Files
qemu/kvm/libkvm/libkvm.c
2018-02-09 11:41:11 -07:00

1498 lines
32 KiB
C

/*
* Kernel-based Virtual Machine control library
*
* This library provides an API to control the kvm hardware virtualization
* module.
*
* Copyright (C) 2006 Qumranet
*
* Authors:
*
* Avi Kivity <avi@qumranet.com>
* Yaniv Kamay <yaniv@qumranet.com>
*
* This work is licensed under the GNU LGPL license, version 2.
*/
#ifndef __user
#define __user /* temporary, until installed via make headers_install */
#endif
#include <linux/kvm.h>
#define EXPECTED_KVM_API_VERSION 12
#if EXPECTED_KVM_API_VERSION != KVM_API_VERSION
#error libkvm: userspace and kernel version mismatch
#endif
#include <unistd.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <string.h>
#include <errno.h>
#include <sys/ioctl.h>
#include <inttypes.h>
#include "libkvm.h"
#if defined(__x86_64__) || defined(__i386__)
#include "kvm-x86.h"
#endif
#if defined(__ia64__)
#include "kvm-ia64.h"
#endif
#if defined(__powerpc__)
#include "kvm-powerpc.h"
#endif
#if defined(__s390__)
#include "kvm-s390.h"
#endif
//#define DEBUG_MEMREG
#ifdef DEBUG_MEMREG
#define DPRINTF(fmt, args...) \
do { fprintf(stderr, "%s:%d " fmt , __func__, __LINE__, ##args); } while (0)
#else
#define DPRINTF(fmt, args...) do {} while (0)
#endif
#define MIN(x,y) ((x) < (y) ? (x) : (y))
#define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
int kvm_abi = EXPECTED_KVM_API_VERSION;
int kvm_page_size;
static inline void set_gsi(kvm_context_t kvm, unsigned int gsi)
{
uint32_t *bitmap = kvm->used_gsi_bitmap;
if (gsi < kvm->max_gsi)
bitmap[gsi / 32] |= 1U << (gsi % 32);
else
DPRINTF("Invalid GSI %d\n");
}
static inline void clear_gsi(kvm_context_t kvm, unsigned int gsi)
{
uint32_t *bitmap = kvm->used_gsi_bitmap;
if (gsi < kvm->max_gsi)
bitmap[gsi / 32] &= ~(1U << (gsi % 32));
else
DPRINTF("Invalid GSI %d\n");
}
struct slot_info {
unsigned long phys_addr;
unsigned long len;
unsigned long userspace_addr;
unsigned flags;
int logging_count;
};
struct slot_info slots[KVM_MAX_NUM_MEM_REGIONS];
static void init_slots(void)
{
int i;
for (i = 0; i < KVM_MAX_NUM_MEM_REGIONS; ++i)
slots[i].len = 0;
}
static int get_free_slot(kvm_context_t kvm)
{
int i;
int tss_ext;
#if defined(KVM_CAP_SET_TSS_ADDR) && !defined(__s390__)
tss_ext = ioctl(kvm->fd, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
#else
tss_ext = 0;
#endif
/*
* on older kernels where the set tss ioctl is not supprted we must save
* slot 0 to hold the extended memory, as the vmx will use the last 3
* pages of this slot.
*/
if (tss_ext > 0)
i = 0;
else
i = 1;
for (; i < KVM_MAX_NUM_MEM_REGIONS; ++i)
if (!slots[i].len)
return i;
return -1;
}
static void register_slot(int slot, unsigned long phys_addr, unsigned long len,
unsigned long userspace_addr, unsigned flags)
{
slots[slot].phys_addr = phys_addr;
slots[slot].len = len;
slots[slot].userspace_addr = userspace_addr;
slots[slot].flags = flags;
}
static void free_slot(int slot)
{
slots[slot].len = 0;
slots[slot].logging_count = 0;
}
static int get_slot(unsigned long phys_addr)
{
int i;
for (i = 0; i < KVM_MAX_NUM_MEM_REGIONS ; ++i) {
if (slots[i].len && slots[i].phys_addr <= phys_addr &&
(slots[i].phys_addr + slots[i].len-1) >= phys_addr)
return i;
}
return -1;
}
/* Returns -1 if this slot is not totally contained on any other,
* and the number of the slot otherwise */
static int get_container_slot(uint64_t phys_addr, unsigned long size)
{
int i;
for (i = 0; i < KVM_MAX_NUM_MEM_REGIONS ; ++i)
if (slots[i].len && slots[i].phys_addr <= phys_addr &&
(slots[i].phys_addr + slots[i].len) >= phys_addr + size)
return i;
return -1;
}
int kvm_is_containing_region(kvm_context_t kvm, unsigned long phys_addr, unsigned long size)
{
int slot = get_container_slot(phys_addr, size);
if (slot == -1)
return 0;
return 1;
}
/*
* dirty pages logging control
*/
static int kvm_dirty_pages_log_change(kvm_context_t kvm,
unsigned long phys_addr,
unsigned flags,
unsigned mask)
{
int r = -1;
int slot = get_slot(phys_addr);
if (slot == -1) {
fprintf(stderr, "BUG: %s: invalid parameters\n", __FUNCTION__);
return 1;
}
flags = (slots[slot].flags & ~mask) | flags;
if (flags == slots[slot].flags)
return 0;
slots[slot].flags = flags;
{
