After setting CP15 bits in arm_set_cpu_on() the cached hflags must
be rebuild to reflect the changed processor state. Without rebuilding,
the cached hflags would be inconsistent until the next call to
arm_rebuild_hflags(). When QEMU is compiled with debugging enabled
(--enable-debug), this problem is captured shortly after the first
call to arm_set_cpu_on() for CPUs running in ARM 32-bit non-secure mode:
  qemu-system-arm: target/arm/helper.c:11359: cpu_get_tb_cpu_state:
  Assertion `flags == rebuild_hflags_internal(env)' failed.
  Aborted (core dumped)
Fixes: 0c7f8c43da
Cc: qemu-stable@nongnu.org
Signed-off-by: Niek Linnenbank <nieklinnenbank@gmail.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
		
	
		
			
				
	
	
		
			369 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			369 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * QEMU support -- ARM Power Control specific functions.
 | 
						|
 *
 | 
						|
 * Copyright (c) 2016 Jean-Christophe Dubois
 | 
						|
 *
 | 
						|
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 | 
						|
 * See the COPYING file in the top-level directory.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
#include "qemu/osdep.h"
 | 
						|
#include "cpu.h"
 | 
						|
#include "cpu-qom.h"
 | 
						|
#include "internals.h"
 | 
						|
#include "arm-powerctl.h"
 | 
						|
#include "qemu/log.h"
 | 
						|
#include "qemu/main-loop.h"
 | 
						|
 | 
						|
#ifndef DEBUG_ARM_POWERCTL
 | 
						|
#define DEBUG_ARM_POWERCTL 0
 | 
						|
#endif
 | 
						|
 | 
						|
#define DPRINTF(fmt, args...) \
 | 
						|
    do { \
 | 
						|
        if (DEBUG_ARM_POWERCTL) { \
 | 
						|
            fprintf(stderr, "[ARM]%s: " fmt , __func__, ##args); \
 | 
						|
        } \
 | 
						|
    } while (0)
 | 
						|
 | 
						|
CPUState *arm_get_cpu_by_id(uint64_t id)
 | 
						|
{
 | 
						|
    CPUState *cpu;
 | 
						|
 | 
						|
    DPRINTF("cpu %" PRId64 "\n", id);
 | 
						|
 | 
						|
    CPU_FOREACH(cpu) {
 | 
						|
        ARMCPU *armcpu = ARM_CPU(cpu);
 | 
						|
 | 
						|
        if (armcpu->mp_affinity == id) {
 | 
						|
            return cpu;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    qemu_log_mask(LOG_GUEST_ERROR,
 | 
						|
                  "[ARM]%s: Requesting unknown CPU %" PRId64 "\n",
 | 
						|
                  __func__, id);
 | 
						|
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
struct CpuOnInfo {
 | 
						|
    uint64_t entry;
 | 
						|
    uint64_t context_id;
 | 
						|
    uint32_t target_el;
 | 
						|
    bool target_aa64;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
static void arm_set_cpu_on_async_work(CPUState *target_cpu_state,
 | 
						|
                                      run_on_cpu_data data)
 | 
						|
{
 | 
						|
    ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
 | 
						|
    struct CpuOnInfo *info = (struct CpuOnInfo *) data.host_ptr;
 | 
						|
 | 
						|
    /* Initialize the cpu we are turning on */
 | 
						|
    cpu_reset(target_cpu_state);
 | 
						|
    target_cpu_state->halted = 0;
 | 
						|
 | 
						|
    if (info->target_aa64) {
 | 
						|
        if ((info->target_el < 3) && arm_feature(&target_cpu->env,
 | 
						|
                                                 ARM_FEATURE_EL3)) {
 | 
						|
            /*
 | 
						|
             * As target mode is AArch64, we need to set lower
 | 
						|
             * exception level (the requested level 2) to AArch64
 | 
						|
             */
 | 
						|
            target_cpu->env.cp15.scr_el3 |= SCR_RW;
 | 
						|
        }
 | 
						|
 | 
						|
        if ((info->target_el < 2) && arm_feature(&target_cpu->env,
 | 
						|
                                                 ARM_FEATURE_EL2)) {
 | 
						|
            /*
 | 
						|
             * As target mode is AArch64, we need to set lower
 | 
						|
             * exception level (the requested level 1) to AArch64
 | 
						|
             */
 | 
						|
            target_cpu->env.cp15.hcr_el2 |= HCR_RW;
 | 
						|
        }
 | 
						|
 | 
						|
        target_cpu->env.pstate = aarch64_pstate_mode(info->target_el, true);
 | 
						|
    } else {
 | 
						|
