# # spec file for package onednn # # Copyright (c) 2021 SUSE LLC # # All modifications and additions to the file contributed by third parties # remain the property of their copyright owners, unless otherwise agreed # upon. The license for this file, and modifications and additions to the # file, is the same license as for the pristine package itself (unless the # license for the pristine package is not an Open Source License, in which # case the license is the MIT License). An "Open Source License" is a # license that conforms to the Open Source Definition (Version 1.9) # published by the Open Source Initiative. # Please submit bugfixes or comments via https://bugs.opensuse.org/ # %ifarch x86_64 %bcond_without opencl %else # Build broken on non-x86, with openCL %bcond_with opencl %endif %ifarch aarch64 %bcond_without acl %else %bcond_with acl %endif %define libname libdnnl2 Name: onednn Version: 2.2.3 Release: 0 Summary: Intel Math Kernel Library for Deep Neural Networks License: Apache-2.0 URL: https://01.org/onednn Source0: https://github.com/oneapi-src/oneDNN/archive/v%{version}/oneDNN-%{version}.tar.gz # PATCH-FIX-UPSTREAM onednn-1045.patch -- https://github.com/oneapi-src/oneDNN/pull/1045 Patch0: onednn-1045.patch # PATCH-FIX-UPSTREAM 0001-common-gpu-include-thread-and-limit-headers-to-fix-G.patch Patch1: 0001-common-gpu-include-thread-and-limit-headers-to-fix-G.patch BuildRequires: cmake BuildRequires: doxygen BuildRequires: fdupes BuildRequires: gcc-c++ BuildRequires: graphviz BuildRequires: texlive-dvips-bin %if %{with acl} BuildRequires: ComputeLibrary-devel %endif %if %{with opencl} BuildRequires: opencl-headers BuildRequires: pkgconfig BuildRequires: pkgconfig(OpenCL) %endif ExclusiveArch: x86_64 aarch64 ppc64le Provides: mkl-dnn = %{version} Obsoletes: mkl-dnn <= %{version} Provides: oneDNN = %{version} %description Intel Math Kernel Library for Deep Neural Networks (Intel MKL-DNN) is an open-source performance library for deep-learning applications. The library accelerates deep-learning applications and frameworks on Intel architecture. Intel MKL-DNN contains vectorized and threaded building blocks that you can use to implement deep neural networks (DNN) with C and C++ interfaces. %package -n benchdnn Summary: Header files of Intel Math Kernel Library Requires: %{libname} = %{version} %description -n benchdnn Intel Math Kernel Library for Deep Neural Networks (Intel MKL-DNN) is an open-source performance library for deep-learning applications. The library accelerates deep-learning applications and frameworks on Intel architecture. Intel MKL-DNN contains vectorized and threaded building blocks that you can use to implement deep neural networks (DNN) with C and C++ interfaces. This package only includes the benchmark utility including its input files. %package devel Summary: Header files of Intel Math Kernel Library Requires: %{libname} = %{version} Provides: mkl-dnn-devel = %{version} Obsoletes: mkl-dnn-devel <= %{version} Provides: oneDNN-devel = %{version} %description devel Intel Math Kernel Library for Deep Neural Networks (Intel MKL-DNN) is an open-source performance library for deep-learning applications. The library accelerates deep-learning applications and frameworks on Intel architecture. Intel MKL-DNN contains vectorized and threaded building blocks that you can use to implement deep neural networks (DNN) with C and C++ interfaces. This package includes the required headers and library files to develop software with the Intel MKL-DNN. %package doc Summary: Reference documentation for the Intel Math Kernel Library BuildArch: noarch %description doc The reference documentation for the Intel Math Kernel Library can be installed with this package. %package -n %{libname} Summary: Header files of Intel Math Kernel Library %description -n %{libname} Intel Math Kernel Library for Deep Neural Networks (Intel MKL-DNN) is an open-source performance library for deep-learning applications. The library accelerates deep-learning applications and frameworks on Intel architecture. Intel MKL-DNN contains vectorized and threaded building blocks that you can use to implement deep neural networks (DNN) with C and C++ interfaces. %prep %autosetup -p1 -n oneDNN-%{version} %build %cmake \ -DCMAKE_INSTALL_LIBDIR=%{_lib} \ -DMKLDNN_ARCH_OPT_FLAGS="" \ -DDNNL_CPU_RUNTIME=OMP \ %if %{with acl} -DDNNL_AARCH64_USE_ACL=ON \ -DACL_INCLUDE_DIR=%{_includedir} \ -DACL_LIBRARY=%{_libdir}/libarm_compute.so \ %endif %if %{with opencl} -DDNNL_GPU_RUNTIME=OCL \ %endif -DDNNL_INSTALL_MODE=DEFAULT \ -DDNNL_BUILD_TESTS=ON \ -DDNNL_WERROR=OFF %cmake_build %cmake_build doc %install %cmake_install # move the built doxygen data to normal location mkdir -p %{buildroot}%{_docdir}/%{name} mv %{buildroot}%{_datadir}/doc/dnnl/reference/* %{buildroot}%{_docdir}/%{name} %fdupes %{buildroot}%{_docdir}/%{name} # do use macros to install license/docu rm -r %{buildroot}%{_datadir}/doc/dnnl # Keep compatibility with mkl-dnn pushd %{buildroot}%{_includedir} ln -s . mkl-dnn popd # install the benchmark install -D build/tests/benchdnn/benchdnn %{buildroot}/%{_bindir}/benchdnn #move install shared lib mkdir -vp %{buildroot}%{_datadir}/benchdnn cp -vr build/tests/benchdnn/inputs %{buildroot}%{_datadir}/benchdnn %check # do not use macro so we can exclude all gpu and cross (gpu and cpu) tests (they need gpu set up) pushd build export LD_LIBRARY_PATH=%{buildroot}%{_libdir} ctest --output-on-failure --force-new-ctest-process %{_smp_mflags} -E '(gpu|cross)' popd %post -n %{libname} -p /sbin/ldconfig %postun -n %{libname} -p /sbin/ldconfig %files -n benchdnn %{_bindir}/benchdnn %{_datadir}/benchdnn %files devel %doc README.md %{_includedir}/mkl-dnn %{_includedir}/mkldnn*.h* %{_includedir}/dnnl*.h* %dir %{_includedir}/oneapi %dir %{_includedir}/oneapi/dnnl %{_includedir}/oneapi/dnnl/dnnl*.h* %{_libdir}/libdnnl.so %{_libdir}/libmkldnn.so %dir %{_libdir}/cmake/dnnl %{_libdir}/cmake/dnnl/*.cmake %dir %{_libdir}/cmake/mkldnn %{_libdir}/cmake/mkldnn/*.cmake %files doc %{_docdir}/%{name} %files -n %{libname} %license LICENSE %{_libdir}/libdnnl.so.* %{_libdir}/libmkldnn.so.* %changelog