The following patch will need to handle properties registration during class_init time. Let's use a device_class_set_props() setter. spatch --macro-file scripts/cocci-macro-file.h --sp-file ./scripts/coccinelle/qdev-set-props.cocci --keep-comments --in-place --dir . @@ typedef DeviceClass; DeviceClass *d; expression val; @@ - d->props = val + device_class_set_props(d, val) Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com> Message-Id: <20200110153039.1379601-20-marcandre.lureau@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
		
			
				
	
	
		
			757 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			757 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * ASPEED AST2400 Timer
 | |
|  *
 | |
|  * Andrew Jeffery <andrew@aj.id.au>
 | |
|  *
 | |
|  * Copyright (C) 2016 IBM Corp.
 | |
|  *
 | |
|  * This code is licensed under the GPL version 2 or later.  See
 | |
|  * the COPYING file in the top-level directory.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qapi/error.h"
 | |
| #include "hw/irq.h"
 | |
| #include "hw/sysbus.h"
 | |
| #include "hw/timer/aspeed_timer.h"
 | |
| #include "migration/vmstate.h"
 | |
| #include "qemu/bitops.h"
 | |
| #include "qemu/timer.h"
 | |
| #include "qemu/log.h"
 | |
| #include "qemu/module.h"
 | |
| #include "hw/qdev-properties.h"
 | |
| #include "trace.h"
 | |
| 
 | |
| #define TIMER_NR_REGS 4
 | |
| 
 | |
| #define TIMER_CTRL_BITS 4
 | |
| #define TIMER_CTRL_MASK ((1 << TIMER_CTRL_BITS) - 1)
 | |
| 
 | |
| #define TIMER_CLOCK_USE_EXT true
 | |
| #define TIMER_CLOCK_EXT_HZ 1000000
 | |
| #define TIMER_CLOCK_USE_APB false
 | |
| 
 | |
| #define TIMER_REG_STATUS 0
 | |
| #define TIMER_REG_RELOAD 1
 | |
| #define TIMER_REG_MATCH_FIRST 2
 | |
| #define TIMER_REG_MATCH_SECOND 3
 | |
| 
 | |
| #define TIMER_FIRST_CAP_PULSE 4
 | |
| 
 | |
| enum timer_ctrl_op {
 | |
|     op_enable = 0,
 | |
|     op_external_clock,
 | |
|     op_overflow_interrupt,
 | |
|     op_pulse_enable
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Minimum value of the reload register to filter out short period
 | |
|  * timers which have a noticeable impact in emulation. 5us should be
 | |
|  * enough, use 20us for "safety".
 | |
|  */
 | |
| #define TIMER_MIN_NS (20 * SCALE_US)
 | |
| 
 | |
| /**
 | |
|  * Avoid mutual references between AspeedTimerCtrlState and AspeedTimer
 | |
|  * structs, as it's a waste of memory. The ptimer BH callback needs to know
 | |
|  * whether a specific AspeedTimer is enabled, but this information is held in
 | |
|  * AspeedTimerCtrlState. So, provide a helper to hoist ourselves from an
 | |
|  * arbitrary AspeedTimer to AspeedTimerCtrlState.