        /* We are requested to boot in AArch32 mode */
 | 
						|
        static const uint32_t mode_for_el[] = { 0,
 | 
						|
                                                ARM_CPU_MODE_SVC,
 | 
						|
                                                ARM_CPU_MODE_HYP,
 | 
						|
                                                ARM_CPU_MODE_SVC };
 | 
						|
 | 
						|
        cpsr_write(&target_cpu->env, mode_for_el[info->target_el], CPSR_M,
 | 
						|
                   CPSRWriteRaw);
 | 
						|
    }
 | 
						|
 | 
						|
    if (info->target_el == 3) {
 | 
						|
        /* Processor is in secure mode */
 | 
						|
        target_cpu->env.cp15.scr_el3 &= ~SCR_NS;
 | 
						|
    } else {
 | 
						|
        /* Processor is not in secure mode */
 | 
						|
        target_cpu->env.cp15.scr_el3 |= SCR_NS;
 | 
						|
 | 
						|
        /* Set NSACR.{CP11,CP10} so NS can access the FPU */
 | 
						|
        target_cpu->env.cp15.nsacr |= 3 << 10;
 | 
						|
 | 
						|
        /*
 | 
						|
         * If QEMU is providing the equivalent of EL3 firmware, then we need
 | 
						|
         * to make sure a CPU targeting EL2 comes out of reset with a
 | 
						|
         * functional HVC insn.
 | 
						|
         */
 | 
						|
        if (arm_feature(&target_cpu->env, ARM_FEATURE_EL3)
 | 
						|
            && info->target_el == 2) {
 | 
						|
            target_cpu->env.cp15.scr_el3 |= SCR_HCE;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* We check if the started CPU is now at the correct level */
 | 
						|
    assert(info->target_el == arm_current_el(&target_cpu->env));
 | 
						|
 | 
						|
    if (info->target_aa64) {
 | 
						|
        target_cpu->env.xregs[0] = info->context_id;
 | 
						|
    } else {
 | 
						|
        target_cpu->env.regs[0] = info->context_id;
 | 
						|
    }
 | 
						|
 | 
						|
    /* CP15 update requires rebuilding hflags */
 | 
						|
    arm_rebuild_hflags(&target_cpu->env);
 | 
						|
 | 
						|
    /* Start the new CPU at the requested address */
 | 
						|
    cpu_set_pc(target_cpu_state, info->entry);
 | 
						|
 | 
						|
    g_free(info);
 | 
						|
 | 
						|
    /* Finally set the power status */
 | 
						|
    assert(qemu_mutex_iothread_locked());
 | 
						|
    target_cpu->power_state = PSCI_ON;
 | 
						|
}
 | 
						|
 | 
						|
int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id,
 | 
						|
                   uint32_t target_el, bool target_aa64)
 | 
						|
{
 | 
						|
    CPUState *target_cpu_state;
 | 
						|
    ARMCPU *target_cpu;
 | 
						|
    struct CpuOnInfo *info;
 | 
						|
 | 
						|
    assert(qemu_mutex_iothread_locked());
 | 
						|
 | 
						|
    DPRINTF("cpu %" PRId64 " (EL %d, %s) @ 0x%" PRIx64 " with R0 = 0x%" PRIx64
 | 
						|
            "\n", cpuid, target_el, target_aa64 ? "aarch64" : "aarch32", entry,
 | 
						|
            context_id);
 | 
						|
 | 
						|
    /* requested EL level need to be in the 1 to 3 range */
 | 
						|
    assert((target_el > 0) && (target_el < 4));
 | 
						|
 | 
						|
    if (target_aa64 && (entry & 3)) {
 | 
						|
        /*
 | 
						|
         * if we are booting in AArch64 mode then "entry" needs to be 4 bytes
 | 
						|
         * aligned.
 | 
						|
         */
 | 
						|
        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Retrieve the cpu we are powering up */
 | 
						|
    target_cpu_state = arm_get_cpu_by_id(cpuid);
 | 
						|
    if (!target_cpu_state) {
 | 
						|
        /* The cpu was not found */
 | 
						|
        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 | 
						|
    }
 | 
						|
 | 
						|
    target_cpu = ARM_CPU(target_cpu_state);
 | 
						|
    if (target_cpu->power_state == PSCI_ON) {
 | 
						|
        qemu_log_mask(LOG_GUEST_ERROR,
 | 
						|
                      "[ARM]%s: CPU %" PRId64 " is already on\n",
 | 
						|
                      __func__, cpuid);
 | 
						|
        return QEMU_ARM_POWERCTL_ALREADY_ON;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * The newly brought CPU is requested to enter the exception level
 | 
						|
     * "target_el" and be in the requested mode (AArch64 or AArch32).
