Instead of having "virtio/virtio-bus.h" implicitly included,
explicitly include it, to avoid when rearranging headers:
hw/virtio/vhost-vsock-common.c: In function ‘vhost_vsock_common_start’:
hw/virtio/vhost-vsock-common.c:51:5: error: unknown type name ‘VirtioBusClass’; did you mean ‘VirtioDeviceClass’?
51 | VirtioBusClass *k = VIRTIO_BUS_GET_CLASS(qbus);
| ^~~~~~~~~~~~~~
| VirtioDeviceClass
hw/virtio/vhost-vsock-common.c:51:25: error: implicit declaration of function ‘VIRTIO_BUS_GET_CLASS’; did you mean ‘VIRTIO_DEVICE_CLASS’? [-Werror=implicit-function-declaration]
51 | VirtioBusClass *k = VIRTIO_BUS_GET_CLASS(qbus);
| ^~~~~~~~~~~~~~~~~~~~
| VIRTIO_DEVICE_CLASS
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Message-Id: <20230524093744.88442-8-philmd@linaro.org>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Stefano Garzarella <sgarzare@redhat.com>
Following the SCSI variable named '[specific_]scsi_ss', rename the
target-specific VirtIO/SCSI set prefixed with 'specific_'. This will
help when adding target-agnostic VirtIO/SCSI set in few commits.
No logical change.
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20230524093744.88442-5-philmd@linaro.org>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Reviewed-by: Thomas Huth <thuth@redhat.com>
These events include a copy of the device health information at the
time of the event. Actually using the emulated device health would
require a lot of controls to manipulate that state. Given the aim
of this injection code is to just test the flows when events occur,
inject the contents of the device health state as well.
Future work may add more sophisticate device health emulation
including direct generation of these records when events occur
(such as a temperature threshold being crossed). That does not
reduce the usefulness of this more basic generation of the events.
Acked-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Fan Ni <fan.ni@samsung.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Message-Id: <20230530133603.16934-8-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Defined in CXL r3.0 8.2.9.2.1.2 DRAM Event Record, this event
provides information related to DRAM devices.
Example injection command in QMP:
{ "execute": "cxl-inject-dram-event",
"arguments": {
"path": "/machine/peripheral/cxl-mem0",
"log": "informational",
"flags": 1,
"dpa": 1000,
"descriptor": 3,
"type": 3,
"transaction-type": 192,
"channel": 3,
"rank": 17,
"nibble-mask": 37421234,
"bank-group": 7,
"bank": 11,
"row": 2,
"column": 77,
"correction-mask": [33, 44, 55,66]
}}
Acked-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Fan Ni <fan.ni@samsung.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Message-Id: <20230530133603.16934-7-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
CXL testing is benefited from an artificial event log injection
mechanism.
Add an event log infrastructure to insert, get, and clear events from
the various logs available on a device.
Replace the stubbed out CXL Get/Clear Event mailbox commands with
commands that operate on the new infrastructure.
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Fan Ni <fan.ni@samsung.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Message-Id: <20230530133603.16934-4-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
The device status register block was defined. However, there were no
individual registers nor any data wired up.
Define the event status register [CXL 3.0; 8.2.8.3.1] as part of the
device status register block. Wire up the register and initialize the
event status for each log.
To support CXL 3.0 the version of the device status register block needs
to be 2. Change the macro to allow for setting the version.
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Fan Ni <fan.ni@samsung.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Message-Id: <20230530133603.16934-2-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Very simple implementation to allow testing of corresponding
kernel code. Note that for now we track each 64 byte section
independently. Whilst a valid implementation choice, it may
make sense to fuse entries so as to prove out more complex
corners of the kernel code.
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Fan Ni <fan.ni@samsung.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Message-Id: <20230526170010.574-4-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Inject poison using QMP command cxl-inject-poison to add an entry to the
poison list.
For now, the poison is not returned CXL.mem reads, but only via the
mailbox command Get Poison List. So a normal memory read to an address
that is on the poison list will not yet result in a synchronous exception
(and similar for partial cacheline writes).
That is left for a future patch.
See CXL rev 3.0, sec 8.2.9.8.4.1 Get Poison list (Opcode 4300h)
Kernel patches to use this interface here:
https://lore.kernel.org/linux-cxl/cover.1665606782.git.alison.schofield@intel.com/
To inject poison using QMP (telnet to the QMP port)
{ "execute": "qmp_capabilities" }
{ "execute": "cxl-inject-poison",
"arguments": {
"path": "/machine/peripheral/cxl-pmem0",
"start": 2048,
"length": 256
}
}
Adjusted to select a device on your machine.
Note that the poison list supported is kept short enough to avoid the
complexity of state machine that is needed to handle the MORE flag.
Reviewed-by: Fan Ni <fan.ni@samsung.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Acked-by: Markus Armbruster <armbru@redhat.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Message-Id: <20230526170010.574-3-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
CXL has 24 bit unaligned fields which need to be stored to. CXL is
specified as little endian.
Define st24_le_p() and the supporting functions to store such a field
from a 32 bit host native value.
The use of b, w, l, q as the size specifier is limiting. So "24" was
used for the size part of the function name.
Reviewed-by: Fan Ni <fan.ni@samsung.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Message-Id: <20230526170010.574-2-Jonathan.Cameron@huawei.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
Analysis of the MacOS toolbox ROM code shows that on startup it attempts 2
separate reads of the seconds registers with commands 0x9d...0x91 followed by
0x8d..0x81 without resetting the command to its initial value. The PRAM seconds
value is only accepted when the values of the 2 separate reads match.
From this we conclude that bit 4 of the rtc command is not decoded or we don't
care about its value when reading the PRAM seconds registers. Implement this
decoding change so that both reads return successfully which allows the MacOS
toolbox ROM to correctly set the date/time.
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Message-Id: <20230621085353.113233-25-mark.cave-ayland@ilande.co.uk>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
The current use of aliased memory regions causes us 2 problems: firstly the
output of "info qom-tree" is absolutely huge and difficult to read, and
secondly we have already reached the internal limit for memory regions as
adding any new memory region into the mac-io region causes QEMU to assert
with "phys_section_add: Assertion `map->sections_nb < TARGET_PAGE_SIZE'
failed".
Implement the mac-io region aliasing using a single IO memory region that
applies IO_SLICE_MASK representing the maximum size of the aliased region and
then forwarding the access to the existing mac-io memory region using the
address space API.
Signed-off-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Message-Id: <20230621085353.113233-12-mark.cave-ayland@ilande.co.uk>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
the CPU can change the privilege level by writing the corresponding bits
in PSW. If this happens all instructions after this 'mtcr' in the TB are
translated with the wrong privilege level. So we have to exit to the
cpu_loop() and start translating again with the new privilege level.
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Bastian Koppelmann <kbastian@mail.uni-paderborn.de>
Message-Id: <20230621142302.1648383-8-kbastian@mail.uni-paderborn.de>