struct kvm_userspace_memory_region mem = {
.slot = slot,
.memory_size = slots[slot].len,
.guest_phys_addr = slots[slot].phys_addr,
.userspace_addr = slots[slot].userspace_addr,
.flags = slots[slot].flags,
};
DPRINTF("slot %d start %llx len %llx flags %x\n",
mem.slot,
mem.guest_phys_addr,
mem.memory_size,
mem.flags);
r = ioctl(kvm->vm_fd, KVM_SET_USER_MEMORY_REGION, &mem);
if (r == -1)
fprintf(stderr, "%s: %m\n", __FUNCTION__);
}
return r;
}
static int kvm_dirty_pages_log_change_all(kvm_context_t kvm,
int (*change)(kvm_context_t kvm,
uint64_t start,
uint64_t len))
{
int i, r;
for (i=r=0; i<KVM_MAX_NUM_MEM_REGIONS && r==0; i++) {
if (slots[i].len)
r = change(kvm, slots[i].phys_addr, slots[i].len);
}
return r;
}
int kvm_dirty_pages_log_enable_slot(kvm_context_t kvm,
uint64_t phys_addr,
uint64_t len)
{
int slot = get_slot(phys_addr);
DPRINTF("start %"PRIx64" len %"PRIx64"\n", phys_addr, len);
if (slot == -1) {
fprintf(stderr, "BUG: %s: invalid parameters\n", __func__);
return -EINVAL;
}
if (slots[slot].logging_count++)
return 0;
return kvm_dirty_pages_log_change(kvm, slots[slot].phys_addr,
KVM_MEM_LOG_DIRTY_PAGES,
KVM_MEM_LOG_DIRTY_PAGES);
}
int kvm_dirty_pages_log_disable_slot(kvm_context_t kvm,
uint64_t phys_addr,
uint64_t len)
{
int slot = get_slot(phys_addr);
if (slot == -1) {
fprintf(stderr, "BUG: %s: invalid parameters\n", __func__);
return -EINVAL;
}
if (--slots[slot].logging_count)
return 0;
return kvm_dirty_pages_log_change(kvm, slots[slot].phys_addr,
0,
KVM_MEM_LOG_DIRTY_PAGES);
}
/**
* Enable dirty page logging for all memory regions
*/
int kvm_dirty_pages_log_enable_all(kvm_context_t kvm)
{
if (kvm->dirty_pages_log_all)
return 0;
kvm->dirty_pages_log_all = 1;
return kvm_dirty_pages_log_change_all(kvm,
kvm_dirty_pages_log_enable_slot);
}
/**
* Enable dirty page logging only for memory regions that were created with
* dirty logging enabled (disable for all other memory regions).
*/
int kvm_dirty_pages_log_reset(kvm_context_t kvm)
{
if (!kvm->dirty_pages_log_all)
return 0;
kvm->dirty_pages_log_all = 0;
return kvm_dirty_pages_log_change_all(kvm,
kvm_dirty_pages_log_disable_slot);
}
kvm_context_t kvm_init(struct kvm_callbacks *callbacks,
void *opaque)
{
int fd;
kvm_context_t kvm;
int r, gsi_count;
fd = open("/dev/kvm", O_RDWR);
if (fd == -1) {
perror("open /dev/kvm");
return NULL;
}
r = ioctl(fd, KVM_GET_API_VERSION, 0);
if (r == -1) {
fprintf(stderr, "kvm kernel version too old: "
"KVM_GET_API_VERSION ioctl not supported\n");
goto out_close;
}
if (r < EXPECTED_KVM_API_VERSION) {
fprintf(stderr, "kvm kernel version too old: "
"We expect API version %d or newer, but got "
"version %d\n",
EXPECTED_KVM_API_VERSION, r);
goto out_close;
}
if (r > EXPECTED_KVM_API_VERSION) {
fprintf(stderr, "kvm userspace version too old\n");
goto out_close;
}
kvm_abi = r;
kvm_page_size = getpagesize();
kvm = malloc(sizeof(*kvm));
if (kvm == NULL)
goto out_close;
memset(kvm, 0, sizeof(*kvm));
kvm->fd = fd;
kvm->vm_fd = -1;
kvm->callbacks = callbacks;
kvm->opaque = opaque;
kvm->dirty_pages_log_all = 0;
kvm->no_irqchip_creation = 0;
kvm->no_pit_creation = 0;
gsi_count = kvm_get_gsi_count(kvm);
if (gsi_count > 0) {
int gsi_bits, i;
/* Round up so we can search ints using ffs */
gsi_bits = ALIGN(gsi_count, 32);
kvm->used_gsi_bitmap = malloc(gsi_bits / 8);
if (!kvm->used_gsi_bitmap)
goto out_close;
memset(kvm->used_gsi_bitmap, 0, gsi_bits / 8);
kvm->max_gsi = gsi_bits;
/* Mark any over-allocated bits as already in use */
for (i = gsi_count; i < gsi_bits; i++)
set_gsi(kvm, i);
}
return kvm;
out_close:
close(fd);
return NULL;
}
void kvm_finalize(kvm_context_t kvm)
{
if (kvm->vcpu_fd[0] != -1)
close(kvm->vcpu_fd[0]);
if (kvm->vm_fd != -1)
close(kvm->vm_fd);
close(kvm->fd);
free(kvm);
}
void kvm_disable_irqchip_creation(kvm_context_t kvm)
{
kvm->no_irqchip_creation = 1;
}
void kvm_disable_pit_creation(kvm_context_t kvm)
{
kvm->no_pit_creation = 1;
}
int kvm_create_vcpu(kvm_context_t kvm, int slot)
{
long mmap_size;
int r;
r = ioctl(kvm->vm_fd, KVM_CREATE_VCPU, slot);
if (r == -1) {
r = -errno;
fprintf(stderr, "kvm_create_vcpu: %m\n");
return r;
}
kvm->vcpu_fd[slot] = r;
mmap_size = ioctl(kvm->fd, KVM_GET_VCPU_MMAP_SIZE, 0);
if (mmap_size == -1) {
r = -errno;