 | |
|  */
 | |
| static inline AspeedTimerCtrlState *timer_to_ctrl(AspeedTimer *t)
 | |
| {
 | |
|     const AspeedTimer (*timers)[] = (void *)t - (t->id * sizeof(*t));
 | |
|     return container_of(timers, AspeedTimerCtrlState, timers);
 | |
| }
 | |
| 
 | |
| static inline bool timer_ctrl_status(AspeedTimer *t, enum timer_ctrl_op op)
 | |
| {
 | |
|     return !!(timer_to_ctrl(t)->ctrl & BIT(t->id * TIMER_CTRL_BITS + op));
 | |
| }
 | |
| 
 | |
| static inline bool timer_enabled(AspeedTimer *t)
 | |
| {
 | |
|     return timer_ctrl_status(t, op_enable);
 | |
| }
 | |
| 
 | |
| static inline bool timer_overflow_interrupt(AspeedTimer *t)
 | |
| {
 | |
|     return timer_ctrl_status(t, op_overflow_interrupt);
 | |
| }
 | |
| 
 | |
| static inline bool timer_can_pulse(AspeedTimer *t)
 | |
| {
 | |
|     return t->id >= TIMER_FIRST_CAP_PULSE;
 | |
| }
 | |
| 
 | |
| static inline bool timer_external_clock(AspeedTimer *t)
 | |
| {
 | |
|     return timer_ctrl_status(t, op_external_clock);
 | |
| }
 | |
| 
 | |
| static inline uint32_t calculate_rate(struct AspeedTimer *t)
 | |
| {
 | |
|     AspeedTimerCtrlState *s = timer_to_ctrl(t);
 | |
| 
 | |
|     return timer_external_clock(t) ? TIMER_CLOCK_EXT_HZ :
 | |
|         aspeed_scu_get_apb_freq(s->scu);
 | |
| }
 | |
| 
 | |
| static inline uint32_t calculate_ticks(struct AspeedTimer *t, uint64_t now_ns)
 | |
| {
 | |
|     uint64_t delta_ns = now_ns - MIN(now_ns, t->start);
 | |
|     uint32_t rate = calculate_rate(t);
 | |
|     uint64_t ticks = muldiv64(delta_ns, rate, NANOSECONDS_PER_SECOND);
 | |
| 
 | |
|     return t->reload - MIN(t->reload, ticks);
 | |
| }
 | |
| 
 | |
| static uint32_t calculate_min_ticks(AspeedTimer *t, uint32_t value)
 | |
| {
 | |
|     uint32_t rate = calculate_rate(t);
 | |
|     uint32_t min_ticks = muldiv64(TIMER_MIN_NS, rate, NANOSECONDS_PER_SECOND);
 | |
| 
 | |
|     return  value < min_ticks ? min_ticks : value;
 | |
| }
 | |
| 
 | |
| static inline uint64_t calculate_time(struct AspeedTimer *t, uint32_t ticks)
 | |
| {
 | |
|     uint64_t delta_ns;
 | |
|     uint64_t delta_ticks;
 | |
| 
 | |
|     delta_ticks = t->reload - MIN(t->reload, ticks);
 | |
|     delta_ns = muldiv64(delta_ticks, NANOSECONDS_PER_SECOND, calculate_rate(t));
 | |
| 
 | |
|     return t->start + delta_ns;
 | |
| }
 | |
| 
 | |
| static inline uint32_t calculate_match(struct AspeedTimer *t, int i)
 | |
| {
 | |
|     return t->match[i] < t->reload ? t->match[i] : 0;
 | |
| }
 | |
| 
 | |
| static uint64_t calculate_next(struct AspeedTimer *t)
 | |
| {
 | |
|     uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 | |
|     uint64_t next;
 | |
| 
 | |
|     /*
 | |
|      * We don't know the relationship between the values in the match
 | |
|      * registers, so sort using MAX/MIN/zero. We sort in that order as
 | |
|      * the timer counts down to zero.
