
+ */
+
+static void felem_one(felem out)
+{
+ out[0] = 1;
+ memset(&out[1], 0, sizeof(limb) * (NLIMBS-1));
+}
+
+static void felem_assign(felem out, const felem in)
+{
+ memcpy(out, in, sizeof(felem));
+}
+
+/* felem_sum64 sets out = out + in. */
+static void felem_sum64(felem out, const felem in)
+{
+ unsigned int i;
+
+ for (i = 0; i < NLIMBS; i++)
+ out[i] += in[i];
+}
+
+/* felem_scalar sets out = in * scalar */
+static void felem_scalar(felem out, const felem in, limb scalar)
+{
+ unsigned int i;
+
+ for (i = 0; i < NLIMBS; i++)
+ out[i] = in[i] * scalar;
+}
+
+/* felem_scalar64 sets out = out * scalar */
+static void felem_scalar64(felem out, limb scalar)
+{
+ unsigned int i;
+
+ for (i = 0; i < NLIMBS; i++)
+ out[i] *= scalar;
+}
+
+/* felem_scalar128 sets out = out * scalar */
+static void felem_scalar128(widefelem out, limb scalar)
+{
+ unsigned int i;
+
+ for (i = 0; i < 2*NLIMBS-1; i++)
+ out[i] *= scalar;
+}
+
+/*-
+ * felem_neg sets |out| to |-in|
+ * On entry:
+ * in[i] < 2^60 - 2^29
+ * On exit:
+ * out[i] < 2^60
+ */
+static void felem_neg(felem out, const felem in)
+{
+ /*
+ * In order to prevent underflow, we add a multiple of p before subtracting.
+ * Use telescopic sums to represent 2^12 * p redundantly with each limb
+ * of the form 2^60 + ...
+ */
+ static const limb two60m52m4 = (((limb) 1) << 60)
+ - (((limb) 1) << 52)
+ - (((limb) 1) << 4);
+ static const limb two60p44m12 = (((limb) 1) << 60)
+ + (((limb) 1) << 44)
+ - (((limb) 1) << 12);
+ static const limb two60m28m4 = (((limb) 1) << 60)
+ - (((limb) 1) << 28)
+ - (((limb) 1) << 4);
+ static const limb two60m4 = (((limb) 1) << 60)
+ - (((limb) 1) << 4);
+
+ out[0] = two60p44m12 - in[0];
+ out[1] = two60m52m4 - in[1];
+ out[2] = two60m28m4 - in[2];
+ out[3] = two60m4 - in[3];
+ out[4] = two60m4 - in[4];
+ out[5] = two60m4 - in[5];
+ out[6] = two60m4 - in[6];
+}
+
+/*-
+ * felem_diff64 subtracts |in| from |out|
+ * On entry:
+ * in[i] < 2^60 - 2^52 - 2^4
+ * On exit:
+ * out[i] < out_orig[i] + 2^60 + 2^44
+ */
+static void felem_diff64(felem out, const felem in)
+{
+ /*
+ * In order to prevent underflow, we add a multiple of p before subtracting.
+ * Use telescopic sums to represent 2^12 * p redundantly with each limb
+ * of the form 2^60 + ...
+ */
+
+ static const limb two60m52m4 = (((limb) 1) << 60)
+ - (((limb) 1) << 52)
+ - (((limb) 1) << 4);
+ static const limb two60p44m12 = (((limb) 1) << 60)
+ + (((limb) 1) << 44)
+ - (((limb) 1) << 12);
+ static const limb two60m28m4 = (((limb) 1) << 60)
+ - (((limb) 1) << 28)
+ - (((limb) 1) << 4);
+ static const limb two60m4 = (((limb) 1) << 60)
+ - (((limb) 1) << 4);
+
+ out[0] += two60p44m12 - in[0];
+ out[1] += two60m52m4 - in[1];
+ out[2] += two60m28m4 - in[2];
+ out[3] += two60m4 - in[3];
+ out[4] += two60m4 - in[4];
+ out[5] += two60m4 - in[5];
+ out[6] += two60m4 - in[6];
+}
+
+/*
+ * in[i] < 2^63
+ * out[i] < out_orig[i] + 2^64 + 2^48
+ */
+static void felem_diff_128_64(widefelem out, const felem in)
+{
+ /*
+ * In order to prevent underflow, we add a multiple of p before subtracting.
+ * Use telescopic sums to represent 2^16 * p redundantly with each limb
+ * of the form 2^64 + ...
+ */
+
+ static const widelimb two64m56m8 = (((widelimb) 1) << 64)
+ - (((widelimb) 1) << 56)
+ - (((widelimb) 1) << 8);
+ static const widelimb two64m32m8 = (((widelimb) 1) << 64)
+ - (((widelimb) 1) << 32)
+ - (((widelimb) 1) << 8);
+ static const widelimb two64m8 = (((widelimb) 1) << 64)
+ - (((widelimb) 1) << 8);
+ static const widelimb two64p48m16 = (((widelimb) 1) << 64)
+ + (((widelimb) 1) << 48)
+ - (((widelimb) 1) << 16);
+ unsigned int i;
+
+ out[0] += two64p48m16;
+ out[1] += two64m56m8;
+ out[2] += two64m32m8;
+ out[3] += two64m8;
+ out[4] += two64m8;
+ out[5] += two64m8;
+ out[6] += two64m8;
+
+ for (i = 0; i < NLIMBS; i++)
+ out[i] -= in[i];
+}
+
+/*
+ * in[i] < 2^127 - 2^119 - 2^71
+ * out[i] < out_orig[i] + 2^127 + 2^111
+ */
+static void felem_diff128(widefelem out, const widefelem in)
+{
+ /*
+ * In order to prevent underflow, we add a multiple of p before subtracting.
+ * Use telescopic sums to represent 2^415 * p redundantly with each limb
+ * of the form 2^127 + ...
+ */
+
+ static const widelimb two127 = ((widelimb) 1) << 127;
+ static const widelimb two127m71 = (((widelimb) 1) << 127)
+ - (((widelimb) 1) << 71);
+ static const widelimb two127p111m79m71 = (((widelimb) 1) << 127)
+ + (((widelimb) 1) << 111)
+ - (((widelimb) 1) << 79)
+ - (((widelimb) 1) << 71);
+ static const widelimb two127m119m71 = (((widelimb) 1) << 127)
+ - (((widelimb) 1) << 119)
+ - (((widelimb) 1) << 71);
+ static const widelimb two127m95m71 = (((widelimb) 1) << 127)
+ - (((widelimb) 1) << 95)
+ - (((widelimb) 1) << 71);
+ unsigned int i;
+
+ out[0] += two127;
+ out[1] += two127m71;
+ out[2] += two127m71;
+ out[3] += two127m71;
+ out[4] += two127m71;
+ out[5] += two127m71;
+ out[6] += two127p111m79m71;
+ out[7] += two127m119m71;
+ out[8] += two127m95m71;
+ out[9] += two127m71;
+ out[10] += two127m71;
+ out[11] += two127m71;
+ out[12] += two127m71;
+
+ for (i = 0; i < 2*NLIMBS-1; i++)
+ out[i] -= in[i];
+}
+
+static void felem_square_ref(widefelem out, const felem in)
+{
+ felem inx2;
+ felem_scalar(inx2, in, 2);
+
+ out[0] = ((uint128_t) in[0]) * in[0];
+
+ out[1] = ((uint128_t) in[0]) * inx2[1];
+
+ out[2] = ((uint128_t) in[0]) * inx2[2]
+ + ((uint128_t) in[1]) * in[1];
+
+ out[3] = ((uint128_t) in[0]) * inx2[3]
+ + ((uint128_t) in[1]) * inx2[2];
+
+ out[4] = ((uint128_t) in[0]) * inx2[4]
+ + ((uint128_t) in[1]) * inx2[3]
+ + ((uint128_t) in[2]) * in[2];
+
+ out[5] = ((uint128_t) in[0]) * inx2[5]
+ + ((uint128_t) in[1]) * inx2[4]
+ + ((uint128_t) in[2]) * inx2[3];
+
+ out[6] = ((uint128_t) in[0]) * inx2[6]
+ + ((uint128_t) in[1]) * inx2[5]
+ + ((uint128_t) in[2]) * inx2[4]
+ + ((uint128_t) in[3]) * in[3];
+
+ out[7] = ((uint128_t) in[1]) * inx2[6]
+ + ((uint128_t) in[2]) * inx2[5]
+ + ((uint128_t) in[3]) * inx2[4];
+
+ out[8] = ((uint128_t) in[2]) * inx2[6]
+ + ((uint128_t) in[3]) * inx2[5]
+ + ((uint128_t) in[4]) * in[4];
+
+ out[9] = ((uint128_t) in[3]) * inx2[6]
+ + ((uint128_t) in[4]) * inx2[5];
+
+ out[10] = ((uint128_t) in[4]) * inx2[6]
+ + ((uint128_t) in[5]) * in[5];
+
+ out[11] = ((uint128_t) in[5]) * inx2[6];
+
+ out[12] = ((uint128_t) in[6]) * in[6];
+}
+
+static void felem_mul_ref(widefelem out, const felem in1, const felem in2)
+{
+ out[0] = ((uint128_t) in1[0]) * in2[0];
+
+ out[1] = ((uint128_t) in1[0]) * in2[1]
+ + ((uint128_t) in1[1]) * in2[0];
+
+ out[2] = ((uint128_t) in1[0]) * in2[2]
+ + ((uint128_t) in1[1]) * in2[1]
+ + ((uint128_t) in1[2]) * in2[0];
+
+ out[3] = ((uint128_t) in1[0]) * in2[3]
+ + ((uint128_t) in1[1]) * in2[2]
+ + ((uint128_t) in1[2]) * in2[1]
+ + ((uint128_t) in1[3]) * in2[0];
+
+ out[4] = ((uint128_t) in1[0]) * in2[4]
+ + ((uint128_t) in1[1]) * in2[3]
+ + ((uint128_t) in1[2]) * in2[2]
+ + ((uint128_t) in1[3]) * in2[1]
+ + ((uint128_t) in1[4]) * in2[0];
+
+ out[5] = ((uint128_t) in1[0]) * in2[5]
+ + ((uint128_t) in1[1]) * in2[4]
+ + ((uint128_t) in1[2]) * in2[3]
+ + ((uint128_t) in1[3]) * in2[2]
+ + ((uint128_t) in1[4]) * in2[1]
+ + ((uint128_t) in1[5]) * in2[0];
+
+ out[6] = ((uint128_t) in1[0]) * in2[6]
+ + ((uint128_t) in1[1]) * in2[5]
+ + ((uint128_t) in1[2]) * in2[4]
+ + ((uint128_t) in1[3]) * in2[3]
+ + ((uint128_t) in1[4]) * in2[2]
+ + ((uint128_t) in1[5]) * in2[1]
+ + ((uint128_t) in1[6]) * in2[0];
+
+ out[7] = ((uint128_t) in1[1]) * in2[6]
+ + ((uint128_t) in1[2]) * in2[5]
+ + ((uint128_t) in1[3]) * in2[4]
+ + ((uint128_t) in1[4]) * in2[3]
+ + ((uint128_t) in1[5]) * in2[2]
+ + ((uint128_t) in1[6]) * in2[1];
+
+ out[8] = ((uint128_t) in1[2]) * in2[6]
+ + ((uint128_t) in1[3]) * in2[5]
+ + ((uint128_t) in1[4]) * in2[4]
+ + ((uint128_t) in1[5]) * in2[3]
+ + ((uint128_t) in1[6]) * in2[2];
+
+ out[9] = ((uint128_t) in1[3]) * in2[6]
+ + ((uint128_t) in1[4]) * in2[5]
+ + ((uint128_t) in1[5]) * in2[4]
+ + ((uint128_t) in1[6]) * in2[3];
+
+ out[10] = ((uint128_t) in1[4]) * in2[6]
+ + ((uint128_t) in1[5]) * in2[5]
+ + ((uint128_t) in1[6]) * in2[4];
+
+ out[11] = ((uint128_t) in1[5]) * in2[6]
+ + ((uint128_t) in1[6]) * in2[5];
+
+ out[12] = ((uint128_t) in1[6]) * in2[6];
+}
+
+/*-
+ * Reduce thirteen 128-bit coefficients to seven 64-bit coefficients.
