All DPA ranges in the DC regions are invalid to access until an extent
covering the range has been successfully accepted by the host. A bitmap
is added to each region to record whether a DC block in the region has
been backed by a DC extent. Each bit in the bitmap represents a DC block.
When a DC extent is accepted, all the bits representing the blocks in the
extent are set, which will be cleared when the extent is released.
Tested-by: Svetly Todorov <svetly.todorov@memverge.com>
Reviewed-by: Gregory Price <gregory.price@memverge.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Fan Ni <fan.ni@samsung.com>
Message-Id: <20240523174651.1089554-13-nifan.cxl@gmail.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
To simulate FM functionalities for initiating Dynamic Capacity Add
(Opcode 5604h) and Dynamic Capacity Release (Opcode 5605h) as in CXL spec
r3.1 7.6.7.6.5 and 7.6.7.6.6, we implemented two QMP interfaces to issue
add/release dynamic capacity extents requests.
With the change, we allow to release an extent only when its DPA range
is contained by a single accepted extent in the device. That is to say,
extent superset release is not supported yet.
1. Add dynamic capacity extents:
For example, the command to add two continuous extents (each 128MiB long)
to region 0 (starting at DPA offset 0) looks like below:
{ "execute": "qmp_capabilities" }
{ "execute": "cxl-add-dynamic-capacity",
"arguments": {
"path": "/machine/peripheral/cxl-dcd0",
"host-id": 0,
"selection-policy": "prescriptive",
"region": 0,
"extents": [
{
"offset": 0,
"len": 134217728
},
{
"offset": 134217728,
"len": 134217728
}
]
}
}
2. Release dynamic capacity extents:
For example, the command to release an extent of size 128MiB from region 0
(DPA offset 128MiB) looks like below:
{ "execute": "cxl-release-dynamic-capacity",
"arguments": {
"path": "/machine/peripheral/cxl-dcd0",
"host-id": 0,
"removal-policy":"prescriptive",
"region": 0,
"extents": [
{
"offset": 134217728,
"len": 134217728
}
]
}
}
Tested-by: Svetly Todorov <svetly.todorov@memverge.com>
Reviewed-by: Gregory Price <gregory.price@memverge.com>
Signed-off-by: Fan Ni <fan.ni@samsung.com>
Message-Id: <20240523174651.1089554-12-nifan.cxl@gmail.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Per CXL spec 3.1, two mailbox commands are implemented:
Add Dynamic Capacity Response (Opcode 4802h) 8.2.9.9.9.3, and
Release Dynamic Capacity (Opcode 4803h) 8.2.9.9.9.4.
For the process of the above two commands, we use two-pass approach.
Pass 1: Check whether the input payload is valid or not; if not, skip
Pass 2 and return mailbox process error.
Pass 2: Do the real work--add or release extents, respectively.
Tested-by: Svetly Todorov <svetly.todorov@memverge.com>
Reviewed-by: Gregory Price <gregory.price@memverge.com>
Signed-off-by: Fan Ni <fan.ni@samsung.com>
Message-Id: <20240523174651.1089554-11-nifan.cxl@gmail.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Add (file/memory backed) host backend for DCD. All the dynamic capacity
regions will share a single, large enough host backend. Set up address
space for DC regions to support read/write operations to dynamic capacity
for DCD.
With the change, the following support is added:
1. Add a new property to type3 device "volatile-dc-memdev" to point to host
memory backend for dynamic capacity. Currently, all DC regions share one
host backend;
2. Add namespace for dynamic capacity for read/write support;
3. Create cdat entries for each dynamic capacity region.
Reviewed-by: Gregory Price <gregory.price@memverge.com>
Signed-off-by: Fan Ni <fan.ni@samsung.com>
Message-Id: <20240523174651.1089554-9-nifan.cxl@gmail.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Per cxl spec r3.1, add dynamic capacity (DC) region representative based on
Table 8-165 and extend the cxl type3 device definition to include DC region
information. Also, based on info in 8.2.9.9.9.1, add 'Get Dynamic Capacity
Configuration' mailbox support.
Note: we store region decode length as byte-wise length on the device, which
should be divided by 256 * MiB before being returned to the host
for "Get Dynamic Capacity Configuration" mailbox command per
specification.
Reviewed-by: Gregory Price <gregory.price@memverge.com>
Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Fan Ni <fan.ni@samsung.com>
Message-Id: <20240523174651.1089554-5-nifan.cxl@gmail.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
This enables wrapper devices to customize the base device's CCI
(for example, with custom commands outside the specification)
without the need to change the base device.
