FPR register are mapped to the first doubleword of the VSR registers.
Since PowerISA v3.1, the second doubleword of the target register
must be zeroed for FP instructions.
This patch does it by writting 0 to the second dw everytime the
first dw is being written using set_fpr.
Signed-off-by: Víctor Colombo <victor.colombo@eldorado.org.br>
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20220906125523.38765-8-victor.colombo@eldorado.org.br>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Pass these along to translator_loop -- pc may be used instead
of tb->pc, and host_pc is currently unused. Adjust all targets
at one time.
Acked-by: Alistair Francis <alistair.francis@wdc.com>
Acked-by: Ilya Leoshkevich <iii@linux.ibm.com>
Tested-by: Ilya Leoshkevich <iii@linux.ibm.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
ISA v2.06 adds new variations of wait, specified by the WC field. These
are not all compatible with the prior wait implementation, because they
add additional conditions that cause the processor to resume, which can
cause software to hang or run very slowly.
At this moment, with the current wait implementation and a pseries guest
using mainline kernel with new wait upcodes [1], QEMU hangs during boot if
more than one CPU is present:
qemu-system-ppc64 -M pseries,x-vof=on -cpu POWER10 -smp 2 -nographic
-kernel zImage.pseries -no-reboot
QEMU will exit (as there's no filesystem) if the test "passes", or hang
during boot if it hits the bug.
ISA v3.0 changed the wait opcode and removed the new variants (retaining
the WC field but making non-zero values reserved).
ISA v3.1 added new WC values to the new wait opcode, and added a PL
field.
This patch implements the new wait encoding and supports WC variants
with no-op implementations, which provides basic correctness as
explained in comments.
[1] https://lore.kernel.org/all/20220720132132.903462-1-npiggin@gmail.com/
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Víctor Colombo <victor.colombo@eldorado.org.br>
Tested-by: Joel Stanley <joel@jms.id.au>
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20220720133352.904263-1-npiggin@gmail.com>
[danielhb: added information about the bug being fixed]
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
The 'error' argument of gen_inval_exception will be or-ed with
POWERPC_EXCP_INVAL, so it should always be a constant prefixed with
POWERPC_EXCP_INVAL_. No functional change is intended,
spr_write_excp_vector is only used by register_BookE_sprs, and
powerpc_excp_booke ignores the lower 4 bits of the error code on
POWERPC_EXCP_INVAL exceptions.
Also, take the opportunity to replace printf with qemu_log_mask.
Signed-off-by: Matheus Ferst <matheus.ferst@eldorado.org.br>
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20220627141104.669152-7-matheus.ferst@eldorado.org.br>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Testing on a POWER9 DD2.3, we observed that the Linux kernel delivers a
signal with si_code ILL_PRVOPC (5) when a userspace application tries to
use slbfee. To obtain this behavior on linux-user, we should use
POWERPC_EXCP_PRIV with POWERPC_EXCP_PRIV_OPC.
No functional change is intended for softmmu targets as
gen_hvpriv_exception uses the same 'exception' argument
(POWERPC_EXCP_HV_EMU) for raise_exception_*, and the powerpc_excp_*
methods do not use lower bits of the exception error code when handling
POWERPC_EXCP_{INVAL,PRIV}.
Reported-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Matheus Ferst <matheus.ferst@eldorado.org.br>
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20220627141104.669152-3-matheus.ferst@eldorado.org.br>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
The generated eieio memory ordering semantics do not match the
instruction definition in the architecture. Add a big comment to
explain this strange instruction and correct the memory ordering
behaviour.
Signed-off: Nicholas Piggin <npiggin@gmail.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20220519135908.21282-2-npiggin@gmail.com>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Initial intent for the spr_tcg header was to expose the spr_read|write
callbacks that are only used by TCG code. However, although these
routines are TCG-specific, the KVM code needs access to env->sprs
which creation is currently coupled to the callback registration.
We are probably not going to decouple SPR creation and TCG callback
registration any time soon, so let's rename the header to spr_common
to accomodate the register_*_sprs functions that will be moved out of
cpu_init.c in the following patches.
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Message-Id: <20220216162426.1885923-24-farosas@linux.ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The PowerPC 601 processor is the first generation of processors to
implement the PowerPC architecture. It was designed as a bridge
processor and also could execute most of the instructions of the
previous POWER architecture. It was found on the first Macs and IBM
RS/6000 workstations.
There is not much interest in keeping the CPU model of this
POWER-PowerPC bridge processor. We have the 603 and 604 CPU models of
the 60x family which implement the complete PowerPC instruction set.