+ * in[i] < 2^128 - 2^125
+ * out[i] < 2^56 for i < 6,
+ * out[6] <= 2^48
+ *
+ * The technique in use here stems from the format of the prime modulus:
+ * P384 = 2^384 - delta
+ *
+ * Thus we can reduce numbers of the form (X + 2^384 * Y) by substituting
+ * them with (X + delta Y), with delta = 2^128 + 2^96 + (-2^32 + 1). These
+ * coefficients are still quite large, and so we repeatedly apply this
+ * technique on high-order bits in order to guarantee the desired bounds on
+ * the size of our output.
+ *
+ * The three phases of elimination are as follows:
+ * [1]: Y = 2^120 (in[12] | in[11] | in[10] | in[9])
+ * [2]: Y = 2^8 (acc[8] | acc[7])
+ * [3]: Y = 2^48 (acc[6] >> 48)
+ * (Where a | b | c | d = (2^56)^3 a + (2^56)^2 b + (2^56) c + d)
+ */
+static void felem_reduce(felem out, const widefelem in)
+{
+ /*
+ * In order to prevent underflow, we add a multiple of p before subtracting.
+ * Use telescopic sums to represent 2^76 * p redundantly with each limb
+ * of the form 2^124 + ...
+ */
+ static const widelimb two124m68 = (((widelimb) 1) << 124)
+ - (((widelimb) 1) << 68);
+ static const widelimb two124m116m68 = (((widelimb) 1) << 124)
+ - (((widelimb) 1) << 116)
+ - (((widelimb) 1) << 68);
+ static const widelimb two124p108m76 = (((widelimb) 1) << 124)
+ + (((widelimb) 1) << 108)
+ - (((widelimb) 1) << 76);
+ static const widelimb two124m92m68 = (((widelimb) 1) << 124)
+ - (((widelimb) 1) << 92)
+ - (((widelimb) 1) << 68);
+ widelimb temp, acc[9];
+ unsigned int i;
+
+ memcpy(acc, in, sizeof(widelimb) * 9);
+
+ acc[0] += two124p108m76;
+ acc[1] += two124m116m68;
+ acc[2] += two124m92m68;
+ acc[3] += two124m68;
+ acc[4] += two124m68;
+ acc[5] += two124m68;
+ acc[6] += two124m68;
+
+ /* [1]: Eliminate in[9], ..., in[12] */
+ acc[8] += in[12] >> 32;
+ acc[7] += (in[12] & 0xffffffff) << 24;
+ acc[7] += in[12] >> 8;
+ acc[6] += (in[12] & 0xff) << 48;
+ acc[6] -= in[12] >> 16;
+ acc[5] -= ((in[12] & 0xffff) << 40);
+ acc[6] += in[12] >> 48;
+ acc[5] += (in[12] & 0xffffffffffff) << 8;
+
+ acc[7] += in[11] >> 32;
+ acc[6] += (in[11] & 0xffffffff) << 24;
+ acc[6] += in[11] >> 8;
+ acc[5] += (in[11] & 0xff) << 48;
+ acc[5] -= in[11] >> 16;
+ acc[4] -= ((in[11] & 0xffff) << 40);
+ acc[5] += in[11] >> 48;
+ acc[4] += (in[11] & 0xffffffffffff) << 8;
+
+ acc[6] += in[10] >> 32;
+ acc[5] += (in[10] & 0xffffffff) << 24;
+ acc[5] += in[10] >> 8;
+ acc[4] += (in[10] & 0xff) << 48;
+ acc[4] -= in[10] >> 16;
+ acc[3] -= ((in[10] & 0xffff) << 40);
+ acc[4] += in[10] >> 48;
+ acc[3] += (in[10] & 0xffffffffffff) << 8;
+
+ acc[5] += in[9] >> 32;
+ acc[4] += (in[9] & 0xffffffff) << 24;
+ acc[4] += in[9] >> 8;
+ acc[3] += (in[9] & 0xff) << 48;
+ acc[3] -= in[9] >> 16;
+ acc[2] -= ((in[9] & 0xffff) << 40);
+ acc[3] += in[9] >> 48;
+ acc[2] += (in[9] & 0xffffffffffff) << 8;
+
+ /*
+ * [2]: Eliminate acc[7], acc[8], that is the 7 and eighth limbs, as
+ * well as the contributions made from eliminating higher limbs.
+ * acc[7] < in[7] + 2^120 + 2^56 < in[7] + 2^121
+ * acc[8] < in[8] + 2^96
+ */
+ acc[4] += acc[8] >> 32;
+ acc[3] += (acc[8] & 0xffffffff) << 24;
+ acc[3] += acc[8] >> 8;
+ acc[2] += (acc[8] & 0xff) << 48;
+ acc[2] -= acc[8] >> 16;
+ acc[1] -= ((acc[8] & 0xffff) << 40);
+ acc[2] += acc[8] >> 48;
+ acc[1] += (acc[8] & 0xffffffffffff) << 8;
+
+ acc[3] += acc[7] >> 32;
+ acc[2] += (acc[7] & 0xffffffff) << 24;
+ acc[2] += acc[7] >> 8;
+ acc[1] += (acc[7] & 0xff) << 48;
+ acc[1] -= acc[7] >> 16;
+ acc[0] -= ((acc[7] & 0xffff) << 40);
+ acc[1] += acc[7] >> 48;
+ acc[0] += (acc[7] & 0xffffffffffff) << 8;
+
+ /*-
+ * acc[k] < in[k] + 2^124 + 2^121
+ * < in[k] + 2^125
+ * < 2^128, for k <= 6
+ */
+
+ /*
+ * Carry 4 -> 5 -> 6
+ * This has the effect of ensuring that these more significant limbs
+ * will be small in value after eliminating high bits from acc[6].
