Files
qemu/include/hw/arm/aspeed_soc.h

186 lines
4.5 KiB
C
Raw Normal View History

/*
* ASPEED SoC family
*
* Andrew Jeffery <andrew@aj.id.au>
*
* Copyright 2016 IBM Corp.
*
* This code is licensed under the GPL version 2 or later. See
* the COPYING file in the top-level directory.
*/
#ifndef ASPEED_SOC_H
#define ASPEED_SOC_H
#include "hw/cpu/a15mpcore.h"
#include "hw/arm/armv7m.h"
#include "hw/intc/aspeed_vic.h"
#include "hw/misc/aspeed_scu.h"
#include "hw/adc/aspeed_adc.h"
#include "hw/misc/aspeed_sdmc.h"
#include "hw/misc/aspeed_xdma.h"
#include "hw/timer/aspeed_timer.h"
#include "hw/rtc/aspeed_rtc.h"
#include "hw/i2c/aspeed_i2c.h"
#include "hw/misc/aspeed_i3c.h"
#include "hw/ssi/aspeed_smc.h"
#include "hw/misc/aspeed_hace.h"
#include "hw/misc/aspeed_sbc.h"
#include "hw/watchdog/wdt_aspeed.h"
#include "hw/net/ftgmac100.h"
#include "target/arm/cpu.h"
#include "hw/gpio/aspeed_gpio.h"
#include "hw/sd/aspeed_sdhci.h"
#include "hw/usb/hcd-ehci.h"
#include "qom/object.h"
#include "hw/misc/aspeed_lpc.h"
#include "hw/misc/unimp.h"
hw/misc/aspeed: Add PECI controller This introduces a really basic PECI controller that responses to commands by always setting the response code to success and then raising an interrupt to indicate the command is done. This helps avoid getting hit with constant errors if the driver continuously attempts to send a command and keeps timing out. The AST2400 and AST2500 only included registers up to 0x5C, not 0xFC. They supported PECI 1.1, 2.0, and 3.0. The AST2600 and AST1030 support PECI 4.0, which includes more read/write buffer registers from 0x80 to 0xFC to support 64-byte mode. This patch doesn't attempt to handle that, or to create a different version of the controller for the different generations, since it's only implementing functionality that is common to all generations. The basic sequence of events is that the firmware will read and write to various registers and then trigger a command by setting the FIRE bit in the command register (similar to the I2C controller). Then the firmware waits for an interrupt from the PECI controller, expecting the interrupt status register to be filled in with info on what happened. If the command was transmitted and received successfully, then response codes from the host CPU will be found in the data buffer registers. Signed-off-by: Peter Delevoryas <pdel@fb.com> Reviewed-by: Cédric Le Goater <clg@kaod.org> Message-Id: <20220630045133.32251-12-me@pjd.dev> [ clg: s/sysbus_mmio_map/aspeed_mmio_map/ ] Signed-off-by: Cédric Le Goater <clg@kaod.org>
2022-06-30 09:21:14 +02:00
#include "hw/misc/aspeed_peci.h"
#define ASPEED_SPIS_NUM 2
#define ASPEED_EHCIS_NUM 2
#define ASPEED_WDTS_NUM 4
#define ASPEED_CPUS_NUM 2
#define ASPEED_MACS_NUM 4
struct AspeedSoCState {
/*< private >*/
DeviceState parent;
/*< public >*/
ARMCPU cpu[ASPEED_CPUS_NUM];
A15MPPrivState a7mpcore;
ARMv7MState armv7m;
MemoryRegion *memory;
MemoryRegion *dram_mr;
MemoryRegion dram_container;
MemoryRegion sram;
AspeedVICState vic;
AspeedRtcState rtc;
AspeedTimerCtrlState timerctrl;
AspeedI2CState i2c;
AspeedI3CState i3c;
AspeedSCUState scu;
AspeedHACEState hace;
AspeedXDMAState xdma;
AspeedADCState adc;
AspeedSMCState fmc;
AspeedSMCState spi[ASPEED_SPIS_NUM];
EHCISysBusState ehci[ASPEED_EHCIS_NUM];
AspeedSBCState sbc;
UnimplementedDeviceState sbc_unimplemented;
AspeedSDMCState sdmc;
AspeedWDTState wdt[ASPEED_WDTS_NUM];
FTGMAC100State ftgmac100[ASPEED_MACS_NUM];
AspeedMiiState mii[ASPEED_MACS_NUM];
AspeedGPIOState gpio;
AspeedGPIOState gpio_1_8v;