Cc: "Hervé Poussineau" <hpoussin@reactos.org>
Cc: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Fabiano Rosas <farosas@linux.ibm.com>
Message-Id: <20220203142756.1302515-1-clg@kaod.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The 602 was derived from the PowerPC 603, for the gaming market it
seems. It was hardly used and no firmware supporting the CPU could be
found. Drop support.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
An Event-Based Branch (EBB) allows applications to change the NIA when a
event-based exception occurs. Event-based exceptions are enabled by
setting the Branch Event Status and Control Register (BESCR). If the
event-based exception is enabled when the exception occurs, an EBB
happens.
The following operations happens during an EBB:
- Global Enable (GE) bit of BESCR is set to 0;
- bits 0-61 of the Event-Based Branch Return Register (EBBRR) are set
to the the effective address of the NIA that would have executed if the EBB
didn't happen;
- Instruction fetch and execution will continue in the effective address
contained in the Event-Based Branch Handler Register (EBBHR).
The EBB Handler will process the event and then execute the Return From
Event-Based Branch (rfebb) instruction. rfebb sets BESCR_GE and then
redirects execution to the address pointed in EBBRR. This process is
described in the PowerISA v3.1, Book II, Chapter 6 [1].
This patch implements the rfebb instruction. Descriptions of all
relevant BESCR bits are also added - this patch is only using BESCR_GE,
but the next patches will use the remaining bits.
[1] https://wiki.raptorcs.com/w/images/f/f5/PowerISA_public.v3.1.pdf
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Matheus Ferst <matheus.ferst@eldorado.org.br>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20211201151734.654994-9-danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
PM_RUN_INST_CMPL, instructions completed with the run latch set, is
the architected PowerISA v3.1 event defined with PMC4SEL = 0xFA.
Implement it by checking for the CTRL RUN bit before incrementing the
counter. To make this work properly we also need to force a new
translation block each time SPR_CTRL is written. A small tweak in
pmu_increment_insns() is then needed to only increment this event
if the thread has the run latch.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20211201151734.654994-8-danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
The PMU is already counting cycles by calculating time elapsed in
nanoseconds. Counting instructions is a different matter and requires
another approach.
This patch adds the capability of counting completed instructions (Perf
event PM_INST_CMPL) by counting the amount of instructions translated in
each translation block right before exiting it.
A new pmu_count_insns() helper in translation.c was added to do that.
After verifying that the PMU is counting instructions, call
helper_insns_inc(). This new helper from power8-pmu.c will add the
instructions to the relevant counters. It'll also be responsible for
triggering counter negative overflows as it is already being done with
cycles.
To verify whether the PMU is counting instructions or now, a new hflags
named 'HFLAGS_INSN_CNT' is introduced. This flag will match the internal
state of the PMU. We're be using this flag to avoid calling
helper_insn_inc() when we do not have a valid instruction event being
sampled.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20211201151734.654994-7-danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
(Applies to 7441, 7445, 7450, 7451, 7455, 7457, 7447, 7447a and 7448)
The QEMU-side software TLB implementation for the 7450 family of CPUs
is being removed due to lack of known users in the real world. The
last users in the code were removed by the two previous commits.
A brief history:
The feature was added in QEMU by commit 7dbe11acd8 ("Handle all MMU
models in switches...") with the mention that Linux was not able to
handle the TLB miss interrupts and the MMU model would be kept
disabled.
At some point later, commit 8ca3f6c382 ("Allow selection of all
defined PowerPC 74xx (aka G4) CPUs.") enabled the model for the 7450
family without further justification.
We have since the year 2011 [1] been unable to run OpenBIOS in the
7450s and have not heard of any other software that is used with those
CPUs in QEMU. Attempts were made to find a guest OS that implemented
the TLB miss handlers and none were found among Linux 5.15, FreeBSD 13,
MacOS9, MacOSX and MorphOS 3.15.
All CPUs that registered this feature were moved to an MMU model that
replaces the software TLB with a QEMU hardware TLB
implementation. They can now run the same software as the 7400 CPUs,
including the OSes mentioned above.
References:
- https://bugs.launchpad.net/qemu/+bug/812398https://gitlab.com/qemu-project/qemu/-/issues/86
- https://lists.nongnu.org/archive/html/qemu-ppc/2021-11/msg00289.html
message id: 20211119134431.406753-1-farosas@linux.ibm.com
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Message-Id: <20211130230123.781844-4-farosas@linux.ibm.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Move the following instructions to decodetree:
ddedpd: DFP Decode DPD To BCD
ddedpdq: DFP Decode DPD To BCD Quad
denbcd: DFP Encode BCD To DPD
denbcdq: DFP Encode BCD To DPD Quad
dscli: DFP Shift Significand Left Immediate
dscliq: DFP Shift Significand Left Immediate Quad
dscri: DFP Shift Significand Right Immediate
dscriq: DFP Shift Significand Right Immediate Quad
Also deleted dfp-ops.c.inc, now that all PPC DFP instructions were
moved to decodetree.
Signed-off-by: Luis Pires <luis.pires@eldorado.org.br>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20211029192417.400707-16-luis.pires@eldorado.org.br>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>