 | 
						|
     */
 | 
						|
 | 
						|
    if (((target_el == 3) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) ||
 | 
						|
        ((target_el == 2) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL2))) {
 | 
						|
        /*
 | 
						|
         * The CPU does not support requested level
 | 
						|
         */
 | 
						|
        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!target_aa64 && arm_feature(&target_cpu->env, ARM_FEATURE_AARCH64)) {
 | 
						|
        /*
 | 
						|
         * For now we don't support booting an AArch64 CPU in AArch32 mode
 | 
						|
         * TODO: We should add this support later
 | 
						|
         */
 | 
						|
        qemu_log_mask(LOG_UNIMP,
 | 
						|
                      "[ARM]%s: Starting AArch64 CPU %" PRId64
 | 
						|
                      " in AArch32 mode is not supported yet\n",
 | 
						|
                      __func__, cpuid);
 | 
						|
        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * If another CPU has powered the target on we are in the state
 | 
						|
     * ON_PENDING and additional attempts to power on the CPU should
 | 
						|
     * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
 | 
						|
     * spec)
 | 
						|
     */
 | 
						|
    if (target_cpu->power_state == PSCI_ON_PENDING) {
 | 
						|
        qemu_log_mask(LOG_GUEST_ERROR,
 | 
						|
                      "[ARM]%s: CPU %" PRId64 " is already powering on\n",
 | 
						|
                      __func__, cpuid);
 | 
						|
        return QEMU_ARM_POWERCTL_ON_PENDING;
 | 
						|
    }
 | 
						|
 | 
						|
    /* To avoid racing with a CPU we are just kicking off we do the
 | 
						|
     * final bit of preparation for the work in the target CPUs
 | 
						|
     * context.
 | 
						|
     */
 | 
						|
    info = g_new(struct CpuOnInfo, 1);
 | 
						|
    info->entry = entry;
 | 
						|
    info->context_id = context_id;
 | 
						|
    info->target_el = target_el;
 | 
						|
    info->target_aa64 = target_aa64;
 | 
						|
 | 
						|
    async_run_on_cpu(target_cpu_state, arm_set_cpu_on_async_work,
 | 
						|
                     RUN_ON_CPU_HOST_PTR(info));
 | 
						|
 | 
						|
    /* We are good to go */
 | 
						|
    return QEMU_ARM_POWERCTL_RET_SUCCESS;
 | 
						|
}
 | 
						|
 | 
						|
static void arm_set_cpu_on_and_reset_async_work(CPUState *target_cpu_state,
 | 
						|
                                                run_on_cpu_data data)
 | 
						|
{
 | 
						|
    ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
 | 
						|
 | 
						|
    /* Initialize the cpu we are turning on */
 | 
						|
    cpu_reset(target_cpu_state);
 | 
						|
    target_cpu_state->halted = 0;
 | 
						|
 | 
						|
    /* Finally set the power status */
 | 
						|
    assert(qemu_mutex_iothread_locked());
 | 
						|
    target_cpu->power_state = PSCI_ON;
 | 
						|
}
 | 
						|
 | 
						|
int arm_set_cpu_on_and_reset(uint64_t cpuid)
 | 
						|
{
 | 
						|
    CPUState *target_cpu_state;
 | 
						|
    ARMCPU *target_cpu;
 | 
						|
 | 
						|
    assert(qemu_mutex_iothread_locked());
 | 
						|
 | 
						|
    /* Retrieve the cpu we are powering up */
 | 
						|
    target_cpu_state = arm_get_cpu_by_id(cpuid);
 | 
						|
    if (!target_cpu_state) {
 | 
						|
        /* The cpu was not found */
 | 
						|
        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 | 
						|
    }
 | 
						|
 | 
						|
    target_cpu = ARM_CPU(target_cpu_state);
 | 
						|
    if (target_cpu->power_state == PSCI_ON) {
 | 
						|
        qemu_log_mask(LOG_GUEST_ERROR,
 | 
						|
                      "[ARM]%s: CPU %" PRId64 " is already on\n",
 | 
						|
                      __func__, cpuid);
 | 
						|
        return QEMU_ARM_POWERCTL_ALREADY_ON;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * If another CPU has powered the target on we are in the state
 | 
						|
