zicfiss protects shadow stack using new page table encodings PTE.W=1,
PTE.R=0 and PTE.X=0. This encoding is reserved if zicfiss is not
implemented or if shadow stack are not enabled.
Loads on shadow stack memory are allowed while stores to shadow stack
memory leads to access faults. Shadow stack accesses to RO memory
leads to store page fault.
To implement special nature of shadow stack memory where only selected
stores (shadow stack stores from sspush) have to be allowed while rest
of regular stores disallowed, new MMU TLB index is created for shadow
stack.
Furthermore, `check_zicbom_access` (`cbo.clean/flush/inval`) may probe
shadow stack memory and must always raise store/AMO access fault because
it has store semantics. For non-shadow stack memory even though
`cbo.clean/flush/inval` have store semantics, it will not fault if read
is allowed (probably to follow `clflush` on x86). Although if read is not
allowed, eventually `probe_write` will do store page (or access) fault (if
permissions don't allow it). cbo operations on shadow stack memory must
always raise store access fault. Thus extending `get_physical_address` to
recieve `probe` parameter as well.
Signed-off-by: Deepak Gupta <debug@rivosinc.com>
Suggested-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-ID: <20241008225010.1861630-14-debug@rivosinc.com>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
Currently the TCGCPUOps::cpu_exec_halt method is optional, and if it
is not set then the default is to call the CPUClass::has_work
method (which has an identical function signature).
We would like to make the cpu_exec_halt method mandatory so we can
remove the runtime check and fallback handling. In preparation for
that, make all the targets which don't need special handling in their
cpu_exec_halt set it to their cpu_has_work implementation instead of
leaving it unset. (This is every target except for arm and i386.)
In the riscv case this requires us to make the function not
be local to the source file it's defined in.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
According to v-spec, mask agnostic behavior can be either kept as
undisturbed or set elements' bits to all 1s. To distinguish the
difference of mask policies, QEMU should be able to simulate the mask
agnostic behavior as "set mask elements' bits to all 1s".
There are multiple possibility for agnostic elements according to
v-spec. The main intent of this patch-set tries to add option that
can distinguish between mask policies. Setting agnostic elements to
all 1s allows QEMU to express this.
This is the first commit regarding the optional mask agnostic
behavior. Follow-up commits will add this optional behavior
for all rvv instructions.
Signed-off-by: eop Chen <eop.chen@sifive.com>
Reviewed-by: Frank Chang <frank.chang@sifive.com>
Reviewed-by: Weiwei Li <liweiwei@iscas.ac.cn>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <165570784143.17634.35095816584573691-1@git.sr.ht>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
According to v-spec, tail agnostic behavior can be either kept as
undisturbed or set elements' bits to all 1s. To distinguish the
difference of tail policies, QEMU should be able to simulate the tail
agnostic behavior as "set tail elements' bits to all 1s".
There are multiple possibility for agnostic elements according to
v-spec. The main intent of this patch-set tries to add option that
can distinguish between tail policies. Setting agnostic elements to
all 1s allows QEMU to express this.
This is the first commit regarding the optional tail agnostic
behavior. Follow-up commits will add this optional behavior
for all rvv instructions.
Signed-off-by: eop Chen <eop.chen@sifive.com>
Reviewed-by: Frank Chang <frank.chang@sifive.com>
Reviewed-by: Weiwei Li <liweiwei@iscas.ac.cn>
Acked-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <165449614532.19704.7000832880482980398-5@git.sr.ht>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
Vector strided operations access the first memory element at the base address,
and then access subsequent elements at address increments given by the byte
offset contained in the x register specified by rs2.
Vector unit-stride operations access elements stored contiguously in memory
starting from the base effective address. It can been seen as a special
case of strided operations.
Signed-off-by: LIU Zhiwei <zhiwei_liu@c-sky.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <20200701152549.1218-7-zhiwei_liu@c-sky.com>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>