fprintf(stderr, "get vcpu mmap size: %m\n");
return r;
}
kvm->run[slot] = mmap(NULL, mmap_size, PROT_READ|PROT_WRITE, MAP_SHARED,
kvm->vcpu_fd[slot], 0);
if (kvm->run[slot] == MAP_FAILED) {
r = -errno;
fprintf(stderr, "mmap vcpu area: %m\n");
return r;
}
return 0;
}
int kvm_create_vm(kvm_context_t kvm)
{
int fd = kvm->fd;
#ifdef KVM_CAP_IRQ_ROUTING
kvm->irq_routes = malloc(sizeof(*kvm->irq_routes));
if (!kvm->irq_routes)
return -ENOMEM;
memset(kvm->irq_routes, 0, sizeof(*kvm->irq_routes));
kvm->nr_allocated_irq_routes = 0;
#endif
kvm->vcpu_fd[0] = -1;
fd = ioctl(fd, KVM_CREATE_VM, 0);
if (fd == -1) {
fprintf(stderr, "kvm_create_vm: %m\n");
return -1;
}
kvm->vm_fd = fd;
return 0;
}
static int kvm_create_default_phys_mem(kvm_context_t kvm,
unsigned long phys_mem_bytes,
void **vm_mem)
{
#ifdef KVM_CAP_USER_MEMORY
int r = ioctl(kvm->fd, KVM_CHECK_EXTENSION, KVM_CAP_USER_MEMORY);
if (r > 0)
return 0;
fprintf(stderr, "Hypervisor too old: KVM_CAP_USER_MEMORY extension not supported\n");
#else
#error Hypervisor too old: KVM_CAP_USER_MEMORY extension not supported
#endif
return -1;
}
int kvm_check_extension(kvm_context_t kvm, int ext)
{
int ret;
ret = ioctl(kvm->fd, KVM_CHECK_EXTENSION, ext);
if (ret > 0)
return ret;
return 0;
}
void kvm_create_irqchip(kvm_context_t kvm)
{
int r;
kvm->irqchip_in_kernel = 0;
#ifdef KVM_CAP_IRQCHIP
if (!kvm->no_irqchip_creation) {
r = ioctl(kvm->fd, KVM_CHECK_EXTENSION, KVM_CAP_IRQCHIP);
if (r > 0) { /* kernel irqchip supported */
r = ioctl(kvm->vm_fd, KVM_CREATE_IRQCHIP);
if (r >= 0) {
kvm->irqchip_inject_ioctl = KVM_IRQ_LINE;
#if defined(KVM_CAP_IRQ_INJECT_STATUS) && defined(KVM_IRQ_LINE_STATUS)
r = ioctl(kvm->fd, KVM_CHECK_EXTENSION,
KVM_CAP_IRQ_INJECT_STATUS);
if (r > 0)
kvm->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
#endif
kvm->irqchip_in_kernel = 1;
}
else
fprintf(stderr, "Create kernel PIC irqchip failed\n");
}
}
#endif
}
int kvm_create(kvm_context_t kvm, unsigned long phys_mem_bytes, void **vm_mem)
{
int r;
r = kvm_create_vm(kvm);
if (r < 0)
return r;
r = kvm_arch_create(kvm, phys_mem_bytes, vm_mem);
if (r < 0)
return r;
init_slots();
r = kvm_create_default_phys_mem(kvm, phys_mem_bytes, vm_mem);
if (r < 0)
return r;
kvm_create_irqchip(kvm);
return 0;
}
void *kvm_create_phys_mem(kvm_context_t kvm, unsigned long phys_start,
unsigned long len, int log, int writable)
{
int r;
int prot = PROT_READ;
void *ptr;
struct kvm_userspace_memory_region memory = {
.memory_size = len,
.guest_phys_addr = phys_start,
.flags = log ? KVM_MEM_LOG_DIRTY_PAGES : 0,
};
if (writable)
prot |= PROT_WRITE;
#if !defined(__s390__)
ptr = mmap(NULL, len, prot, MAP_ANONYMOUS | MAP_SHARED, -1, 0);
#else
ptr = mmap(LIBKVM_S390_ORIGIN, len, prot | PROT_EXEC,
MAP_FIXED | MAP_SHARED | MAP_ANONYMOUS, -1, 0);
#endif
if (ptr == MAP_FAILED) {
fprintf(stderr, "%s: %s", __func__, strerror(errno));
return 0;
}
memset(ptr, 0, len);
memory.userspace_addr = (unsigned long)ptr;
memory.slot = get_free_slot(kvm);
DPRINTF("slot %d start %llx len %llx flags %x\n",
memory.slot,
memory.guest_phys_addr,
memory.memory_size,
memory.flags);
r = ioctl(kvm->vm_fd, KVM_SET_USER_MEMORY_REGION, &memory);
if (r == -1) {
fprintf(stderr, "%s: %s", __func__, strerror(errno));
return 0;
}
register_slot(memory.slot, memory.guest_phys_addr, memory.memory_size,
memory.userspace_addr, memory.flags);
return ptr;
}
int kvm_register_phys_mem(kvm_context_t kvm,
unsigned long phys_start, void *userspace_addr,
unsigned long len, int log)
{
struct kvm_userspace_memory_region memory = {
.memory_size = len,
.guest_phys_addr = phys_start,
.userspace_addr = (unsigned long)(intptr_t)userspace_addr,
.flags = log ? KVM_MEM_LOG_DIRTY_PAGES : 0,
};
int r;
memory.slot = get_free_slot(kvm);
DPRINTF("memory: gpa: %llx, size: %llx, uaddr: %llx, slot: %x, flags: %lx\n",
memory.guest_phys_addr, memory.memory_size,
memory.userspace_addr, memory.slot, memory.flags);
r = ioctl(kvm->vm_fd, KVM_SET_USER_MEMORY_REGION, &memory);
if (r == -1) {
fprintf(stderr, "create_userspace_phys_mem: %s\n", strerror(errno));
return -1;
}
register_slot(memory.slot, memory.guest_phys_addr, memory.memory_size,
memory.userspace_addr, memory.flags);
return 0;
}
/* destroy/free a whole slot.