The also enabled the base device to dispatch those commands without
requiring additional driver support.
Heavily edited by Jonathan Cameron to increase code reuse
Signed-off-by: Gregory Price <gregory.price@memverge.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Fan Ni <fan.ni@samsung.com>
Message-Id: <20240523174651.1089554-3-nifan.cxl@gmail.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
This allows devices to have fully customized CCIs, along with complex
devices where wrapper devices can override or add additional CCI
commands without having to replicate full command structures or
pollute a base device with every command that might ever be used.
Signed-off-by: Gregory Price <gregory.price@memverge.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Signed-off-by: Fan Ni <fan.ni@samsung.com>
Message-Id: <20240523174651.1089554-2-nifan.cxl@gmail.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Previously not all references mentioned any spec version at all.
Given r3.1 is the current specification available for evaluation at
www.computeexpresslink.org update references to refer to that.
Hopefully this won't become a never ending job.
A few structure definitions have been updated to add new fields.
Defaults of 0 and read only are valid choices for these new DVSEC
registers so go with that for now.
There are additional error codes and some of the 'questions' in
the comments are resolved now.
Update documentation reference to point to the CXL r3.1 specification
with naming closer to what is on the cover.
For cases where there are structure version numbers, add defines
so they can be found next to the register definitions.
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Message-Id: <20240126121636.24611-6-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Fixes: 388d6b574e "hw/cxl: Use switch statements for read and write of cachemem registers"
Fixes: 3314efd276 "hw/cxl/mbox: Add Physical Switch Identify command."
Fixes: 004e3a93b8 "hw/cxl: Add tunneled command support to mailbox for switch cci."
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
This implementation of tunneling makes the choice that our Type 3 device is
a Logical Device (LD) of a Multi-Logical Device (MLD) that just happens to
only have one LD for now.
Tunneling is supported from a Switch Mailbox CCI (and shortly via MCTP over
I2C connected to the switch MCTP CCI) via an outer level to the FM owned LD
in the MLD Type 3 device. From there an inner tunnel may be used to access
particular LDs.
Protocol wise, the following is what happens in a real system but we
don't emulate the transports - just the destinations and the payloads.
( Host -> Switch Mailbox CCI - in band FM-API mailbox command
or
Host -> Switch MCTP CCI - MCTP over I2C using the CXL FM-API
MCTP Binding.
)
then (if a tunnel command)
Switch -> Type 3 FM Owned LD - MCTP over PCI VDM using the
CXL FM-API binding (addressed by switch port)
then (if unwrapped command also a tunnel command)
Type 3 FM Owned LD to LD0 via internal transport
(addressed by LD number)
or (added shortly)
Host to Type 3 FM Owned MCTP CCI - MCTP over I2C using the
CXL FM-API MCTP Binding.
then (if unwrapped comand is a tunnel comamnd)
Type 3 FM Owned LD to LD0 via internal transport.
(addressed by LD number)
It is worth noting that the tunneling commands over PCI VDM
presumably use the appropriate MCTP binding depending on opcode.
This may be the CXL FMAPI binding or the CXL Memory Device Binding.
Additional commands will need to be added to make this
useful beyond testing the tunneling works.
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Message-Id: <20231023160806.13206-18-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Support background commands in the mailbox, and update
cmd_infostat_bg_op_sts() accordingly. This patch does not implement mbox
interrupts upon completion, so the kernel driver must rely on polling to
know when the operation is done.
Signed-off-by: Davidlohr Bueso <dave@stgolabs.net>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Message-Id: <20231023160806.13206-12-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
CXL switch CCIs were added in CXL r3.0. They are a PCI function,
identified by class code that provides a CXL mailbox (identical
to that previously defined for CXL type 3 memory devices) over which
various FM-API commands may be used. Whilst the intent of this
feature is enable switch control from a BMC attached to a switch
upstream port, it is also useful to allow emulation of this feature
on the upstream port connected to a host using the CXL devices as
this greatly simplifies testing.
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Message-Id: <20231023160806.13206-7-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
By moving the parts of the mailbox command handling that are CCI type
specific out to the caller, make the main handling code generic. Rename it
to cxl_process_cci_message() to reflect this new generality.
Change the type3 mailbox handling (reused shortly for the switch
mailbox CCI) to take a snapshot of the mailbox input data rather
than operating on it in place. This reduces the chance of bugs
due to aliasing going forwars.
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Message-Id: <20231023160806.13206-5-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
New CCI types that will be supported shortly do not have a single buffer
used in both directions. As such, split it up. To avoid the complexities
of implementing all commands to handle potential aliasing, take a copy of
the input before use.