 | |
|      */
 | |
| 
 | |
|     next = calculate_time(t, MAX(calculate_match(t, 0), calculate_match(t, 1)));
 | |
|     if (now < next) {
 | |
|         return next;
 | |
|     }
 | |
| 
 | |
|     next = calculate_time(t, MIN(calculate_match(t, 0), calculate_match(t, 1)));
 | |
|     if (now < next) {
 | |
|         return next;
 | |
|     }
 | |
| 
 | |
|     next = calculate_time(t, 0);
 | |
|     if (now < next) {
 | |
|         return next;
 | |
|     }
 | |
| 
 | |
|     /* We've missed all deadlines, fire interrupt and try again */
 | |
|     timer_del(&t->timer);
 | |
| 
 | |
|     if (timer_overflow_interrupt(t)) {
 | |
|         AspeedTimerCtrlState *s = timer_to_ctrl(t);
 | |
|         t->level = !t->level;
 | |
|         s->irq_sts |= BIT(t->id);
 | |
|         qemu_set_irq(t->irq, t->level);
 | |
|     }
 | |
| 
 | |
|     next = MAX(MAX(calculate_match(t, 0), calculate_match(t, 1)), 0);
 | |
|     t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 | |
| 
 | |
|     return calculate_time(t, next);
 | |
| }
 | |
| 
 | |
| static void aspeed_timer_mod(AspeedTimer *t)
 | |
| {
 | |
|     uint64_t next = calculate_next(t);
 | |
|     if (next) {
 | |
|         timer_mod(&t->timer, next);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void aspeed_timer_expire(void *opaque)
 | |
| {
 | |
|     AspeedTimer *t = opaque;
 | |
|     bool interrupt = false;
 | |
|     uint32_t ticks;
 | |
| 
 | |
|     if (!timer_enabled(t)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     ticks = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
 | |
| 
 | |
|     if (!ticks) {
 | |
|         interrupt = timer_overflow_interrupt(t) || !t->match[0] || !t->match[1];
 | |
|     } else if (ticks <= MIN(t->match[0], t->match[1])) {
 | |
|         interrupt = true;
 | |
|     } else if (ticks <= MAX(t->match[0], t->match[1])) {
 | |
|         interrupt = true;
 | |
|     }
 | |
| 
 | |
|     if (interrupt) {
 | |
|         AspeedTimerCtrlState *s = timer_to_ctrl(t);
 | |
|         t->level = !t->level;
 | |
|         s->irq_sts |= BIT(t->id);
 | |
|         qemu_set_irq(t->irq, t->level);
 | |
|     }
 | |
| 
 | |
|     aspeed_timer_mod(t);
 | |
| }
 | |
| 
 | |
| static uint64_t aspeed_timer_get_value(AspeedTimer *t, int reg)
 | |
| {
 | |
|     uint64_t value;
 | |
| 
 | |
|     switch (reg) {
 | |
|     case TIMER_REG_STATUS:
 | |
|         if (timer_enabled(t)) {
 | |
|             value = calculate_ticks(t, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
 | |
|         } else {
 | |
|             value = t->reload;
 | |
|         }
 | |
|         break;
 | |
|     case TIMER_REG_RELOAD:
 | |
|         value = t->reload;
 | |
|         break;
 | |
|     case TIMER_REG_MATCH_FIRST:
 | |
|     case TIMER_REG_MATCH_SECOND:
 | |
|         value = t->match[reg - 2];
 | |
|         break;
 | |
|     default:
 | |
|         qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
 | |
|                       __func__, reg);
 | |
|         value = 0;
 | |
|         break;
 | |
|     }
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static uint64_t aspeed_timer_read(void *opaque, hwaddr offset, unsigned size)
 | |
| {
 | |
|     AspeedTimerCtrlState *s = opaque;
 | |
|     const int reg = (offset & 0xf) / 4;
 | |
|     uint64_t value;
 | |
| 
 | |
|     switch (offset) {
 | |
|     case 0x30: /* Control Register */
 | |
|         value = s->ctrl;
 | |
|         break;
 | |
|     case 0x00 ... 0x2c: /* Timers 1 - 4 */
 | |
|         value = aspeed_timer_get_value(&s->timers[(offset >> 4)], reg);
 | |
|         break;
 | |
|     case 0x40 ... 0x8c: /* Timers 5 - 8 */
 | |
|         value = aspeed_timer_get_value(&s->timers[(offset >> 4) - 1], reg);
 | |
|         break;
 | |
|     default:
 | |
|         value = ASPEED_TIMER_GET_CLASS(s)->read(s, offset);
 | |
|         break;
 | |
|     }
 | |
|     trace_aspeed_timer_read(offset, size, value);
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static void aspeed_timer_set_value(AspeedTimerCtrlState *s, int timer, int reg,
 | |
|                                    uint32_t value)
 | |
| {
 | |
|     AspeedTimer *t;
 | |
|     uint32_t old_reload;
 | |
| 
 | |
|     trace_aspeed_timer_set_value(timer, reg, value);
 | |
|     t = &s->timers[timer];
 | |
|     switch (reg) {
 | |
|     case TIMER_REG_RELOAD:
 | |
|         old_reload = t->reload;
 | |
|         t->reload = calculate_min_ticks(t, value);
 | |
| 
 | |
|         /* If the reload value was not previously set, or zero, and
 | |
|          * the current value is valid, try to start the timer if it is
 | |
|          * enabled.