+ */
+ acc[5] += acc[4] >> 56;
+ acc[4] &= 0x00ffffffffffffff;
+
+ acc[6] += acc[5] >> 56;
+ acc[5] &= 0x00ffffffffffffff;
+
+ /*-
+ * acc[6] < in[6] + 2^124 + 2^121 + 2^72 + 2^16
+ * < in[6] + 2^125
+ * < 2^128
+ */
+
+ /* [3]: Eliminate high bits of acc[6] */
+ temp = acc[6] >> 48;
+ acc[6] &= 0x0000ffffffffffff;
+
+ /* temp < 2^80 */
+
+ acc[3] += temp >> 40;
+ acc[2] += (temp & 0xffffffffff) << 16;
+ acc[2] += temp >> 16;
+ acc[1] += (temp & 0xffff) << 40;
+ acc[1] -= temp >> 24;
+ acc[0] -= (temp & 0xffffff) << 32;
+ acc[0] += temp;
+
+ /*-
+ * acc[k] < acc_old[k] + 2^64 + 2^56
+ * < in[k] + 2^124 + 2^121 + 2^72 + 2^64 + 2^56 + 2^16 , k < 4
+ */
+
+ /* Carry 0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6 */
+ acc[1] += acc[0] >> 56; /* acc[1] < acc_old[1] + 2^72 */
+ acc[0] &= 0x00ffffffffffffff;
+
+ acc[2] += acc[1] >> 56; /* acc[2] < acc_old[2] + 2^72 + 2^16 */
+ acc[1] &= 0x00ffffffffffffff;
+
+ acc[3] += acc[2] >> 56; /* acc[3] < acc_old[3] + 2^72 + 2^16 */
+ acc[2] &= 0x00ffffffffffffff;
+
+ /*-
+ * acc[k] < acc_old[k] + 2^72 + 2^16
+ * < in[k] + 2^124 + 2^121 + 2^73 + 2^64 + 2^56 + 2^17
+ * < in[k] + 2^125
+ * < 2^128 , k < 4
+ */
+
+ acc[4] += acc[3] >> 56; /*-
+ * acc[4] < acc_old[4] + 2^72 + 2^16
+ * < 2^72 + 2^56 + 2^16
+ */
+ acc[3] &= 0x00ffffffffffffff;
+
+ acc[5] += acc[4] >> 56; /*-
+ * acc[5] < acc_old[5] + 2^16 + 1
+ * < 2^56 + 2^16 + 1
+ */
+ acc[4] &= 0x00ffffffffffffff;
+
+ acc[6] += acc[5] >> 56; /* acc[6] < 2^48 + 1 <= 2^48 */
+ acc[5] &= 0x00ffffffffffffff;
+
+ for (i = 0; i < NLIMBS; i++)
+ out[i] = acc[i];
+}
+
+#if defined(ECP_NISTP384_ASM)
+static void felem_square_wrapper(widefelem out, const felem in);
+static void felem_mul_wrapper(widefelem out, const felem in1, const felem in2);
+
+static void (*felem_square_p)(widefelem out, const felem in) =
+ felem_square_wrapper;
+static void (*felem_mul_p)(widefelem out, const felem in1, const felem in2) =
+ felem_mul_wrapper;
+
+void p384_felem_square(widefelem out, const felem in);
+void p384_felem_mul(widefelem out, const felem in1, const felem in2);
+
+# if defined(_ARCH_PPC64)
+# include "crypto/ppc_arch.h"
+# endif
+
+static void felem_select(void)
+{
+ /* Default */
+ felem_square_p = felem_square_ref;
+ felem_mul_p = felem_mul_ref;
+}
+
+static void felem_square_wrapper(widefelem out, const felem in)
+{
+ felem_select();
+ felem_square_p(out, in);
+}
+
+static void felem_mul_wrapper(widefelem out, const felem in1, const felem in2)
+{
+ felem_select();
+ felem_mul_p(out, in1, in2);
+}
+
+# define felem_square felem_square_p
+# define felem_mul felem_mul_p
+#else
+# define felem_square felem_square_ref
+# define felem_mul felem_mul_ref
+#endif
+
+static ossl_inline void felem_square_reduce(felem out, const felem in)
+{
+ widefelem tmp;
+
+ felem_square(tmp, in);
+ felem_reduce(out, tmp);
+}
+
+static ossl_inline void felem_mul_reduce(felem out, const felem in1, const felem in2)
+{
+ widefelem tmp;
+
+ felem_mul(tmp, in1, in2);
+ felem_reduce(out, tmp);
+}
+
+/*-
+ * felem_inv calculates |out| = |in|^{-1}
+ *
+ * Based on Fermat's Little Theorem:
+ * a^p = a (mod p)
+ * a^{p-1} = 1 (mod p)
+ * a^{p-2} = a^{-1} (mod p)
+ */
+static void felem_inv(felem out, const felem in)
+{
+ felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6;
+ unsigned int i = 0;
+
+ felem_square_reduce(ftmp, in); /* 2^1 */
+ felem_mul_reduce(ftmp, ftmp, in); /* 2^1 + 2^0 */
+ felem_assign(ftmp2, ftmp);
+
+ felem_square_reduce(ftmp, ftmp); /* 2^2 + 2^1 */
+ felem_mul_reduce(ftmp, ftmp, in); /* 2^2 + 2^1 * 2^0 */
+ felem_assign(ftmp3, ftmp);
+
+ for (i = 0; i < 3; i++)
+ felem_square_reduce(ftmp, ftmp); /* 2^5 + 2^4 + 2^3 */
+ felem_mul_reduce(ftmp, ftmp3, ftmp); /* 2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0 */
+ felem_assign(ftmp4, ftmp);
+
+ for (i = 0; i < 6; i++)
+ felem_square_reduce(ftmp, ftmp); /* 2^11 + ... + 2^6 */
+ felem_mul_reduce(ftmp, ftmp4, ftmp); /* 2^11 + ... + 2^0 */
+
+ for (i = 0; i < 3; i++)
+ felem_square_reduce(ftmp, ftmp); /* 2^14 + ... + 2^3 */
+ felem_mul_reduce(ftmp, ftmp3, ftmp); /* 2^14 + ... + 2^0 */
+ felem_assign(ftmp5, ftmp);
+
+ for (i = 0; i < 15; i++)
+ felem_square_reduce(ftmp, ftmp); /* 2^29 + ... + 2^15 */
+ felem_mul_reduce(ftmp, ftmp5, ftmp); /* 2^29 + ... + 2^0 */
+ felem_assign(ftmp6, ftmp);
+
+ for (i = 0; i < 30; i++)
+ felem_square_reduce(ftmp, ftmp); /* 2^59 + ... + 2^30 */
+ felem_mul_reduce(ftmp, ftmp6, ftmp); /* 2^59 + ... + 2^0 */
+ felem_assign(ftmp4, ftmp);
+
+ for (i = 0; i < 60; i++)
+ felem_square_reduce(ftmp, ftmp); /* 2^119 + ... + 2^60 */
+ felem_mul_reduce(ftmp, ftmp4, ftmp); /* 2^119 + ... + 2^0 */
+ felem_assign(ftmp4, ftmp);
+
+ for (i = 0; i < 120; i++)
+ felem_square_reduce(ftmp, ftmp); /* 2^239 + ... + 2^120 */
+ felem_mul_reduce(ftmp, ftmp4, ftmp); /* 2^239 + ... + 2^0 */
+
+ for (i = 0; i < 15; i++)
+ felem_square_reduce(ftmp, ftmp); /* 2^254 + ... + 2^15 */
+ felem_mul_reduce(ftmp, ftmp5, ftmp); /* 2^254 + ... + 2^0 */
+
+ for (i = 0; i < 31; i++)
+ felem_square_reduce(ftmp, ftmp); /* 2^285 + ... + 2^31 */
+ felem_mul_reduce(ftmp, ftmp6, ftmp); /* 2^285 + ... + 2^31 + 2^29 + ... + 2^0 */
+
+ for (i = 0; i < 2; i++)
+ felem_square_reduce(ftmp, ftmp); /* 2^287 + ... + 2^33 + 2^31 + ... + 2^2 */
+ felem_mul_reduce(ftmp, ftmp2, ftmp); /* 2^287 + ... + 2^33 + 2^31 + ... + 2^0 */
+
+ for (i = 0; i < 94; i++)
+ felem_square_reduce(ftmp, ftmp); /* 2^381 + ... + 2^127 + 2^125 + ... + 2^94 */
+ felem_mul_reduce(ftmp, ftmp6, ftmp); /* 2^381 + ... + 2^127 + 2^125 + ... + 2^94 + 2^29 + ... + 2^0 */
+
+ for (i = 0; i < 2; i++)
+ felem_square_reduce(ftmp, ftmp); /* 2^383 + ... + 2^129 + 2^127 + ... + 2^96 + 2^31 + ... + 2^2 */
+ felem_mul_reduce(ftmp, in, ftmp); /* 2^383 + ... + 2^129 + 2^127 + ... + 2^96 + 2^31 + ... + 2^2 + 2^0 */
+
+ memcpy(out, ftmp, sizeof(felem));
+}
+
+/*
+ * Zero-check: returns a limb with all bits set if |in| == 0 (mod p)
+ * and 0 otherwise. We know that field elements are reduced to
+ * 0 < in < 2p, so we only need to check two cases:
+ * 0 and 2^384 - 2^128 - 2^96 + 2^32 - 1
+ * in[k] < 2^56, k < 6
+ * in[6] <= 2^48
+ */
+static limb felem_is_zero(const felem in)
+{
+ limb zero, p384;
+
+ zero = in[0] | in[1] | in[2] | in[3] | in[4] | in[5] | in[6];
+ zero = ((int64_t) (zero) - 1) >> 63;
+ p384 = (in[0] ^ 0x000000ffffffff) | (in[1] ^ 0xffff0000000000)
+ | (in[2] ^ 0xfffffffffeffff) | (in[3] ^ 0xffffffffffffff)
+ | (in[4] ^ 0xffffffffffffff) | (in[5] ^ 0xffffffffffffff)
+ | (in[6] ^ 0xffffffffffff);
+ p384 = ((int64_t) (p384) - 1) >> 63;
+
+ return (zero | p384);
+}
+
+static int felem_is_zero_int(const void *in)
+{
+ return (int)(felem_is_zero(in) & ((limb) 1));
+}
+
+/*-
+ * felem_contract converts |in| to its unique, minimal representation.
+ * Assume we've removed all redundant bits.
+ * On entry:
+ * in[k] < 2^56, k < 6
+ * in[6] <= 2^48
+ */
+static void felem_contract(felem out, const felem in)
+{
+ static const int64_t two56 = ((limb) 1) << 56;
+
+ /*
+ * We know for a fact that 0 <= |in| < 2*p, for p = 2^384 - 2^128 - 2^96 + 2^32 - 1
+ * Perform two successive, idempotent subtractions to reduce if |in| >= p.
+ */
+
+ int64_t tmp[NLIMBS], cond[5], a;
+ unsigned int i;
+
+ memcpy(tmp, in, sizeof(felem));
+
+ /* Case 1: a = 1 iff |in| >= 2^384 */
+ a = (in[6] >> 48);
+ tmp[0] += a;
+ tmp[0] -= a << 32;
+ tmp[1] += a << 40;
+ tmp[2] += a << 16;
+ tmp[6] &= 0x0000ffffffffffff;
+
+ /*
+ * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
+ * non-zero, so we only need one step
+ */
+
+ a = tmp[0] >> 63;
+ tmp[0] += a & two56;
+ tmp[1] -= a & 1;
+
+ /* Carry 1 -> 2 -> 3 -> 4 -> 5 -> 6 */
+ tmp[2] += tmp[1] >> 56;
+ tmp[1] &= 0x00ffffffffffffff;
+
+ tmp[3] += tmp[2] >> 56;
+ tmp[2] &= 0x00ffffffffffffff;
+
+ tmp[4] += tmp[3] >> 56;
+ tmp[3] &= 0x00ffffffffffffff;
+
+ tmp[5] += tmp[4] >> 56;
+ tmp[4] &= 0x00ffffffffffffff;
+
+ tmp[6] += tmp[5] >> 56; /* tmp[6] < 2^48 */
+ tmp[5] &= 0x00ffffffffffffff;
+
+ /*
+ * Case 2: a = all ones if p <= |in| < 2^384, 0 otherwise
+ */
+
+ /* 0 iff (2^129..2^383) are all one */
+ cond[0] = ((tmp[6] | 0xff000000000000) & tmp[5] & tmp[4] & tmp[3] & (tmp[2] | 0x0000000001ffff)) + 1;
+ /* 0 iff 2^128 bit is one */
+ cond[1] = (tmp[2] | ~0x00000000010000) + 1;
+ /* 0 iff (2^96..2^127) bits are all one */
+ cond[2] = ((tmp[2] | 0xffffffffff0000) & (tmp[1] | 0x0000ffffffffff)) + 1;
+ /* 0 iff (2^32..2^95) bits are all zero */
+ cond[3] = (tmp[1] & ~0xffff0000000000) | (tmp[0] & ~((int64_t) 0x000000ffffffff));
+ /* 0 iff (2^0..2^31) bits are all one */
+ cond[4] = (tmp[0] | 0xffffff00000000) + 1;
+
+ /*
+ * In effect, invert our conditions, so that 0 values become all 1's,
+ * any non-zero value in the low-order 56 bits becomes all 0's
+ */
+ for (i = 0; i < 5; i++)
+ cond[i] = ((cond[i] & 0x00ffffffffffffff) - 1) >> 63;
+
+ /*
+ * The condition for determining whether in is greater than our
+ * prime is given by the following condition.