AspeedSDHCIState sdhci;
AspeedSDHCIState emmc;
AspeedLPCState lpc;
hw/misc/aspeed: Add PECI controller This introduces a really basic PECI controller that responses to commands by always setting the response code to success and then raising an interrupt to indicate the command is done. This helps avoid getting hit with constant errors if the driver continuously attempts to send a command and keeps timing out. The AST2400 and AST2500 only included registers up to 0x5C, not 0xFC. They supported PECI 1.1, 2.0, and 3.0. The AST2600 and AST1030 support PECI 4.0, which includes more read/write buffer registers from 0x80 to 0xFC to support 64-byte mode. This patch doesn't attempt to handle that, or to create a different version of the controller for the different generations, since it's only implementing functionality that is common to all generations. The basic sequence of events is that the firmware will read and write to various registers and then trigger a command by setting the FIRE bit in the command register (similar to the I2C controller). Then the firmware waits for an interrupt from the PECI controller, expecting the interrupt status register to be filled in with info on what happened. If the command was transmitted and received successfully, then response codes from the host CPU will be found in the data buffer registers. Signed-off-by: Peter Delevoryas <pdel@fb.com> Reviewed-by: Cédric Le Goater <clg@kaod.org> Message-Id: <20220630045133.32251-12-me@pjd.dev> [ clg: s/sysbus_mmio_map/aspeed_mmio_map/ ] Signed-off-by: Cédric Le Goater <clg@kaod.org>
2022-06-30 09:21:14 +02:00
AspeedPECIState peci;
uint32_t uart_default;
Clock *sysclk;
UnimplementedDeviceState iomem;
UnimplementedDeviceState video;
UnimplementedDeviceState emmc_boot_controller;
UnimplementedDeviceState dpmcu;
};
#define TYPE_ASPEED_SOC "aspeed-soc"
OBJECT_DECLARE_TYPE(AspeedSoCState, AspeedSoCClass, ASPEED_SOC)
struct AspeedSoCClass {
DeviceClass parent_class;
const char *name;
arm: drop intermediate cpu_model -> cpu type parsing and use cpu type directly there are 2 use cases to deal with: 1: fixed CPU models per board/soc 2: boards with user configurable cpu_model and fallback to default cpu_model if user hasn't specified one explicitly For the 1st drop intermediate cpu_model parsing and use const cpu type directly, which replaces: typename = object_class_get_name( cpu_class_by_name(TYPE_ARM_CPU, cpu_model)) object_new(typename) with object_new(FOO_CPU_TYPE_NAME) or cpu_generic_init(BASE_CPU_TYPE, "my cpu model") with cpu_create(FOO_CPU_TYPE_NAME) as result 1st use case doesn't have to invoke not necessary translation and not needed code is removed. For the 2nd 1: set default cpu type with MachineClass::default_cpu_type and 2: use generic cpu_model parsing that done before machine_init() is run and: 2.1: drop custom cpu_model parsing where pattern is: typename = object_class_get_name( cpu_class_by_name(TYPE_ARM_CPU, cpu_model)) [parse_features(typename, cpu_model, &err) ] 2.2: or replace cpu_generic_init() which does what 2.1 does + create_cpu(typename) with just create_cpu(machine->cpu_type) as result cpu_name -> cpu_type translation is done using generic machine code one including parsing optional features if supported/present (removes a bunch of duplicated cpu_model parsing code) and default cpu type is defined in an uniform way within machine_class_init callbacks instead of adhoc places in boadr's machine_init code. Signed-off-by: Igor Mammedov <imammedo@redhat.com> Reviewed-by: Eduardo Habkost <ehabkost@redhat.com> Message-Id: <1505318697-77161-6-git-send-email-imammedo@redhat.com> Reviewed-by: Alistair Francis <alistair.francis@xilinx.com> Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