 | |
|          */
 | |
|         if (old_reload || !t->reload) {
 | |
|             break;
 | |
|         }
 | |
|         /* fall through to re-enable */
 | |
|     case TIMER_REG_STATUS:
 | |
|         if (timer_enabled(t)) {
 | |
|             uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 | |
|             int64_t delta = (int64_t) value - (int64_t) calculate_ticks(t, now);
 | |
|             uint32_t rate = calculate_rate(t);
 | |
| 
 | |
|             if (delta >= 0) {
 | |
|                 t->start += muldiv64(delta, NANOSECONDS_PER_SECOND, rate);
 | |
|             } else {
 | |
|                 t->start -= muldiv64(-delta, NANOSECONDS_PER_SECOND, rate);
 | |
|             }
 | |
|             aspeed_timer_mod(t);
 | |
|         }
 | |
|         break;
 | |
|     case TIMER_REG_MATCH_FIRST:
 | |
|     case TIMER_REG_MATCH_SECOND:
 | |
|         t->match[reg - 2] = value;
 | |
|         if (timer_enabled(t)) {
 | |
|             aspeed_timer_mod(t);
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
 | |
|                       __func__, reg);
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Control register operations are broken out into helpers that can be
 | |
|  * explicitly called on aspeed_timer_reset(), but also from
 | |
|  * aspeed_timer_ctrl_op().
 | |
|  */
 | |
| 
 | |
| static void aspeed_timer_ctrl_enable(AspeedTimer *t, bool enable)
 | |
| {
 | |
|     trace_aspeed_timer_ctrl_enable(t->id, enable);
 | |
|     if (enable) {
 | |
|         t->start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 | |
|         aspeed_timer_mod(t);
 | |
|     } else {
 | |
|         timer_del(&t->timer);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void aspeed_timer_ctrl_external_clock(AspeedTimer *t, bool enable)
 | |
| {
 | |
|     trace_aspeed_timer_ctrl_external_clock(t->id, enable);
 | |
| }
 | |
| 
 | |
| static void aspeed_timer_ctrl_overflow_interrupt(AspeedTimer *t, bool enable)
 | |
| {
 | |
|     trace_aspeed_timer_ctrl_overflow_interrupt(t->id, enable);
 | |
| }
 | |
| 
 | |
| static void aspeed_timer_ctrl_pulse_enable(AspeedTimer *t, bool enable)
 | |
| {
 | |
|     if (timer_can_pulse(t)) {
 | |
|         trace_aspeed_timer_ctrl_pulse_enable(t->id, enable);
 | |
|     } else {
 | |
|         qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                 "%s: Timer does not support pulse mode\n", __func__);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Given the actions are fixed in number and completely described in helper
 | |
|  * functions, dispatch with a lookup table rather than manage control flow with
 | |
|  * a switch statement.
 | |
|  */
 | |
| static void (*const ctrl_ops[])(AspeedTimer *, bool) = {
 | |
|     [op_enable] = aspeed_timer_ctrl_enable,
 | |
|     [op_external_clock] = aspeed_timer_ctrl_external_clock,
 | |
|     [op_overflow_interrupt] = aspeed_timer_ctrl_overflow_interrupt,
 | |
|     [op_pulse_enable] = aspeed_timer_ctrl_pulse_enable,
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * Conditionally affect changes chosen by a timer's control bit.
 | |
|  *
 | |
|  * The aspeed_timer_ctrl_op() interface is convenient for the
 | |
|  * aspeed_timer_set_ctrl() function as the "no change" early exit can be
 | |
|  * calculated for all operations, which cleans up the caller code. However the
 | |
|  * interface isn't convenient for the reset function where we want to enter a
 | |
|  * specific state without artificially constructing old and new values that
 | |
|  * will fall through the change guard (and motivates extracting the actions
 | |
|  * out to helper functions).