+ */
+
+ /* First subtract 2^384 - 2^129 cheaply */
+ a = cond[0] & (cond[1] | (cond[2] & (~cond[3] | cond[4])));
+ tmp[6] &= ~a;
+ tmp[5] &= ~a;
+ tmp[4] &= ~a;
+ tmp[3] &= ~a;
+ tmp[2] &= ~a | 0x0000000001ffff;
+
+ /*
+ * Subtract 2^128 - 2^96 by
+ * means of disjoint cases.
+ */
+
+ /* subtract 2^128 if that bit is present, and add 2^96 */
+ a = cond[0] & cond[1];
+ tmp[2] &= ~a | 0xfffffffffeffff;
+ tmp[1] += a & ((int64_t) 1 << 40);
+
+ /* otherwise, clear bits 2^127 .. 2^96 */
+ a = cond[0] & ~cond[1] & (cond[2] & (~cond[3] | cond[4]));
+ tmp[2] &= ~a | 0xffffffffff0000;
+ tmp[1] &= ~a | 0x0000ffffffffff;
+
+ /* finally, subtract the last 2^32 - 1 */
+ a = cond[0] & (cond[1] | (cond[2] & (~cond[3] | cond[4])));
+ tmp[0] += a & (-((int64_t) 1 << 32) + 1);
+
+ /*
+ * eliminate negative coefficients: if tmp[0] is negative, tmp[1] must be
+ * non-zero, so we only need one step
+ */
+ a = tmp[0] >> 63;
+ tmp[0] += a & two56;
+ tmp[1] -= a & 1;
+
+ /* Carry 1 -> 2 -> 3 -> 4 -> 5 -> 6 */
+ tmp[2] += tmp[1] >> 56;
+ tmp[1] &= 0x00ffffffffffffff;
+
+ tmp[3] += tmp[2] >> 56;
+ tmp[2] &= 0x00ffffffffffffff;
+
+ tmp[4] += tmp[3] >> 56;
+ tmp[3] &= 0x00ffffffffffffff;
+
+ tmp[5] += tmp[4] >> 56;
+ tmp[4] &= 0x00ffffffffffffff;
+
+ tmp[6] += tmp[5] >> 56;
+ tmp[5] &= 0x00ffffffffffffff;
+
+ memcpy(out, tmp, sizeof(felem));
+}
+
+/*-
+ * Group operations
+ * ----------------
+ *
+ * Building on top of the field operations we have the operations on the
+ * elliptic curve group itself. Points on the curve are represented in Jacobian
+ * coordinates
+ */
+
+/*-
+ * point_double calculates 2*(x_in, y_in, z_in)
+ *
+ * The method is taken from:
+ * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
+ *
+ * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
+ * while x_out == y_in is not (maybe this works, but it's not tested).
+ */
+static void
+point_double(felem x_out, felem y_out, felem z_out,
+ const felem x_in, const felem y_in, const felem z_in)
+{
+ widefelem tmp, tmp2;
+ felem delta, gamma, beta, alpha, ftmp, ftmp2;
+
+ felem_assign(ftmp, x_in);
+ felem_assign(ftmp2, x_in);
+
+ /* delta = z^2 */
+ felem_square_reduce(delta, z_in); /* delta[i] < 2^56 */
+
+ /* gamma = y^2 */
+ felem_square_reduce(gamma, y_in); /* gamma[i] < 2^56 */
+
+ /* beta = x*gamma */
+ felem_mul_reduce(beta, x_in, gamma); /* beta[i] < 2^56 */
+
+ /* alpha = 3*(x-delta)*(x+delta) */
+ felem_diff64(ftmp, delta); /* ftmp[i] < 2^60 + 2^58 + 2^44 */
+ felem_sum64(ftmp2, delta); /* ftmp2[i] < 2^59 */
+ felem_scalar64(ftmp2, 3); /* ftmp2[i] < 2^61 */
+ felem_mul_reduce(alpha, ftmp, ftmp2); /* alpha[i] < 2^56 */
+
+ /* x' = alpha^2 - 8*beta */
+ felem_square(tmp, alpha); /* tmp[i] < 2^115 */
+ felem_assign(ftmp, beta); /* ftmp[i] < 2^56 */
+ felem_scalar64(ftmp, 8); /* ftmp[i] < 2^59 */
+ felem_diff_128_64(tmp, ftmp); /* tmp[i] < 2^115 + 2^64 + 2^48 */
+ felem_reduce(x_out, tmp); /* x_out[i] < 2^56 */
+
+ /* z' = (y + z)^2 - gamma - delta */
+ felem_sum64(delta, gamma); /* delta[i] < 2^57 */
+ felem_assign(ftmp, y_in); /* ftmp[i] < 2^56 */
+ felem_sum64(ftmp, z_in); /* ftmp[i] < 2^56 */
+ felem_square(tmp, ftmp); /* tmp[i] < 2^115 */
+ felem_diff_128_64(tmp, delta); /* tmp[i] < 2^115 + 2^64 + 2^48 */
+ felem_reduce(z_out, tmp); /* z_out[i] < 2^56 */
+
+ /* y' = alpha*(4*beta - x') - 8*gamma^2 */
+ felem_scalar64(beta, 4); /* beta[i] < 2^58 */
+ felem_diff64(beta, x_out); /* beta[i] < 2^60 + 2^58 + 2^44 */
+ felem_mul(tmp, alpha, beta); /* tmp[i] < 2^119 */
+ felem_square(tmp2, gamma); /* tmp2[i] < 2^115 */
+ felem_scalar128(tmp2, 8); /* tmp2[i] < 2^118 */
+ felem_diff128(tmp, tmp2); /* tmp[i] < 2^127 + 2^119 + 2^111 */
+ felem_reduce(y_out, tmp); /* tmp[i] < 2^56 */
+}
+
+/* copy_conditional copies in to out iff mask is all ones. */
+static void copy_conditional(felem out, const felem in, limb mask)
+{
+ unsigned int i;
+
+ for (i = 0; i < NLIMBS; i++)
+ out[i] ^= mask & (in[i] ^ out[i]);
+}
+
+/*-
+ * point_add calculates (x1, y1, z1) + (x2, y2, z2)
+ *
+ * The method is taken from
+ * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
+ * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
+ *
+ * This function includes a branch for checking whether the two input points
+ * are equal (while not equal to the point at infinity). See comment below
+ * on constant-time.
+ */
+static void point_add(felem x3, felem y3, felem z3,
+ const felem x1, const felem y1, const felem z1,
+ const int mixed, const felem x2, const felem y2,
+ const felem z2)
+{
+ felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
+ widefelem tmp, tmp2;
+ limb x_equal, y_equal, z1_is_zero, z2_is_zero;
+ limb points_equal;
+
+ z1_is_zero = felem_is_zero(z1);
+ z2_is_zero = felem_is_zero(z2);
+
+ /* ftmp = z1z1 = z1**2 */
+ felem_square_reduce(ftmp, z1); /* ftmp[i] < 2^56 */
+
+ if (!mixed) {
+ /* ftmp2 = z2z2 = z2**2 */
+ felem_square_reduce(ftmp2, z2); /* ftmp2[i] < 2^56 */
+
+ /* u1 = ftmp3 = x1*z2z2 */
+ felem_mul_reduce(ftmp3, x1, ftmp2); /* ftmp3[i] < 2^56 */
+
+ /* ftmp5 = z1 + z2 */
+ felem_assign(ftmp5, z1); /* ftmp5[i] < 2^56 */
+ felem_sum64(ftmp5, z2); /* ftmp5[i] < 2^57 */
+
+ /* ftmp5 = (z1 + z2)**2 - z1z1 - z2z2 = 2*z1z2 */
+ felem_square(tmp, ftmp5); /* tmp[i] < 2^117 */
+ felem_diff_128_64(tmp, ftmp); /* tmp[i] < 2^117 + 2^64 + 2^48 */
+ felem_diff_128_64(tmp, ftmp2); /* tmp[i] < 2^117 + 2^65 + 2^49 */
+ felem_reduce(ftmp5, tmp); /* ftmp5[i] < 2^56 */
+
+ /* ftmp2 = z2 * z2z2 */
+ felem_mul_reduce(ftmp2, ftmp2, z2); /* ftmp2[i] < 2^56 */
+
+ /* s1 = ftmp6 = y1 * z2**3 */
+ felem_mul_reduce(ftmp6, y1, ftmp2); /* ftmp6[i] < 2^56 */
+ } else {
+ /*
+ * We'll assume z2 = 1 (special case z2 = 0 is handled later)
+ */
+
+ /* u1 = ftmp3 = x1*z2z2 */
+ felem_assign(ftmp3, x1); /* ftmp3[i] < 2^56 */
+
+ /* ftmp5 = 2*z1z2 */
+ felem_scalar(ftmp5, z1, 2); /* ftmp5[i] < 2^57 */
+
+ /* s1 = ftmp6 = y1 * z2**3 */
+ felem_assign(ftmp6, y1); /* ftmp6[i] < 2^56 */
+ }
+ /* ftmp3[i] < 2^56, ftmp5[i] < 2^57, ftmp6[i] < 2^56 */
+
+ /* u2 = x2*z1z1 */
+ felem_mul(tmp, x2, ftmp); /* tmp[i] < 2^115 */
+
+ /* h = ftmp4 = u2 - u1 */
+ felem_diff_128_64(tmp, ftmp3); /* tmp[i] < 2^115 + 2^64 + 2^48 */
+ felem_reduce(ftmp4, tmp); /* ftmp[4] < 2^56 */
+
+ x_equal = felem_is_zero(ftmp4);
+
+ /* z_out = ftmp5 * h */
+ felem_mul_reduce(z_out, ftmp5, ftmp4); /* z_out[i] < 2^56 */
+
+ /* ftmp = z1 * z1z1 */
+ felem_mul_reduce(ftmp, ftmp, z1); /* ftmp[i] < 2^56 */
+
+ /* s2 = tmp = y2 * z1**3 */
+ felem_mul(tmp, y2, ftmp); /* tmp[i] < 2^115 */
+
+ /* r = ftmp5 = (s2 - s1)*2 */
+ felem_diff_128_64(tmp, ftmp6); /* tmp[i] < 2^115 + 2^64 + 2^48 */
+ felem_reduce(ftmp5, tmp); /* ftmp5[i] < 2^56 */
+ y_equal = felem_is_zero(ftmp5);
+ felem_scalar64(ftmp5, 2); /* ftmp5[i] < 2^57 */
+
+ /*
+ * The formulae are incorrect if the points are equal, in affine coordinates
+ * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this
+ * happens.