* phys_start, len and slot are the params passed to kvm_create_phys_mem()
*/
void kvm_destroy_phys_mem(kvm_context_t kvm, unsigned long phys_start,
unsigned long len)
{
int slot;
int r;
struct kvm_userspace_memory_region memory = {
.memory_size = 0,
.guest_phys_addr = phys_start,
.userspace_addr = 0,
.flags = 0,
};
slot = get_slot(phys_start);
if ((slot >= KVM_MAX_NUM_MEM_REGIONS) || (slot == -1)) {
fprintf(stderr, "BUG: %s: invalid parameters (slot=%d)\n",
__FUNCTION__, slot);
return;
}
if (phys_start != slots[slot].phys_addr) {
fprintf(stderr,
"WARNING: %s: phys_start is 0x%lx expecting 0x%lx\n",
__FUNCTION__, phys_start, slots[slot].phys_addr);
phys_start = slots[slot].phys_addr;
}
memory.slot = slot;
DPRINTF("slot %d start %llx len %llx flags %x\n",
memory.slot,
memory.guest_phys_addr,
memory.memory_size,
memory.flags);
r = ioctl(kvm->vm_fd, KVM_SET_USER_MEMORY_REGION, &memory);
if (r == -1) {
fprintf(stderr, "destroy_userspace_phys_mem: %s",
strerror(errno));
return;
}
free_slot(memory.slot);
}
void kvm_unregister_memory_area(kvm_context_t kvm, uint64_t phys_addr, unsigned long size)
{
int slot = get_container_slot(phys_addr, size);
if (slot != -1) {
DPRINTF("Unregistering memory region %llx (%lx)\n", phys_addr, size);
kvm_destroy_phys_mem(kvm, phys_addr, size);
return;
}
}
static int kvm_get_map(kvm_context_t kvm, int ioctl_num, int slot, void *buf)
{
int r;
struct kvm_dirty_log log = {
.slot = slot,
};
log.dirty_bitmap = buf;
r = ioctl(kvm->vm_fd, ioctl_num, &log);
if (r == -1)
return -errno;
return 0;
}
int kvm_get_dirty_pages(kvm_context_t kvm, unsigned long phys_addr, void *buf)
{
int slot;
slot = get_slot(phys_addr);
return kvm_get_map(kvm, KVM_GET_DIRTY_LOG, slot, buf);
}
int kvm_get_dirty_pages_range(kvm_context_t kvm, unsigned long phys_addr,
unsigned long len, void *buf, void *opaque,
int (*cb)(unsigned long start, unsigned long len,
void*bitmap, void *opaque))
{
int i;
int r;
unsigned long end_addr = phys_addr + len;
for (i = 0; i < KVM_MAX_NUM_MEM_REGIONS; ++i) {
if ((slots[i].len && (uint64_t)slots[i].phys_addr >= phys_addr)
&& ((uint64_t)slots[i].phys_addr + slots[i].len <= end_addr)) {
r = kvm_get_map(kvm, KVM_GET_DIRTY_LOG, i, buf);
if (r)
return r;
r = cb(slots[i].phys_addr, slots[i].len, buf, opaque);
if (r)
return r;
}
}
return 0;
}
#ifdef KVM_CAP_IRQCHIP
int kvm_set_irq_level(kvm_context_t kvm, int irq, int level, int *status)
{
struct kvm_irq_level event;
int r;
if (!kvm->irqchip_in_kernel)
return 0;
event.level = level;
event.irq = irq;
r = ioctl(kvm->vm_fd, kvm->irqchip_inject_ioctl, &event);
if (r == -1)
perror("kvm_set_irq_level");
if (status) {
#ifdef KVM_CAP_IRQ_INJECT_STATUS
*status = (kvm->irqchip_inject_ioctl == KVM_IRQ_LINE) ?