 | |
|  *
 | |
|  * @t: The timer to manipulate
 | |
|  * @op: The type of operation to be performed
 | |
|  * @old: The old state of the timer's control bits
 | |
|  * @new: The incoming state for the timer's control bits
 | |
|  */
 | |
| static void aspeed_timer_ctrl_op(AspeedTimer *t, enum timer_ctrl_op op,
 | |
|                                  uint8_t old, uint8_t new)
 | |
| {
 | |
|     const uint8_t mask = BIT(op);
 | |
|     const bool enable = !!(new & mask);
 | |
|     const bool changed = ((old ^ new) & mask);
 | |
|     if (!changed) {
 | |
|         return;
 | |
|     }
 | |
|     ctrl_ops[op](t, enable);
 | |
| }
 | |
| 
 | |
| static void aspeed_timer_set_ctrl(AspeedTimerCtrlState *s, uint32_t reg)
 | |
| {
 | |
|     int i;
 | |
|     int shift;
 | |
|     uint8_t t_old, t_new;
 | |
|     AspeedTimer *t;
 | |
|     const uint8_t enable_mask = BIT(op_enable);
 | |
| 
 | |
|     /* Handle a dependency between the 'enable' and remaining three
 | |
|      * configuration bits - i.e. if more than one bit in the control set has
 | |
|      * changed, including the 'enable' bit, then we want either disable the
 | |
|      * timer and perform configuration, or perform configuration and then
 | |
|      * enable the timer
 | |
|      */
 | |
|     for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
 | |
|         t = &s->timers[i];
 | |
|         shift = (i * TIMER_CTRL_BITS);
 | |
|         t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK;
 | |
|         t_new = (reg >> shift) & TIMER_CTRL_MASK;
 | |
| 
 | |
|         /* If we are disabling, do so first */
 | |
|         if ((t_old & enable_mask) && !(t_new & enable_mask)) {
 | |
|             aspeed_timer_ctrl_enable(t, false);
 | |
|         }
 | |
|         aspeed_timer_ctrl_op(t, op_external_clock, t_old, t_new);
 | |
|         aspeed_timer_ctrl_op(t, op_overflow_interrupt, t_old, t_new);
 | |
|         aspeed_timer_ctrl_op(t, op_pulse_enable, t_old, t_new);
 | |
|         /* If we are enabling, do so last */
 | |
|         if (!(t_old & enable_mask) && (t_new & enable_mask)) {
 | |
|             aspeed_timer_ctrl_enable(t, true);
 | |
|         }
 | |
|     }
 | |
|     s->ctrl = reg;
 | |
| }
 | |
| 
 | |
| static void aspeed_timer_set_ctrl2(AspeedTimerCtrlState *s, uint32_t value)
 | |
| {
 | |
|     trace_aspeed_timer_set_ctrl2(value);
 | |
| }
 | |
| 
 | |
| static void aspeed_timer_write(void *opaque, hwaddr offset, uint64_t value,
 | |
|                                unsigned size)
 | |
| {
 | |
|     const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
 | |
|     const int reg = (offset & 0xf) / 4;
 | |
|     AspeedTimerCtrlState *s = opaque;
 | |
| 
 | |
|     switch (offset) {
 | |
|     /* Control Registers */
 | |
|     case 0x30:
 | |
|         aspeed_timer_set_ctrl(s, tv);
 | |
|         break;
 | |
|     /* Timer Registers */
 | |
|     case 0x00 ... 0x2c:
 | |
|         aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS), reg, tv);
 | |
|         break;
 | |
|     case 0x40 ... 0x8c:
 | |
|         aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS) - 1, reg, tv);
 | |
|         break;
 | |
|     default:
 | |
|         ASPEED_TIMER_GET_CLASS(s)->write(s, offset, value);
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps aspeed_timer_ops = {
 | |
|     .read = aspeed_timer_read,
 | |
|     .write = aspeed_timer_write,
 | |
|     .endianness = DEVICE_LITTLE_ENDIAN,
 | |
|     .valid.min_access_size = 4,
 | |
|     .valid.max_access_size = 4,
 | |
|     .valid.unaligned = false,
 | |
| };
 | |
| 
 | |
| static uint64_t aspeed_2400_timer_read(AspeedTimerCtrlState *s, hwaddr offset)
 | |
| {
 | |
|     uint64_t value;
 | |
| 
 | |