+ *
+ * We use bitwise operations to avoid potential side-channels introduced by
+ * the short-circuiting behaviour of boolean operators.
+ *
+ * The special case of either point being the point at infinity (z1 and/or
+ * z2 are zero), is handled separately later on in this function, so we
+ * avoid jumping to point_double here in those special cases.
+ *
+ * Notice the comment below on the implications of this branching for timing
+ * leaks and why it is considered practically irrelevant.
+ */
+ points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero));
+
+ if (points_equal) {
+ /*
+ * This is obviously not constant-time but it will almost-never happen
+ * for ECDH / ECDSA.
+ */
+ point_double(x3, y3, z3, x1, y1, z1);
+ return;
+ }
+
+ /* I = ftmp = (2h)**2 */
+ felem_assign(ftmp, ftmp4); /* ftmp[i] < 2^56 */
+ felem_scalar64(ftmp, 2); /* ftmp[i] < 2^57 */
+ felem_square_reduce(ftmp, ftmp); /* ftmp[i] < 2^56 */
+
+ /* J = ftmp2 = h * I */
+ felem_mul_reduce(ftmp2, ftmp4, ftmp); /* ftmp2[i] < 2^56 */
+
+ /* V = ftmp4 = U1 * I */
+ felem_mul_reduce(ftmp4, ftmp3, ftmp); /* ftmp4[i] < 2^56 */
+
+ /* x_out = r**2 - J - 2V */
+ felem_square(tmp, ftmp5); /* tmp[i] < 2^117 */
+ felem_diff_128_64(tmp, ftmp2); /* tmp[i] < 2^117 + 2^64 + 2^48 */
+ felem_assign(ftmp3, ftmp4); /* ftmp3[i] < 2^56 */
+ felem_scalar64(ftmp4, 2); /* ftmp4[i] < 2^57 */
+ felem_diff_128_64(tmp, ftmp4); /* tmp[i] < 2^117 + 2^65 + 2^49 */
+ felem_reduce(x_out, tmp); /* x_out[i] < 2^56 */
+
+ /* y_out = r(V-x_out) - 2 * s1 * J */
+ felem_diff64(ftmp3, x_out); /* ftmp3[i] < 2^60 + 2^56 + 2^44 */
+ felem_mul(tmp, ftmp5, ftmp3); /* tmp[i] < 2^116 */
+ felem_mul(tmp2, ftmp6, ftmp2); /* tmp2[i] < 2^115 */
+ felem_scalar128(tmp2, 2); /* tmp2[i] < 2^116 */
+ felem_diff128(tmp, tmp2); /* tmp[i] < 2^127 + 2^116 + 2^111 */
+ felem_reduce(y_out, tmp); /* y_out[i] < 2^56 */
+
+ copy_conditional(x_out, x2, z1_is_zero);
+ copy_conditional(x_out, x1, z2_is_zero);
+ copy_conditional(y_out, y2, z1_is_zero);
+ copy_conditional(y_out, y1, z2_is_zero);
+ copy_conditional(z_out, z2, z1_is_zero);
+ copy_conditional(z_out, z1, z2_is_zero);
+ felem_assign(x3, x_out);
+ felem_assign(y3, y_out);
+ felem_assign(z3, z_out);
+}
+
+/*-
+ * Base point pre computation
+ * --------------------------
+ *
+ * Two different sorts of precomputed tables are used in the following code.
+ * Each contain various points on the curve, where each point is three field
+ * elements (x, y, z).
+ *
+ * For the base point table, z is usually 1 (0 for the point at infinity).
+ * This table has 16 elements:
+ * index | bits | point
+ * ------+---------+------------------------------
+ * 0 | 0 0 0 0 | 0G
+ * 1 | 0 0 0 1 | 1G
+ * 2 | 0 0 1 0 | 2^95G
+ * 3 | 0 0 1 1 | (2^95 + 1)G
+ * 4 | 0 1 0 0 | 2^190G
+ * 5 | 0 1 0 1 | (2^190 + 1)G
+ * 6 | 0 1 1 0 | (2^190 + 2^95)G
+ * 7 | 0 1 1 1 | (2^190 + 2^95 + 1)G
+ * 8 | 1 0 0 0 | 2^285G
+ * 9 | 1 0 0 1 | (2^285 + 1)G
+ * 10 | 1 0 1 0 | (2^285 + 2^95)G
+ * 11 | 1 0 1 1 | (2^285 + 2^95 + 1)G
+ * 12 | 1 1 0 0 | (2^285 + 2^190)G
+ * 13 | 1 1 0 1 | (2^285 + 2^190 + 1)G
+ * 14 | 1 1 1 0 | (2^285 + 2^190 + 2^95)G
+ * 15 | 1 1 1 1 | (2^285 + 2^190 + 2^95 + 1)G
+ *
+ * The reason for this is so that we can clock bits into four different
+ * locations when doing simple scalar multiplies against the base point.
+ *
+ * Tables for other points have table[i] = iG for i in 0 .. 16.
+ */
+
+/* gmul is the table of precomputed base points */
+static const felem gmul[16][3] = {
+{{0, 0, 0, 0, 0, 0, 0},
+ {0, 0, 0, 0, 0, 0, 0},
+ {0, 0, 0, 0, 0, 0, 0}},
+{{0x00545e3872760ab7, 0x00f25dbf55296c3a, 0x00e082542a385502, 0x008ba79b9859f741,
+ 0x0020ad746e1d3b62, 0x0005378eb1c71ef3, 0x0000aa87ca22be8b},
+ {0x00431d7c90ea0e5f, 0x00b1ce1d7e819d7a, 0x0013b5f0b8c00a60, 0x00289a147ce9da31,
+ 0x0092dc29f8f41dbd, 0x002c6f5d9e98bf92, 0x00003617de4a9626},
+ {1, 0, 0, 0, 0, 0, 0}},
+{{0x00024711cc902a90, 0x00acb2e579ab4fe1, 0x00af818a4b4d57b1, 0x00a17c7bec49c3de,
+ 0x004280482d726a8b, 0x00128dd0f0a90f3b, 0x00004387c1c3fa3c},
+ {0x002ce76543cf5c3a, 0x00de6cee5ef58f0a, 0x00403e42fa561ca6, 0x00bc54d6f9cb9731,
+ 0x007155f925fb4ff1, 0x004a9ce731b7b9bc, 0x00002609076bd7b2},
+ {1, 0, 0, 0, 0, 0, 0}},
+{{0x00e74c9182f0251d, 0x0039bf54bb111974, 0x00b9d2f2eec511d2, 0x0036b1594eb3a6a4,
+ 0x00ac3bb82d9d564b, 0x00f9313f4615a100, 0x00006716a9a91b10},
+ {0x0046698116e2f15c, 0x00f34347067d3d33, 0x008de4ccfdebd002, 0x00e838c6b8e8c97b,
+ 0x006faf0798def346, 0x007349794a57563c, 0x00002629e7e6ad84},
+ {1, 0, 0, 0, 0, 0, 0}},
+{{0x0075300e34fd163b, 0x0092e9db4e8d0ad3, 0x00254be9f625f760, 0x00512c518c72ae68,
+ 0x009bfcf162bede5a, 0x00bf9341566ce311, 0x0000cd6175bd41cf},
+ {0x007dfe52af4ac70f, 0x0002159d2d5c4880, 0x00b504d16f0af8d0, 0x0014585e11f5e64c,
+ 0x0089c6388e030967, 0x00ffb270cbfa5f71, 0x00009a15d92c3947},
+ {1, 0, 0, 0, 0, 0, 0}},
+{{0x0033fc1278dc4fe5, 0x00d53088c2caa043, 0x0085558827e2db66, 0x00c192bef387b736,
+ 0x00df6405a2225f2c, 0x0075205aa90fd91a, 0x0000137e3f12349d},
+ {0x00ce5b115efcb07e, 0x00abc3308410deeb, 0x005dc6fc1de39904, 0x00907c1c496f36b4,