     * ON_PENDING and additional attempts to power on the CPU should
 | 
						|
     * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
 | 
						|
     * spec)
 | 
						|
     */
 | 
						|
    if (target_cpu->power_state == PSCI_ON_PENDING) {
 | 
						|
        qemu_log_mask(LOG_GUEST_ERROR,
 | 
						|
                      "[ARM]%s: CPU %" PRId64 " is already powering on\n",
 | 
						|
                      __func__, cpuid);
 | 
						|
        return QEMU_ARM_POWERCTL_ON_PENDING;
 | 
						|
    }
 | 
						|
 | 
						|
    async_run_on_cpu(target_cpu_state, arm_set_cpu_on_and_reset_async_work,
 | 
						|
                     RUN_ON_CPU_NULL);
 | 
						|
 | 
						|
    /* We are good to go */
 | 
						|
    return QEMU_ARM_POWERCTL_RET_SUCCESS;
 | 
						|
}
 | 
						|
 | 
						|
static void arm_set_cpu_off_async_work(CPUState *target_cpu_state,
 | 
						|
                                       run_on_cpu_data data)
 | 
						|
{
 | 
						|
    ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
 | 
						|
 | 
						|
    assert(qemu_mutex_iothread_locked());
 | 
						|
    target_cpu->power_state = PSCI_OFF;
 | 
						|
    target_cpu_state->halted = 1;
 | 
						|
    target_cpu_state->exception_index = EXCP_HLT;
 | 
						|
}
 | 
						|
 | 
						|
int arm_set_cpu_off(uint64_t cpuid)
 | 
						|
{
 | 
						|
    CPUState *target_cpu_state;
 | 
						|
    ARMCPU *target_cpu;
 | 
						|
 | 
						|
    assert(qemu_mutex_iothread_locked());
 | 
						|
 | 
						|
    DPRINTF("cpu %" PRId64 "\n", cpuid);
 | 
						|
 | 
						|
    /* change to the cpu we are powering up */
 | 
						|
    target_cpu_state = arm_get_cpu_by_id(cpuid);
 | 
						|
    if (!target_cpu_state) {
 | 
						|
        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 | 
						|
    }
 | 
						|
    target_cpu = ARM_CPU(target_cpu_state);
 | 
						|
    if (target_cpu->power_state == PSCI_OFF) {
 | 
						|
        qemu_log_mask(LOG_GUEST_ERROR,
 | 
						|
                      "[ARM]%s: CPU %" PRId64 " is already off\n",
 | 
						|
                      __func__, cpuid);
 | 
						|
        return QEMU_ARM_POWERCTL_IS_OFF;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Queue work to run under the target vCPUs context */
 | 
						|
    async_run_on_cpu(target_cpu_state, arm_set_cpu_off_async_work,
 | 
						|
                     RUN_ON_CPU_NULL);
 | 
						|
 | 
						|
    return QEMU_ARM_POWERCTL_RET_SUCCESS;
 | 
						|
}
 | 
						|
 | 
						|
static void arm_reset_cpu_async_work(CPUState *target_cpu_state,
 | 
						|
                                     run_on_cpu_data data)
 | 
						|
{
 | 
						|
    /* Reset the cpu */
 | 
						|
    cpu_reset(target_cpu_state);
 | 
						|
}
 | 
						|
 | 
						|
int arm_reset_cpu(uint64_t cpuid)
 | 
						|
{
 | 
						|
    CPUState *target_cpu_state;
 | 
						|
    ARMCPU *target_cpu;
 | 
						|
 | 
						|
    assert(qemu_mutex_iothread_locked());
 | 
						|
 | 
						|
    DPRINTF("cpu %" PRId64 "\n", cpuid);
 | 
						|
 | 
						|
    /* change to the cpu we are resetting */
 | 
						|
    target_cpu_state = arm_get_cpu_by_id(cpuid);
 | 
						|
    if (!target_cpu_state) {
 | 
						|
        return QEMU_ARM_POWERCTL_INVALID_PARAM;
 | 
						|
    }
 | 
						|
    target_cpu = ARM_CPU(target_cpu_state);
 | 
						|
 | 
						|
    if (target_cpu->power_state == PSCI_OFF) {
 | 
						|
        qemu_log_mask(LOG_GUEST_ERROR,
 | 
						|
                      "[ARM]%s: CPU %" PRId64 " is off\n",
 | 
						|
                      __func__, cpuid);
 | 
						|
        return QEMU_ARM_POWERCTL_IS_OFF;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Queue work to run under the target vCPUs context */
 | 
						|
    async_run_on_cpu(target_cpu_state, arm_reset_cpu_async_work,
 | 
						|
                     RUN_ON_CPU_NULL);
 | 
						|
 | 
						|
    return QEMU_ARM_POWERCTL_RET_SUCCESS;
 | 
						|
}
 |