1 : event.status;
#else
*status = 1;
#endif
}
return 1;
}
int kvm_get_irqchip(kvm_context_t kvm, struct kvm_irqchip *chip)
{
int r;
if (!kvm->irqchip_in_kernel)
return 0;
r = ioctl(kvm->vm_fd, KVM_GET_IRQCHIP, chip);
if (r == -1) {
r = -errno;
perror("kvm_get_irqchip\n");
}
return r;
}
int kvm_set_irqchip(kvm_context_t kvm, struct kvm_irqchip *chip)
{
int r;
if (!kvm->irqchip_in_kernel)
return 0;
r = ioctl(kvm->vm_fd, KVM_SET_IRQCHIP, chip);
if (r == -1) {
r = -errno;
perror("kvm_set_irqchip\n");
}
return r;
}
#endif
static int handle_io(kvm_context_t kvm, struct kvm_run *run, int vcpu)
{
uint16_t addr = run->io.port;
int r;
int i;
void *p = (void *)run + run->io.data_offset;
for (i = 0; i < run->io.count; ++i) {
switch (run->io.direction) {
case KVM_EXIT_IO_IN:
switch (run->io.size) {
case 1:
r = kvm->callbacks->inb(kvm->opaque, addr, p);
break;
case 2:
r = kvm->callbacks->inw(kvm->opaque, addr, p);
break;
case 4:
r = kvm->callbacks->inl(kvm->opaque, addr, p);
break;
default:
fprintf(stderr, "bad I/O size %d\n", run->io.size);
return -EMSGSIZE;
}
break;
case KVM_EXIT_IO_OUT:
switch (run->io.size) {
case 1:
r = kvm->callbacks->outb(kvm->opaque, addr,
*(uint8_t *)p);
break;
case 2:
r = kvm->callbacks->outw(kvm->opaque, addr,
*(uint16_t *)p);
break;
case 4:
r = kvm->callbacks->outl(kvm->opaque, addr,
*(uint32_t *)p);
break;
default:
fprintf(stderr, "bad I/O size %d\n", run->io.size);
return -EMSGSIZE;
}
break;
default:
fprintf(stderr, "bad I/O direction %d\n", run->io.direction);
return -EPROTO;
}
p += run->io.size;
}
return 0;
}
int handle_debug(kvm_context_t kvm, int vcpu, void *env)
{
#ifdef KVM_CAP_SET_GUEST_DEBUG
struct kvm_run *run = kvm->run[vcpu];
return kvm->callbacks->debug(kvm->opaque, env, &run->debug.arch);
#else
return 0;
#endif
}
int kvm_get_regs(kvm_context_t kvm, int vcpu, struct kvm_regs *regs)
{
return ioctl(kvm->vcpu_fd[vcpu], KVM_GET_REGS, regs);
}
int kvm_set_regs(kvm_context_t kvm, int vcpu, struct kvm_regs *regs)
{
return ioctl(kvm->vcpu_fd[vcpu], KVM_SET_REGS, regs);
}
int kvm_get_fpu(kvm_context_t kvm, int vcpu, struct kvm_fpu *fpu)
{
return ioctl(kvm->vcpu_fd[vcpu], KVM_GET_FPU, fpu);
}
int kvm_set_fpu(kvm_context_t kvm, int vcpu, struct kvm_fpu *fpu)
{
return ioctl(kvm->vcpu_fd[vcpu], KVM_SET_FPU, fpu);
}
int kvm_get_sregs(kvm_context_t kvm, int vcpu, struct kvm_sregs *sregs)
{
return ioctl(kvm->vcpu_fd[vcpu], KVM_GET_SREGS, sregs);
}
int kvm_set_sregs(kvm_context_t kvm, int vcpu, struct kvm_sregs *sregs)
{
return ioctl(kvm->vcpu_fd[vcpu], KVM_SET_SREGS, sregs);
}
#ifdef KVM_CAP_MP_STATE
int kvm_get_mpstate(kvm_context_t kvm, int vcpu, struct kvm_mp_state *mp_state)
{
int r;
r = ioctl(kvm->fd, KVM_CHECK_EXTENSION, KVM_CAP_MP_STATE);
if (r > 0)
return ioctl(kvm->vcpu_fd[vcpu], KVM_GET_MP_STATE, mp_state);
return -ENOSYS;
}
int kvm_set_mpstate(kvm_context_t kvm, int vcpu, struct kvm_mp_state *mp_state)
{
int r;
r = ioctl(kvm->fd, KVM_CHECK_EXTENSION, KVM_CAP_MP_STATE);
if (r > 0)
return ioctl(kvm->vcpu_fd[vcpu], KVM_SET_MP_STATE, mp_state);
return -ENOSYS;
}
#endif
static int handle_mmio(kvm_context_t kvm, struct kvm_run *kvm_run)
{
unsigned long addr = kvm_run->mmio.phys_addr;
void *data = kvm_run->mmio.data;
/* hack: Red Hat 7.1 generates these weird accesses. */
if ((addr > 0xa0000-4 && addr <= 0xa0000) && kvm_run->mmio.len == 3)
return 0;
if (kvm_run->mmio.is_write)
return kvm->callbacks->mmio_write(kvm->opaque, addr, data,
kvm_run->mmio.len);
else
return kvm->callbacks->mmio_read(kvm->opaque, addr, data,
kvm_run->mmio.len);
}
int handle_io_window(kvm_context_t kvm)
{
return kvm->callbacks->io_window(kvm->opaque);
}
int handle_halt(kvm_context_t kvm, int vcpu)
{
return kvm->callbacks->halt(kvm->opaque, vcpu);
}
int handle_shutdown(kvm_context_t kvm, void *env)
{
return kvm->callbacks->shutdown(kvm->opaque, env);