+ 0x0008e6ad3926cbe1, 0x00110747b787928c, 0x0000021b9162eb7e},
+ {1, 0, 0, 0, 0, 0, 0}},
+{{0x008180042cfa26e1, 0x007b826a96254967, 0x0082473694d6b194, 0x007bd6880a45b589,
+ 0x00c0a5097072d1a3, 0x0019186555e18b4e, 0x000020278190e5ca},
+ {0x00b4bef17de61ac0, 0x009535e3c38ed348, 0x002d4aa8e468ceab, 0x00ef40b431036ad3,
+ 0x00defd52f4542857, 0x0086edbf98234266, 0x00002025b3a7814d},
+ {1, 0, 0, 0, 0, 0, 0}},
+{{0x00b238aa97b886be, 0x00ef3192d6dd3a32, 0x0079f9e01fd62df8, 0x00742e890daba6c5,
+ 0x008e5289144408ce, 0x0073bbcc8e0171a5, 0x0000c4fd329d3b52},
+ {0x00c6f64a15ee23e7, 0x00dcfb7b171cad8b, 0x00039f6cbd805867, 0x00de024e428d4562,
+ 0x00be6a594d7c64c5, 0x0078467b70dbcd64, 0x0000251f2ed7079b},
+ {1, 0, 0, 0, 0, 0, 0}},
+{{0x000e5cc25fc4b872, 0x005ebf10d31ef4e1, 0x0061e0ebd11e8256, 0x0076e026096f5a27,
+ 0x0013e6fc44662e9a, 0x0042b00289d3597e, 0x000024f089170d88},
+ {0x001604d7e0effbe6, 0x0048d77cba64ec2c, 0x008166b16da19e36, 0x006b0d1a0f28c088,
+ 0x000259fcd47754fd, 0x00cc643e4d725f9a, 0x00007b10f3c79c14},
+ {1, 0, 0, 0, 0, 0, 0}},
+{{0x00430155e3b908af, 0x00b801e4fec25226, 0x00b0d4bcfe806d26, 0x009fc4014eb13d37,
+ 0x0066c94e44ec07e8, 0x00d16adc03874ba2, 0x000030c917a0d2a7},
+ {0x00edac9e21eb891c, 0x00ef0fb768102eff, 0x00c088cef272a5f3, 0x00cbf782134e2964,
+ 0x0001044a7ba9a0e3, 0x00e363f5b194cf3c, 0x00009ce85249e372},
+ {1, 0, 0, 0, 0, 0, 0}},
+{{0x001dd492dda5a7eb, 0x008fd577be539fd1, 0x002ff4b25a5fc3f1, 0x0074a8a1b64df72f,
+ 0x002ba3d8c204a76c, 0x009d5cff95c8235a, 0x0000e014b9406e0f},
+ {0x008c2e4dbfc98aba, 0x00f30bb89f1a1436, 0x00b46f7aea3e259c, 0x009224454ac02f54,
+ 0x00906401f5645fa2, 0x003a1d1940eabc77, 0x00007c9351d680e6},
+ {1, 0, 0, 0, 0, 0, 0}},
+{{0x005a35d872ef967c, 0x0049f1b7884e1987, 0x0059d46d7e31f552, 0x00ceb4869d2d0fb6,
+ 0x00e8e89eee56802a, 0x0049d806a774aaf2, 0x0000147e2af0ae24},
+ {0x005fd1bd852c6e5e, 0x00b674b7b3de6885, 0x003b9ea5eb9b6c08, 0x005c9f03babf3ef7,
+ 0x00605337fecab3c7, 0x009a3f85b11bbcc8, 0x0000455470f330ec},
+ {1, 0, 0, 0, 0, 0, 0}},
+{{0x002197ff4d55498d, 0x00383e8916c2d8af, 0x00eb203f34d1c6d2, 0x0080367cbd11b542,
+ 0x00769b3be864e4f5, 0x0081a8458521c7bb, 0x0000c531b34d3539},
+ {0x00e2a3d775fa2e13, 0x00534fc379573844, 0x00ff237d2a8db54a, 0x00d301b2335a8882,
+ 0x000f75ea96103a80, 0x0018fecb3cdd96fa, 0x0000304bf61e94eb},
+ {1, 0, 0, 0, 0, 0, 0}},
+{{0x00b2afc332a73dbd, 0x0029a0d5bb007bc5, 0x002d628eb210f577, 0x009f59a36dd05f50,
+ 0x006d339de4eca613, 0x00c75a71addc86bc, 0x000060384c5ea93c},
+ {0x00aa9641c32a30b4, 0x00cc73ae8cce565d, 0x00ec911a4df07f61, 0x00aa4b762ea4b264,
+ 0x0096d395bb393629, 0x004efacfb7632fe0, 0x00006f252f46fa3f},
+ {1, 0, 0, 0, 0, 0, 0}},
+{{0x00567eec597c7af6, 0x0059ba6795204413, 0x00816d4e6f01196f, 0x004ae6b3eb57951d,
+ 0x00420f5abdda2108, 0x003401d1f57ca9d9, 0x0000cf5837b0b67a},
+ {0x00eaa64b8aeeabf9, 0x00246ddf16bcb4de, 0x000e7e3c3aecd751, 0x0008449f04fed72e,
+ 0x00307b67ccf09183, 0x0017108c3556b7b1, 0x0000229b2483b3bf},
+ {1, 0, 0, 0, 0, 0, 0}},
+{{0x00e7c491a7bb78a1, 0x00eafddd1d3049ab, 0x00352c05e2bc7c98, 0x003d6880c165fa5c,
+ 0x00b6ac61cc11c97d, 0x00beeb54fcf90ce5, 0x0000dc1f0b455edc},
+ {0x002db2e7aee34d60, 0x0073b5f415a2d8c0, 0x00dd84e4193e9a0c, 0x00d02d873467c572,
+ 0x0018baaeda60aee5, 0x0013fb11d697c61e, 0x000083aafcc3a973},
+ {1, 0, 0, 0, 0, 0, 0}}
+};
+
+/*
+ * select_point selects the |idx|th point from a precomputation table and
+ * copies it to out.
+ *
+ * pre_comp below is of the size provided in |size|.
+ */
+static void select_point(const limb idx, unsigned int size,
+ const felem pre_comp[][3], felem out[3])
+{
+ unsigned int i, j;
+ limb *outlimbs = &out[0][0];
+
+ memset(out, 0, sizeof(*out) * 3);
+
+ for (i = 0; i < size; i++) {
+ const limb *inlimbs = &pre_comp[i][0][0];
+ limb mask = i ^ idx;
+
+ mask |= mask >> 4;
+ mask |= mask >> 2;
+ mask |= mask >> 1;
+ mask &= 1;
+ mask--;
+ for (j = 0; j < NLIMBS * 3; j++)
+ outlimbs[j] |= inlimbs[j] & mask;
+ }
+}
+
+/* get_bit returns the |i|th bit in |in| */
+static char get_bit(const felem_bytearray in, int i)
+{
+ if (i < 0 || i >= 384)
+ return 0;
+ return (in[i >> 3] >> (i & 7)) & 1;
+}
+
+/*
+ * Interleaved point multiplication using precomputed point multiples: The
+ * small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[], the scalars
+ * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
+ * generator, using certain (large) precomputed multiples in g_pre_comp.
+ * Output point (X, Y, Z) is stored in x_out, y_out, z_out
+ */
+static void batch_mul(felem x_out, felem y_out, felem z_out,
+ const felem_bytearray scalars[],
+ const unsigned int num_points, const u8 *g_scalar,
+ const int mixed, const felem pre_comp[][17][3],
+ const felem g_pre_comp[16][3])
+{
+ int i, skip;
+ unsigned int num, gen_mul = (g_scalar != NULL);
+ felem nq[3], tmp[4];
+ limb bits;
+ u8 sign, digit;
+
+ /* set nq to the point at infinity */
+ memset(nq, 0, sizeof(nq));
+
+ /*
+ * Loop over all scalars msb-to-lsb, interleaving additions of multiples
+ * of the generator (last quarter of rounds) and additions of other
+ * points multiples (every 5th round).