2017-09-13 18:04:57 +02:00
const char *cpu_type;
uint32_t silicon_rev;
uint64_t sram_size;
int spis_num;
int ehcis_num;
int wdts_num;
int macs_num;
int uarts_num;
const int *irqmap;
const hwaddr *memmap;
uint32_t num_cpus;
qemu_irq (*get_irq)(AspeedSoCState *s, int dev);
};
enum {
ASPEED_DEV_IOMEM,
ASPEED_DEV_UART1,
ASPEED_DEV_UART2,
ASPEED_DEV_UART3,
ASPEED_DEV_UART4,
ASPEED_DEV_UART5,
ASPEED_DEV_UART6,
ASPEED_DEV_UART7,
ASPEED_DEV_UART8,
ASPEED_DEV_UART9,
ASPEED_DEV_UART10,
ASPEED_DEV_UART11,
ASPEED_DEV_UART12,
ASPEED_DEV_UART13,
ASPEED_DEV_VUART,
ASPEED_DEV_FMC,
ASPEED_DEV_SPI1,
ASPEED_DEV_SPI2,
ASPEED_DEV_EHCI1,
ASPEED_DEV_EHCI2,
ASPEED_DEV_VIC,
ASPEED_DEV_SDMC,
ASPEED_DEV_SCU,
ASPEED_DEV_ADC,
ASPEED_DEV_SBC,
ASPEED_DEV_EMMC_BC,
ASPEED_DEV_VIDEO,
ASPEED_DEV_SRAM,
ASPEED_DEV_SDHCI,
ASPEED_DEV_GPIO,
ASPEED_DEV_GPIO_1_8V,
ASPEED_DEV_RTC,
ASPEED_DEV_TIMER1,
ASPEED_DEV_TIMER2,
ASPEED_DEV_TIMER3,
ASPEED_DEV_TIMER4,
ASPEED_DEV_TIMER5,
ASPEED_DEV_TIMER6,
ASPEED_DEV_TIMER7,
ASPEED_DEV_TIMER8,
ASPEED_DEV_WDT,
ASPEED_DEV_PWM,
ASPEED_DEV_LPC,
ASPEED_DEV_IBT,
ASPEED_DEV_I2C,
hw/misc/aspeed: Add PECI controller This introduces a really basic PECI controller that responses to commands by always setting the response code to success and then raising an interrupt to indicate the command is done. This helps avoid getting hit with constant errors if the driver continuously attempts to send a command and keeps timing out. The AST2400 and AST2500 only included registers up to 0x5C, not 0xFC. They supported PECI 1.1, 2.0, and 3.0. The AST2600 and AST1030 support PECI 4.0, which includes more read/write buffer registers from 0x80 to 0xFC to support 64-byte mode. This patch doesn't attempt to handle that, or to create a different version of the controller for the different generations, since it's only implementing functionality that is common to all generations. The basic sequence of events is that the firmware will read and write to various registers and then trigger a command by setting the FIRE bit in the command register (similar to the I2C controller). Then the firmware waits for an interrupt from the PECI controller, expecting the interrupt status register to be filled in with info on what happened. If the command was transmitted and received successfully, then response codes from the host CPU will be found in the data buffer registers. Signed-off-by: Peter Delevoryas <pdel@fb.com> Reviewed-by: Cédric Le Goater <clg@kaod.org> Message-Id: <20220630045133.32251-12-me@pjd.dev> [ clg: s/sysbus_mmio_map/aspeed_mmio_map/ ] Signed-off-by: Cédric Le Goater <clg@kaod.org>
2022-06-30 09:21:14 +02:00
ASPEED_DEV_PECI,
ASPEED_DEV_ETH1,
ASPEED_DEV_ETH2,
ASPEED_DEV_ETH3,
ASPEED_DEV_ETH4,
ASPEED_DEV_MII1,
ASPEED_DEV_MII2,
ASPEED_DEV_MII3,
ASPEED_DEV_MII4,
ASPEED_DEV_SDRAM,
ASPEED_DEV_XDMA,
ASPEED_DEV_EMMC,
ASPEED_DEV_KCS,
ASPEED_DEV_HACE,
ASPEED_DEV_DPMCU,
ASPEED_DEV_DP,
ASPEED_DEV_I3C,
};
qemu_irq aspeed_soc_get_irq(AspeedSoCState *s, int dev);
void aspeed_soc_uart_init(AspeedSoCState *s);
bool aspeed_soc_dram_init(AspeedSoCState *s, Error **errp);
void aspeed_mmio_map(AspeedSoCState *s, SysBusDevice *dev, int n, hwaddr addr);
void aspeed_mmio_map_unimplemented(AspeedSoCState *s, SysBusDevice *dev,
const char *name, hwaddr addr,
uint64_t size);
#endif /* ASPEED_SOC_H */