}
int try_push_interrupts(kvm_context_t kvm)
{
return kvm->callbacks->try_push_interrupts(kvm->opaque);
}
static inline void push_nmi(kvm_context_t kvm)
{
#ifdef KVM_CAP_USER_NMI
kvm->callbacks->push_nmi(kvm->opaque);
#endif /* KVM_CAP_USER_NMI */
}
void post_kvm_run(kvm_context_t kvm, void *env)
{
kvm->callbacks->post_kvm_run(kvm->opaque, env);
}
int pre_kvm_run(kvm_context_t kvm, void *env)
{
return kvm->callbacks->pre_kvm_run(kvm->opaque, env);
}
int kvm_get_interrupt_flag(kvm_context_t kvm, int vcpu)
{
struct kvm_run *run = kvm->run[vcpu];
return run->if_flag;
}
int kvm_is_ready_for_interrupt_injection(kvm_context_t kvm, int vcpu)
{
struct kvm_run *run = kvm->run[vcpu];
return run->ready_for_interrupt_injection;
}
int kvm_run(kvm_context_t kvm, int vcpu, void *env)
{
int r;
int fd = kvm->vcpu_fd[vcpu];
struct kvm_run *run = kvm->run[vcpu];
again:
push_nmi(kvm);
#if !defined(__s390__)
if (!kvm->irqchip_in_kernel)
run->request_interrupt_window = try_push_interrupts(kvm);
#endif
r = pre_kvm_run(kvm, env);
if (r)
return r;
r = ioctl(fd, KVM_RUN, 0);
if (r == -1 && errno != EINTR && errno != EAGAIN) {
r = -errno;
post_kvm_run(kvm, env);
fprintf(stderr, "kvm_run: %s\n", strerror(-r));
return r;
}
post_kvm_run(kvm, env);
#if defined(KVM_CAP_COALESCED_MMIO)
if (kvm->coalesced_mmio) {
struct kvm_coalesced_mmio_ring *ring = (void *)run +
kvm->coalesced_mmio * PAGE_SIZE;
while (ring->first != ring->last) {
kvm->callbacks->mmio_write(kvm->opaque,
ring->coalesced_mmio[ring->first].phys_addr,
&ring->coalesced_mmio[ring->first].data[0],
ring->coalesced_mmio[ring->first].len);
smp_wmb();
ring->first = (ring->first + 1) %
KVM_COALESCED_MMIO_MAX;
}
}
#endif
#if !defined(__s390__)
if (r == -1) {
r = handle_io_window(kvm);
goto more;
}
#endif
if (1) {
switch (run->exit_reason) {
case KVM_EXIT_UNKNOWN:
fprintf(stderr, "unhandled vm exit: 0x%x vcpu_id %d\n",
(unsigned)run->hw.hardware_exit_reason, vcpu);
kvm_show_regs(kvm, vcpu);
abort();
break;
case KVM_EXIT_FAIL_ENTRY:
fprintf(stderr, "kvm_run: failed entry, reason %u\n",
(unsigned)run->fail_entry.hardware_entry_failure_reason & 0xffff);
kvm_show_regs(kvm, vcpu);
return -ENOEXEC;
break;
case KVM_EXIT_EXCEPTION:
fprintf(stderr, "exception %d (%x)\n",
run->ex.exception,
run->ex.error_code);
kvm_show_regs(kvm, vcpu);
kvm_show_code(kvm, vcpu);
abort();
break;
case KVM_EXIT_IO:
r = handle_io(kvm, run, vcpu);
break;
case KVM_EXIT_DEBUG:
r = handle_debug(kvm, vcpu, env);
break;
case KVM_EXIT_MMIO:
r = handle_mmio(kvm, run);
break;
case KVM_EXIT_HLT:
r = handle_halt(kvm, vcpu);
break;
case KVM_EXIT_IRQ_WINDOW_OPEN:
break;
case KVM_EXIT_SHUTDOWN:
r = handle_shutdown(kvm, env);
break;
#if defined(__s390__)
case KVM_EXIT_S390_SIEIC:
r = kvm->callbacks->s390_handle_intercept(kvm, vcpu,
run);
break;
case KVM_EXIT_S390_RESET:
r = kvm->callbacks->s390_handle_reset(kvm, vcpu, run);
break;
#endif
default:
if (kvm_arch_run(run, kvm, vcpu)) {
fprintf(stderr, "unhandled vm exit: 0x%x\n",
run->exit_reason);
kvm_show_regs(kvm, vcpu);
abort();
}
break;
}
}
more:
if (!r)
goto again;
return r;
}
int kvm_inject_irq(kvm_context_t kvm, int vcpu, unsigned irq)
{
struct kvm_interrupt intr;
intr.irq = irq;
return ioctl(kvm->vcpu_fd[vcpu], KVM_INTERRUPT, &intr);
}
#ifdef KVM_CAP_SET_GUEST_DEBUG
int kvm_set_guest_debug(kvm_context_t kvm, int vcpu, struct kvm_guest_debug *dbg)
{
return ioctl(kvm->vcpu_fd[vcpu], KVM_SET_GUEST_DEBUG, dbg);
}
#endif
int kvm_set_signal_mask(kvm_context_t kvm, int vcpu, const sigset_t *sigset)
{
struct kvm_signal_mask *sigmask;
int r;
if (!sigset) {
r = ioctl(kvm->vcpu_fd[vcpu], KVM_SET_SIGNAL_MASK, NULL);
if (r == -1)
r = -errno;
return r;
}
sigmask = malloc(sizeof(*sigmask) + sizeof(*sigset));
if (!sigmask)
return -ENOMEM;
sigmask->len = 8;
memcpy(sigmask->sigset, sigset, sizeof(*sigset));