+ */
+ skip = 1; /* save two point operations in the first
+ * round */
+ for (i = (num_points ? 380 : 98); i >= 0; --i) {
+ /* double */
+ if (!skip)
+ point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
+
+ /* add multiples of the generator */
+ if (gen_mul && (i <= 98)) {
+ bits = get_bit(g_scalar, i + 285) << 3;
+ if (i < 95) {
+ bits |= get_bit(g_scalar, i + 190) << 2;
+ bits |= get_bit(g_scalar, i + 95) << 1;
+ bits |= get_bit(g_scalar, i);
+ }
+ /* select the point to add, in constant time */
+ select_point(bits, 16, g_pre_comp, tmp);
+ if (!skip) {
+ /* The 1 argument below is for "mixed" */
+ point_add(nq[0], nq[1], nq[2],
+ nq[0], nq[1], nq[2], 1,
+ tmp[0], tmp[1], tmp[2]);
+ } else {
+ memcpy(nq, tmp, 3 * sizeof(felem));
+ skip = 0;
+ }
+ }
+
+ /* do other additions every 5 doublings */
+ if (num_points && (i % 5 == 0)) {
+ /* loop over all scalars */
+ for (num = 0; num < num_points; ++num) {
+ bits = get_bit(scalars[num], i + 4) << 5;
+ bits |= get_bit(scalars[num], i + 3) << 4;
+ bits |= get_bit(scalars[num], i + 2) << 3;
+ bits |= get_bit(scalars[num], i + 1) << 2;
+ bits |= get_bit(scalars[num], i) << 1;
+ bits |= get_bit(scalars[num], i - 1);
+ ossl_ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
+
+ /*
+ * select the point to add or subtract, in constant time
+ */
+ select_point(digit, 17, pre_comp[num], tmp);
+ felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative
+ * point */
+ copy_conditional(tmp[1], tmp[3], (-(limb) sign));
+
+ if (!skip) {
+ point_add(nq[0], nq[1], nq[2],
+ nq[0], nq[1], nq[2], mixed,
+ tmp[0], tmp[1], tmp[2]);
+ } else {
+ memcpy(nq, tmp, 3 * sizeof(felem));
+ skip = 0;
+ }
+ }
+ }
+ }
+ felem_assign(x_out, nq[0]);
+ felem_assign(y_out, nq[1]);
+ felem_assign(z_out, nq[2]);
+}
+
+/* Precomputation for the group generator. */
+struct nistp384_pre_comp_st {
+ felem g_pre_comp[16][3];
+ CRYPTO_REF_COUNT refcnt;
+ CRYPTO_RWLOCK *refcnt_lock;
+};
+
+const EC_METHOD *ossl_ec_GFp_nistp384_method(void)
+{
+ static const EC_METHOD ret = {
+ EC_FLAGS_DEFAULT_OCT,
+ NID_X9_62_prime_field,
+ ossl_ec_GFp_nistp384_group_init,
+ ossl_ec_GFp_simple_group_finish,
+ ossl_ec_GFp_simple_group_clear_finish,
+ ossl_ec_GFp_nist_group_copy,
+ ossl_ec_GFp_nistp384_group_set_curve,
+ ossl_ec_GFp_simple_group_get_curve,
+ ossl_ec_GFp_simple_group_get_degree,
+ ossl_ec_group_simple_order_bits,
+ ossl_ec_GFp_simple_group_check_discriminant,
+ ossl_ec_GFp_simple_point_init,
+ ossl_ec_GFp_simple_point_finish,
+ ossl_ec_GFp_simple_point_clear_finish,
+ ossl_ec_GFp_simple_point_copy,
+ ossl_ec_GFp_simple_point_set_to_infinity,
+ ossl_ec_GFp_simple_point_set_affine_coordinates,
+ ossl_ec_GFp_nistp384_point_get_affine_coordinates,
+ 0, /* point_set_compressed_coordinates */
+ 0, /* point2oct */
+ 0, /* oct2point */
+ ossl_ec_GFp_simple_add,
+ ossl_ec_GFp_simple_dbl,
+ ossl_ec_GFp_simple_invert,
+ ossl_ec_GFp_simple_is_at_infinity,
+ ossl_ec_GFp_simple_is_on_curve,
+ ossl_ec_GFp_simple_cmp,
+ ossl_ec_GFp_simple_make_affine,
+ ossl_ec_GFp_simple_points_make_affine,
+ ossl_ec_GFp_nistp384_points_mul,
+ ossl_ec_GFp_nistp384_precompute_mult,
+ ossl_ec_GFp_nistp384_have_precompute_mult,
+ ossl_ec_GFp_nist_field_mul,
+ ossl_ec_GFp_nist_field_sqr,
+ 0, /* field_div */
+ ossl_ec_GFp_simple_field_inv,
+ 0, /* field_encode */
+ 0, /* field_decode */
+ 0, /* field_set_to_one */
+ ossl_ec_key_simple_priv2oct,
+ ossl_ec_key_simple_oct2priv,
+ 0, /* set private */
+ ossl_ec_key_simple_generate_key,
+ ossl_ec_key_simple_check_key,
+ ossl_ec_key_simple_generate_public_key,
+ 0, /* keycopy */
+ 0, /* keyfinish */
+ ossl_ecdh_simple_compute_key,
+ ossl_ecdsa_simple_sign_setup,
+ ossl_ecdsa_simple_sign_sig,
+ ossl_ecdsa_simple_verify_sig,
+ 0, /* field_inverse_mod_ord */
+ 0, /* blind_coordinates */
+ 0, /* ladder_pre */
+ 0, /* ladder_step */
+ 0 /* ladder_post */
+ };
+
+ return &ret;
+}
+
+/******************************************************************************/
+/*
+ * FUNCTIONS TO MANAGE PRECOMPUTATION
+ */
+
+static NISTP384_PRE_COMP *nistp384_pre_comp_new(void)
+{
+ NISTP384_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret));
+
+ if (ret == NULL || (ret->refcnt_lock = CRYPTO_THREAD_lock_new()) == NULL) {
+ OPENSSL_free(ret);
+ return NULL;
+ }
+
+ ret->refcnt = 1;
+ return ret;
+}
+
+NISTP384_PRE_COMP *ossl_ec_nistp384_pre_comp_dup(NISTP384_PRE_COMP *p)
+{
+ int i;
+
+ if (p != NULL)
+ CRYPTO_UP_REF(&p->refcnt, &i, p->refcnt_lock);
+ return p;
+}
+
+void ossl_ec_nistp384_pre_comp_free(NISTP384_PRE_COMP *p)
+{
+ int i;
+
+ if (p == NULL)
+ return;
+
+ CRYPTO_DOWN_REF(&p->refcnt, &i, p->refcnt_lock);
+ REF_PRINT_COUNT("ossl_ec_nistp384", p);
+ if (i > 0)
+ return;
+ REF_ASSERT_ISNT(i < 0);
+
+ CRYPTO_THREAD_lock_free(p->refcnt_lock);
+ OPENSSL_free(p);
+}
+
+/******************************************************************************/
+/*
+ * OPENSSL EC_METHOD FUNCTIONS
+ */
+
+int ossl_ec_GFp_nistp384_group_init(EC_GROUP *group)
+{
+ int ret;
+
+ ret = ossl_ec_GFp_simple_group_init(group);
+ group->a_is_minus3 = 1;
+ return ret;
+}
+
+int ossl_ec_GFp_nistp384_group_set_curve(EC_GROUP *group, const BIGNUM *p,
+ const BIGNUM *a, const BIGNUM *b,
+ BN_CTX *ctx)
+{
+ int ret = 0;
+ BIGNUM *curve_p, *curve_a, *curve_b;
+#ifndef FIPS_MODULE
+ BN_CTX *new_ctx = NULL;
+
+ if (ctx == NULL)
+ ctx = new_ctx = BN_CTX_new();
+#endif
+ if (ctx == NULL)
+ return 0;
+
+ BN_CTX_start(ctx);
+ curve_p = BN_CTX_get(ctx);
+ curve_a = BN_CTX_get(ctx);
+ curve_b = BN_CTX_get(ctx);
+ if (curve_b == NULL)
+ goto err;
+ BN_bin2bn(nistp384_curve_params[0], sizeof(felem_bytearray), curve_p);
+ BN_bin2bn(nistp384_curve_params[1], sizeof(felem_bytearray), curve_a);
+ BN_bin2bn(nistp384_curve_params[2], sizeof(felem_bytearray), curve_b);
+ if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) {
+ ERR_raise(ERR_LIB_EC, EC_R_WRONG_CURVE_PARAMETERS);
+ goto err;
+ }
+ group->field_mod_func = BN_nist_mod_384;
+ ret = ossl_ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
+ err:
+ BN_CTX_end(ctx);
+#ifndef FIPS_MODULE
+ BN_CTX_free(new_ctx);
+#endif
+ return ret;
+}
+
+/*
+ * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
+ * (X/Z^2, Y/Z^3)
+ */
+int ossl_ec_GFp_nistp384_point_get_affine_coordinates(const EC_GROUP *group,
+ const EC_POINT *point,
+ BIGNUM *x, BIGNUM *y,
+ BN_CTX *ctx)
+{
+ felem z1, z2, x_in, y_in, x_out, y_out;
+ widefelem tmp;
+
+ if (EC_POINT_is_at_infinity(group, point)) {
+ ERR_raise(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
+ return 0;
+ }
+ if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) ||
+ (!BN_to_felem(z1, point->Z)))
+ return 0;
+ felem_inv(z2, z1);
+ felem_square(tmp, z2);
+ felem_reduce(z1, tmp);
+ felem_mul(tmp, x_in, z1);
+ felem_reduce(x_in, tmp);
+ felem_contract(x_out, x_in);
+ if (x != NULL) {
+ if (!felem_to_BN(x, x_out)) {
+ ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
+ return 0;
+ }
+ }
+ felem_mul(tmp, z1, z2);
+ felem_reduce(z1, tmp);
+ felem_mul(tmp, y_in, z1);
+ felem_reduce(y_in, tmp);
+ felem_contract(y_out, y_in);
+ if (y != NULL) {
+ if (!felem_to_BN(y, y_out)) {
+ ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
+ return 0;
+ }
+ }
+ return 1;
+}
+
+/* points below is of size |num|, and tmp_felems is of size |num+1/ */
+static void make_points_affine(size_t num, felem points[][3],
+ felem tmp_felems[])
+{
+ /*
+ * Runs in constant time, unless an input is the point at infinity (which
+ * normally shouldn't happen).
+ */
+ ossl_ec_GFp_nistp_points_make_affine_internal(num,
+ points,
+ sizeof(felem),
+ tmp_felems,
+ (void (*)(void *))felem_one,
+ felem_is_zero_int,
+ (void (*)(void *, const void *))
+ felem_assign,
+ (void (*)(void *, const void *))
+ felem_square_reduce,
+ (void (*)(void *, const void *, const void*))
+ felem_mul_reduce,
+ (void (*)(void *, const void *))
+ felem_inv,
+ (void (*)(void *, const void *))
+ felem_contract);
+}
+
+/*
+ * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL
+ * values Result is stored in r (r can equal one of the inputs).