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Message-Id: <20231023160806.13206-3-Jonathan.Cameron@huawei.com>
Reviewed-by: Fan Ni <fan.ni@samsung.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
CXL testing is benefited from an artificial event log injection
mechanism.
Add an event log infrastructure to insert, get, and clear events from
the various logs available on a device.
Replace the stubbed out CXL Get/Clear Event mailbox commands with
commands that operate on the new infrastructure.
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Fan Ni <fan.ni@samsung.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Message-Id: <20230530133603.16934-4-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Very simple implementation to allow testing of corresponding
kernel code. Note that for now we track each 64 byte section
independently. Whilst a valid implementation choice, it may
make sense to fuse entries so as to prove out more complex
corners of the kernel code.
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Fan Ni <fan.ni@samsung.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Message-Id: <20230526170010.574-4-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Inject poison using QMP command cxl-inject-poison to add an entry to the
poison list.
For now, the poison is not returned CXL.mem reads, but only via the
mailbox command Get Poison List. So a normal memory read to an address
that is on the poison list will not yet result in a synchronous exception
(and similar for partial cacheline writes).
That is left for a future patch.
See CXL rev 3.0, sec 8.2.9.8.4.1 Get Poison list (Opcode 4300h)
Kernel patches to use this interface here:
https://lore.kernel.org/linux-cxl/cover.1665606782.git.alison.schofield@intel.com/
To inject poison using QMP (telnet to the QMP port)
{ "execute": "qmp_capabilities" }
{ "execute": "cxl-inject-poison",
"arguments": {
"path": "/machine/peripheral/cxl-pmem0",
"start": 2048,
"length": 256
}
}
Adjusted to select a device on your machine.
Note that the poison list supported is kept short enough to avoid the
complexity of state machine that is needed to handle the MORE flag.
Reviewed-by: Fan Ni <fan.ni@samsung.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Acked-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Message-Id: <20230526170010.574-3-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
This commit enables each CXL Type-3 device to contain one volatile
memory region and one persistent region.
Two new properties have been added to cxl-type3 device initialization:
[volatile-memdev] and [persistent-memdev]
The existing [memdev] property has been deprecated and will default the
memory region to a persistent memory region (although a user may assign
the region to a ram or file backed region). It cannot be used in
combination with the new [persistent-memdev] property.
Partitioning volatile memory from persistent memory is not yet supported.
Volatile memory is mapped at DPA(0x0), while Persistent memory is mapped
at DPA(vmem->size), per CXL Spec 8.2.9.8.2.0 - Get Partition Info.
Signed-off-by: Gregory Price <gregory.price@memverge.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Reviewed-by: Fan Ni <fan.ni@samsung.com>
Tested-by: Fan Ni <fan.ni@samsung.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Message-Id: <20230421160827.2227-4-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
A placeholder of ~0 is used to indicate variable payload size.
Whilst the checks for output payload correctly took this into
account, those for input payload did not.
This results in failure of the Set LSA command.
Fixes: 464e14ac43 ("hw/cxl/device: Implement basic mailbox (8.2.8.4)")
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Message-Id: <20220817145759.32603-4-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
A CXL memory device (AKA Type 3) is a CXL component that contains some
combination of volatile and persistent memory. It also implements the
previously defined mailbox interface as well as the memory device
firmware interface.
Although the memory device is configured like a normal PCIe device, the
memory traffic is on an entirely separate bus conceptually (using the
same physical wires as PCIe, but different protocol).
Once the CXL topology is fully configure and address decoders committed,
the guest physical address for the memory device is part of a larger
window which is owned by the platform. The creation of these windows
is later in this series.
The following example will create a 256M device in a 512M window:
-object "memory-backend-file,id=cxl-mem1,share,mem-path=cxl-type3,size=512M"
-device "cxl-type3,bus=rp0,memdev=cxl-mem1,id=cxl-pmem0"
Note: Dropped PCDIMM info interfaces for now. They can be added if
appropriate at a later date.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Message-Id: <20220429144110.25167-18-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
CXL specification provides for the ability to obtain logs from the
device. Logs are either spec defined, like the "Command Effects Log"
(CEL), or vendor specific. UUIDs are defined for all log types.
The CEL is a mechanism to provide information to the host about which
commands are supported. It is useful both to determine which spec'd
optional commands are supported, as well as provide a list of vendor
specified commands that might be used. The CEL is already created as
part of mailbox initialization, but here it is now exported to hosts
that use these log commands.
Signed-off-by: Ben Widawsky <ben.widawsky@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20220429144110.25167-11-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>