r = ioctl(kvm->vcpu_fd[vcpu], KVM_SET_SIGNAL_MASK, sigmask);
if (r == -1)
r = -errno;
free(sigmask);
return r;
}
int kvm_irqchip_in_kernel(kvm_context_t kvm)
{
return kvm->irqchip_in_kernel;
}
int kvm_pit_in_kernel(kvm_context_t kvm)
{
return kvm->pit_in_kernel;
}
int kvm_has_sync_mmu(kvm_context_t kvm)
{
int r = 0;
#ifdef KVM_CAP_SYNC_MMU
r = ioctl(kvm->fd, KVM_CHECK_EXTENSION, KVM_CAP_SYNC_MMU);
#endif
return r;
}
int kvm_inject_nmi(kvm_context_t kvm, int vcpu)
{
#ifdef KVM_CAP_USER_NMI
return ioctl(kvm->vcpu_fd[vcpu], KVM_NMI);
#else
return -ENOSYS;
#endif
}
int kvm_init_coalesced_mmio(kvm_context_t kvm)
{
int r = 0;
kvm->coalesced_mmio = 0;
#ifdef KVM_CAP_COALESCED_MMIO
r = ioctl(kvm->fd, KVM_CHECK_EXTENSION, KVM_CAP_COALESCED_MMIO);
if (r > 0) {
kvm->coalesced_mmio = r;
return 0;
}
#endif
return r;
}
int kvm_register_coalesced_mmio(kvm_context_t kvm, uint64_t addr, uint32_t size)
{
#ifdef KVM_CAP_COALESCED_MMIO
struct kvm_coalesced_mmio_zone zone;
int r;
if (kvm->coalesced_mmio) {
zone.addr = addr;
zone.size = size;
r = ioctl(kvm->vm_fd, KVM_REGISTER_COALESCED_MMIO, &zone);
if (r == -1) {
perror("kvm_register_coalesced_mmio_zone");
return -errno;
}
return 0;
}
#endif
return -ENOSYS;
}
int kvm_unregister_coalesced_mmio(kvm_context_t kvm, uint64_t addr, uint32_t size)
{
#ifdef KVM_CAP_COALESCED_MMIO
struct kvm_coalesced_mmio_zone zone;
int r;
if (kvm->coalesced_mmio) {
zone.addr = addr;
zone.size = size;
r = ioctl(kvm->vm_fd, KVM_UNREGISTER_COALESCED_MMIO, &zone);
if (r == -1) {
perror("kvm_unregister_coalesced_mmio_zone");
return -errno;
}
DPRINTF("Unregistered coalesced mmio region for %llx (%lx)\n", addr, size);
return 0;
}
#endif
return -ENOSYS;
}
#ifdef KVM_CAP_DEVICE_ASSIGNMENT
int kvm_assign_pci_device(kvm_context_t kvm,
struct kvm_assigned_pci_dev *assigned_dev)
{
int ret;
ret = ioctl(kvm->vm_fd, KVM_ASSIGN_PCI_DEVICE, assigned_dev);
if (ret < 0)
return -errno;
return ret;
}
static int kvm_old_assign_irq(kvm_context_t kvm,
struct kvm_assigned_irq *assigned_irq)
{
int ret;
ret = ioctl(kvm->vm_fd, KVM_ASSIGN_IRQ, assigned_irq);
if (ret < 0)
return -errno;
return ret;
}
#ifdef KVM_CAP_ASSIGN_DEV_IRQ
int kvm_assign_irq(kvm_context_t kvm,
struct kvm_assigned_irq *assigned_irq)
{
int ret;
ret = ioctl(kvm->fd, KVM_CHECK_EXTENSION, KVM_CAP_ASSIGN_DEV_IRQ);
if (ret > 0) {
ret = ioctl(kvm->vm_fd, KVM_ASSIGN_DEV_IRQ, assigned_irq);
if (ret < 0)
return -errno;
return ret;
}
return kvm_old_assign_irq(kvm, assigned_irq);
}
int kvm_deassign_irq(kvm_context_t kvm,
struct kvm_assigned_irq *assigned_irq)
{
int ret;
ret = ioctl(kvm->vm_fd, KVM_DEASSIGN_DEV_IRQ, assigned_irq);
if (ret < 0)
return -errno;
return ret;
}
#else
int kvm_assign_irq(kvm_context_t kvm,
struct kvm_assigned_irq *assigned_irq)
{
return kvm_old_assign_irq(kvm, assigned_irq);
}
#endif
#endif
#ifdef KVM_CAP_DEVICE_DEASSIGNMENT
int kvm_deassign_pci_device(kvm_context_t kvm,
struct kvm_assigned_pci_dev *assigned_dev)
{
int ret;
ret = ioctl(kvm->vm_fd, KVM_DEASSIGN_PCI_DEVICE, assigned_dev);
if (ret < 0)
return -errno;
return ret;
}
#endif
int kvm_destroy_memory_region_works(kvm_context_t kvm)
{
int ret = 0;
#ifdef KVM_CAP_DESTROY_MEMORY_REGION_WORKS
ret = ioctl(kvm->fd, KVM_CHECK_EXTENSION,
KVM_CAP_DESTROY_MEMORY_REGION_WORKS);
if (ret <= 0)
ret = 0;
#endif
return ret;
}
int kvm_reinject_control(kvm_context_t kvm, int pit_reinject)
{
#ifdef KVM_CAP_REINJECT_CONTROL
int r;
struct kvm_reinject_control control;
control.pit_reinject = pit_reinject;
r = ioctl(kvm->fd, KVM_CHECK_EXTENSION, KVM_CAP_REINJECT_CONTROL);
if (r > 0) {
r = ioctl(kvm->vm_fd, KVM_REINJECT_CONTROL, &control);
if (r == -1)
return -errno;
return r;
}
#endif
return -ENOSYS;
}
int kvm_has_gsi_routing(kvm_context_t kvm)
{
int r = 0;
#ifdef KVM_CAP_IRQ_ROUTING