+ */
+int ossl_ec_GFp_nistp384_points_mul(const EC_GROUP *group, EC_POINT *r,
+ const BIGNUM *scalar, size_t num,
+ const EC_POINT *points[],
+ const BIGNUM *scalars[], BN_CTX *ctx)
+{
+ int ret = 0;
+ int j;
+ int mixed = 0;
+ BIGNUM *x, *y, *z, *tmp_scalar;
+ felem_bytearray g_secret;
+ felem_bytearray *secrets = NULL;
+ felem (*pre_comp)[17][3] = NULL;
+ felem *tmp_felems = NULL;
+ unsigned int i;
+ int num_bytes;
+ int have_pre_comp = 0;
+ size_t num_points = num;
+ felem x_in, y_in, z_in, x_out, y_out, z_out;
+ NISTP384_PRE_COMP *pre = NULL;
+ felem(*g_pre_comp)[3] = NULL;
+ EC_POINT *generator = NULL;
+ const EC_POINT *p = NULL;
+ const BIGNUM *p_scalar = NULL;
+
+ BN_CTX_start(ctx);
+ x = BN_CTX_get(ctx);
+ y = BN_CTX_get(ctx);
+ z = BN_CTX_get(ctx);
+ tmp_scalar = BN_CTX_get(ctx);
+ if (tmp_scalar == NULL)
+ goto err;
+
+ if (scalar != NULL) {
+ pre = group->pre_comp.nistp384;
+ if (pre)
+ /* we have precomputation, try to use it */
+ g_pre_comp = &pre->g_pre_comp[0];
+ else
+ /* try to use the standard precomputation */
+ g_pre_comp = (felem(*)[3]) gmul;
+ generator = EC_POINT_new(group);
+ if (generator == NULL)
+ goto err;
+ /* get the generator from precomputation */
+ if (!felem_to_BN(x, g_pre_comp[1][0]) ||
+ !felem_to_BN(y, g_pre_comp[1][1]) ||
+ !felem_to_BN(z, g_pre_comp[1][2])) {
+ ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
+ goto err;
+ }
+ if (!ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group,
+ generator,
+ x, y, z, ctx))
+ goto err;
+ if (0 == EC_POINT_cmp(group, generator, group->generator, ctx))
+ /* precomputation matches generator */
+ have_pre_comp = 1;
+ else
+ /*
+ * we don't have valid precomputation: treat the generator as a
+ * random point
+ */
+ num_points++;
+ }
+
+ if (num_points > 0) {
+ if (num_points >= 2) {
+ /*
+ * unless we precompute multiples for just one point, converting
+ * those into affine form is time well spent
+ */
+ mixed = 1;
+ }
+ secrets = OPENSSL_zalloc(sizeof(*secrets) * num_points);
+ pre_comp = OPENSSL_zalloc(sizeof(*pre_comp) * num_points);
+ if (mixed)
+ tmp_felems =
+ OPENSSL_malloc(sizeof(*tmp_felems) * (num_points * 17 + 1));
+ if ((secrets == NULL) || (pre_comp == NULL)
+ || (mixed && (tmp_felems == NULL)))
+ goto err;
+
+ /*
+ * we treat NULL scalars as 0, and NULL points as points at infinity,
+ * i.e., they contribute nothing to the linear combination
+ */
+ for (i = 0; i < num_points; ++i) {
+ if (i == num) {
+ /*
+ * we didn't have a valid precomputation, so we pick the
+ * generator
+ */
+ p = EC_GROUP_get0_generator(group);
+ p_scalar = scalar;
+ } else {
+ /* the i^th point */
+ p = points[i];
+ p_scalar = scalars[i];
+ }
+ if (p_scalar != NULL && p != NULL) {
+ /* reduce scalar to 0 <= scalar < 2^384 */
+ if ((BN_num_bits(p_scalar) > 384)
+ || (BN_is_negative(p_scalar))) {
+ /*
+ * this is an unusual input, and we don't guarantee
+ * constant-timeness
+ */
+ if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) {
+ ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
+ goto err;
+ }
+ num_bytes = BN_bn2lebinpad(tmp_scalar,
+ secrets[i], sizeof(secrets[i]));
+ } else {
+ num_bytes = BN_bn2lebinpad(p_scalar,
+ secrets[i], sizeof(secrets[i]));
+ }
+ if (num_bytes < 0) {
+ ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
+ goto err;
+ }
+ /* precompute multiples */
+ if ((!BN_to_felem(x_out, p->X)) ||
+ (!BN_to_felem(y_out, p->Y)) ||
+ (!BN_to_felem(z_out, p->Z)))
+ goto err;
+ memcpy(pre_comp[i][1][0], x_out, sizeof(felem));
+ memcpy(pre_comp[i][1][1], y_out, sizeof(felem));
+ memcpy(pre_comp[i][1][2], z_out, sizeof(felem));
+ for (j = 2; j <= 16; ++j) {
+ if (j & 1) {
+ point_add(pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
+ pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2], 0,
+ pre_comp[i][j - 1][0], pre_comp[i][j - 1][1], pre_comp[i][j - 1][2]);
+ } else {
+ point_double(pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
+ pre_comp[i][j / 2][0], pre_comp[i][j / 2][1], pre_comp[i][j / 2][2]);
+ }
+ }
+ }
+ }
+ if (mixed)
+ make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
+ }
+
+ /* the scalar for the generator */
+ if (scalar != NULL && have_pre_comp) {
+ memset(g_secret, 0, sizeof(g_secret));
+ /* reduce scalar to 0 <= scalar < 2^384 */
+ if ((BN_num_bits(scalar) > 384) || (BN_is_negative(scalar))) {
+ /*
+ * this is an unusual input, and we don't guarantee
+ * constant-timeness
+ */
+ if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) {
+ ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
+ goto err;
+ }
+ num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret));
+ } else {
+ num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret));
+ }
+ /* do the multiplication with generator precomputation */
+ batch_mul(x_out, y_out, z_out,
+ (const felem_bytearray(*))secrets, num_points,
+ g_secret,
+ mixed, (const felem(*)[17][3])pre_comp,
+ (const felem(*)[3])g_pre_comp);
+ } else {
+ /* do the multiplication without generator precomputation */
+ batch_mul(x_out, y_out, z_out,
+ (const felem_bytearray(*))secrets, num_points,
+ NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
+ }
+ /* reduce the output to its unique minimal representation */
+ felem_contract(x_in, x_out);
+ felem_contract(y_in, y_out);
+ felem_contract(z_in, z_out);
+ if ((!felem_to_BN(x, x_in)) || (!felem_to_BN(y, y_in)) ||
+ (!felem_to_BN(z, z_in))) {
+ ERR_raise(ERR_LIB_EC, ERR_R_BN_LIB);
+ goto err;
+ }
+ ret = ossl_ec_GFp_simple_set_Jprojective_coordinates_GFp(group, r, x, y, z,
+ ctx);
+
+ err:
+ BN_CTX_end(ctx);
+ EC_POINT_free(generator);
+ OPENSSL_free(secrets);
+ OPENSSL_free(pre_comp);
+ OPENSSL_free(tmp_felems);
+ return ret;
+}
+
+int ossl_ec_GFp_nistp384_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
+{
+ int ret = 0;
+ NISTP384_PRE_COMP *pre = NULL;
+ int i, j;
+ BIGNUM *x, *y;
+ EC_POINT *generator = NULL;
+ felem tmp_felems[16];
+#ifndef FIPS_MODULE
+ BN_CTX *new_ctx = NULL;
+#endif
+
+ /* throw away old precomputation */
+ EC_pre_comp_free(group);
+
+#ifndef FIPS_MODULE
+ if (ctx == NULL)
+ ctx = new_ctx = BN_CTX_new();
+#endif
+ if (ctx == NULL)
+ return 0;
+
+ BN_CTX_start(ctx);
+ x = BN_CTX_get(ctx);
+ y = BN_CTX_get(ctx);
+ if (y == NULL)
+ goto err;
+ /* get the generator */
+ if (group->generator == NULL)
+ goto err;
+ generator = EC_POINT_new(group);
+ if (generator == NULL)
+ goto err;
+ BN_bin2bn(nistp384_curve_params[3], sizeof(felem_bytearray), x);
+ BN_bin2bn(nistp384_curve_params[4], sizeof(felem_bytearray), y);
+ if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx))
+ goto err;
+ if ((pre = nistp384_pre_comp_new()) == NULL)
+ goto err;
+ /*
+ * if the generator is the standard one, use built-in precomputation
+ */
+ if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
+ memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp));
+ goto done;
+ }
+ if ((!BN_to_felem(pre->g_pre_comp[1][0], group->generator->X)) ||
+ (!BN_to_felem(pre->g_pre_comp[1][1], group->generator->Y)) ||
+ (!BN_to_felem(pre->g_pre_comp[1][2], group->generator->Z)))
+ goto err;
+ /* compute 2^95*G, 2^190*G, 2^285*G */
+ for (i = 1; i <= 4; i <<= 1) {
+ point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2],
+ pre->g_pre_comp[i][0], pre->g_pre_comp[i][1], pre->g_pre_comp[i][2]);
+ for (j = 0; j < 94; ++j) {
+ point_double(pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2],
+ pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2]);
+ }
+ }
+ /* g_pre_comp[0] is the point at infinity */
+ memset(pre->g_pre_comp[0], 0, sizeof(pre->g_pre_comp[0]));
+ /* the remaining multiples */
+ /* 2^95*G + 2^190*G */
+ point_add(pre->g_pre_comp[6][0], pre->g_pre_comp[6][1], pre->g_pre_comp[6][2],
+ pre->g_pre_comp[4][0], pre->g_pre_comp[4][1], pre->g_pre_comp[4][2], 0,
+ pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], pre->g_pre_comp[2][2]);
+ /* 2^95*G + 2^285*G */
+ point_add(pre->g_pre_comp[10][0], pre->g_pre_comp[10][1], pre->g_pre_comp[10][2],
+ pre->g_pre_comp[8][0], pre->g_pre_comp[8][1], pre->g_pre_comp[8][2], 0,
+ pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], pre->g_pre_comp[2][2]);
+ /* 2^190*G + 2^285*G */
+ point_add(pre->g_pre_comp[12][0], pre->g_pre_comp[12][1], pre->g_pre_comp[12][2],
+ pre->g_pre_comp[8][0], pre->g_pre_comp[8][1], pre->g_pre_comp[8][2], 0,
+ pre->g_pre_comp[4][0], pre->g_pre_comp[4][1], pre->g_pre_comp[4][2]);
+ /* 2^95*G + 2^190*G + 2^285*G */
+ point_add(pre->g_pre_comp[14][0], pre->g_pre_comp[14][1], pre->g_pre_comp[14][2],
+ pre->g_pre_comp[12][0], pre->g_pre_comp[12][1], pre->g_pre_comp[12][2], 0,
+ pre->g_pre_comp[2][0], pre->g_pre_comp[2][1], pre->g_pre_comp[2][2]);
+ for (i = 1; i < 8; ++i) {
+ /* odd multiples: add G */
+ point_add(pre->g_pre_comp[2 * i + 1][0], pre->g_pre_comp[2 * i + 1][1], pre->g_pre_comp[2 * i + 1][2],
+ pre->g_pre_comp[2 * i][0], pre->g_pre_comp[2 * i][1], pre->g_pre_comp[2 * i][2], 0,
+ pre->g_pre_comp[1][0], pre->g_pre_comp[1][1], pre->g_pre_comp[1][2]);
+ }
+ make_points_affine(15, &(pre->g_pre_comp[1]), tmp_felems);
+
+ done:
+ SETPRECOMP(group, nistp384, pre);
+ ret = 1;
+ pre = NULL;
+ err:
+ BN_CTX_end(ctx);
+ EC_POINT_free(generator);
+#ifndef FIPS_MODULE
+ BN_CTX_free(new_ctx);
+#endif
+ ossl_ec_nistp384_pre_comp_free(pre);
+ return ret;
+}
+
+int ossl_ec_GFp_nistp384_have_precompute_mult(const EC_GROUP *group)
+{
+ return HAVEPRECOMP(group, nistp384);
+}