r = kvm_check_extension(kvm, KVM_CAP_IRQ_ROUTING);
#endif
return r;
}
int kvm_get_gsi_count(kvm_context_t kvm)
{
#ifdef KVM_CAP_IRQ_ROUTING
return kvm_check_extension(kvm, KVM_CAP_IRQ_ROUTING);
#else
return -EINVAL;
#endif
}
int kvm_clear_gsi_routes(kvm_context_t kvm)
{
#ifdef KVM_CAP_IRQ_ROUTING
kvm->irq_routes->nr = 0;
return 0;
#else
return -EINVAL;
#endif
}
int kvm_add_routing_entry(kvm_context_t kvm,
struct kvm_irq_routing_entry* entry)
{
#ifdef KVM_CAP_IRQ_ROUTING
struct kvm_irq_routing *z;
struct kvm_irq_routing_entry *new;
int n, size;
if (kvm->irq_routes->nr == kvm->nr_allocated_irq_routes) {
n = kvm->nr_allocated_irq_routes * 2;
if (n < 64)
n = 64;
size = sizeof(struct kvm_irq_routing);
size += n * sizeof(*new);
z = realloc(kvm->irq_routes, size);
if (!z)
return -ENOMEM;
kvm->nr_allocated_irq_routes = n;
kvm->irq_routes = z;
}
n = kvm->irq_routes->nr++;
new = &kvm->irq_routes->entries[n];
memset(new, 0, sizeof(*new));
new->gsi = entry->gsi;
new->type = entry->type;
new->flags = entry->flags;
new->u = entry->u;
set_gsi(kvm, entry->gsi);
return 0;
#else
return -ENOSYS;
#endif
}
int kvm_add_irq_route(kvm_context_t kvm, int gsi, int irqchip, int pin)
{
#ifdef KVM_CAP_IRQ_ROUTING
struct kvm_irq_routing_entry e;
e.gsi = gsi;
e.type = KVM_IRQ_ROUTING_IRQCHIP;
e.flags = 0;
e.u.irqchip.irqchip = irqchip;
e.u.irqchip.pin = pin;
return kvm_add_routing_entry(kvm, &e);
#else
return -ENOSYS;
#endif
}
int kvm_del_routing_entry(kvm_context_t kvm,
struct kvm_irq_routing_entry* entry)
{
#ifdef KVM_CAP_IRQ_ROUTING
struct kvm_irq_routing_entry *e, *p;
int i, gsi, found = 0;
gsi = entry->gsi;
for (i = 0; i < kvm->irq_routes->nr; ++i) {
e = &kvm->irq_routes->entries[i];
if (e->type == entry->type
&& e->gsi == gsi) {
switch (e->type)
{
case KVM_IRQ_ROUTING_IRQCHIP: {
if (e->u.irqchip.irqchip ==
entry->u.irqchip.irqchip
&& e->u.irqchip.pin ==
entry->u.irqchip.pin) {
p = &kvm->irq_routes->
entries[--kvm->irq_routes->nr];
*e = *p;
found = 1;
}
break;
}
case KVM_IRQ_ROUTING_MSI: {
if (e->u.msi.address_lo ==
entry->u.msi.address_lo
&& e->u.msi.address_hi ==
entry->u.msi.address_hi
&& e->u.msi.data == entry->u.msi.data) {
p = &kvm->irq_routes->
entries[--kvm->irq_routes->nr];
*e = *p;
found = 1;
}
break;
}
default:
break;
}
if (found) {
/* If there are no other users of this GSI
* mark it available in the bitmap */
for (i = 0; i < kvm->irq_routes->nr; i++) {
e = &kvm->irq_routes->entries[i];
if (e->gsi == gsi)
break;
}
if (i == kvm->irq_routes->nr)
clear_gsi(kvm, gsi);
return 0;
}
}
}
return -ESRCH;
#else
return -ENOSYS;
#endif
}
int kvm_del_irq_route(kvm_context_t kvm, int gsi, int irqchip, int pin)
{
#ifdef KVM_CAP_IRQ_ROUTING
struct kvm_irq_routing_entry e;
e.gsi = gsi;
e.type = KVM_IRQ_ROUTING_IRQCHIP;
e.flags = 0;
e.u.irqchip.irqchip = irqchip;
e.u.irqchip.pin = pin;
return kvm_del_routing_entry(kvm, &e);
#else
return -ENOSYS;
#endif
}
int kvm_commit_irq_routes(kvm_context_t kvm)
{
#ifdef KVM_CAP_IRQ_ROUTING
int r;
kvm->irq_routes->flags = 0;
r = ioctl(kvm->vm_fd, KVM_SET_GSI_ROUTING, kvm->irq_routes);
if (r == -1)
r = -errno;
return r;
#else
return -ENOSYS;
#endif
}
int kvm_get_irq_route_gsi(kvm_context_t kvm)
{
int i, bit;
uint32_t *buf = kvm->used_gsi_bitmap;
/* Return the lowest unused GSI in the bitmap */
for (i = 0; i < kvm->max_gsi / 32; i++) {
bit = ffs(~buf[i]);
if (!bit)
continue;
return bit - 1 + i * 32;
}
return -ENOSPC;
}
#ifdef KVM_CAP_DEVICE_MSIX
int kvm_assign_set_msix_nr(kvm_context_t kvm,
struct kvm_assigned_msix_nr *msix_nr)
{
int ret;
ret = ioctl(kvm->vm_fd, KVM_ASSIGN_SET_MSIX_NR, msix_nr);
if (ret < 0)
return -errno;
return ret;
}
int kvm_assign_set_msix_entry(kvm_context_t kvm,
struct kvm_assigned_msix_entry *entry)
{
int ret;
ret = ioctl(kvm->vm_fd, KVM_ASSIGN_SET_MSIX_ENTRY, entry);
if (ret < 0)
return -errno;
return ret;
}
#endif