|     switch (offset) {
 | |
|     case 0x34:
 | |
|         value = s->ctrl2;
 | |
|         break;
 | |
|     case 0x38:
 | |
|     case 0x3C:
 | |
|     default:
 | |
|         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
 | |
|                 __func__, offset);
 | |
|         value = 0;
 | |
|         break;
 | |
|     }
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static void aspeed_2400_timer_write(AspeedTimerCtrlState *s, hwaddr offset,
 | |
|                                     uint64_t value)
 | |
| {
 | |
|     const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
 | |
| 
 | |
|     switch (offset) {
 | |
|     case 0x34:
 | |
|         aspeed_timer_set_ctrl2(s, tv);
 | |
|         break;
 | |
|     case 0x38:
 | |
|     case 0x3C:
 | |
|     default:
 | |
|         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
 | |
|                 __func__, offset);
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint64_t aspeed_2500_timer_read(AspeedTimerCtrlState *s, hwaddr offset)
 | |
| {
 | |
|     uint64_t value;
 | |
| 
 | |
|     switch (offset) {
 | |
|     case 0x34:
 | |
|         value = s->ctrl2;
 | |
|         break;
 | |
|     case 0x38:
 | |
|         value = s->ctrl3 & BIT(0);
 | |
|         break;
 | |
|     case 0x3C:
 | |
|     default:
 | |
|         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
 | |
|                 __func__, offset);
 | |
|         value = 0;
 | |
|         break;
 | |
|     }
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static void aspeed_2500_timer_write(AspeedTimerCtrlState *s, hwaddr offset,
 | |
|                                     uint64_t value)
 | |
| {
 | |
|     const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
 | |
|     uint8_t command;
 | |
| 
 | |
|     switch (offset) {
 | |
|     case 0x34:
 | |
|         aspeed_timer_set_ctrl2(s, tv);
 | |
|         break;
 | |
|     case 0x38:
 | |
|         command = (value >> 1) & 0xFF;
 | |
|         if (command == 0xAE) {
 | |
|             s->ctrl3 = 0x1;
 | |
|         } else if (command == 0xEA) {
 | |
|             s->ctrl3 = 0x0;
 | |
|         }
 | |
|         break;
 | |
|     case 0x3C:
 | |
|         if (s->ctrl3 & BIT(0)) {
 | |
|             aspeed_timer_set_ctrl(s, s->ctrl & ~tv);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
 | |
|                 __func__, offset);
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint64_t aspeed_2600_timer_read(AspeedTimerCtrlState *s, hwaddr offset)
 | |
| {
 | |
|     uint64_t value;
 | |
| 
 | |
|     switch (offset) {
 | |
|     case 0x34:
 | |
|         value = s->irq_sts;
 | |
|         break;
 | |
|     case 0x38:
 | |
|     case 0x3C:
 | |
|     default:
 | |
|         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
 | |
|                 __func__, offset);
 | |
|         value = 0;
 | |
|         break;
 | |
|     }
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| static void aspeed_2600_timer_write(AspeedTimerCtrlState *s, hwaddr offset,
 | |
|                                     uint64_t value)
 | |
| {
 | |
|     const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
 | |
| 
 | |
|     switch (offset) {
 | |
|     case 0x34:
 | |
|         s->irq_sts &= tv;
 | |
|         break;
 | |
|     case 0x3C:
 | |
|         aspeed_timer_set_ctrl(s, s->ctrl & ~tv);
 | |
|         break;
 | |
| 
 | |
|     case 0x38:
 | |
|     default:
 | |
|         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
 | |
|                 __func__, offset);
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void aspeed_init_one_timer(AspeedTimerCtrlState *s, uint8_t id)
 | |
| {
 | |
|     AspeedTimer *t = &s->timers[id];
 | |
| 
 | |
|     t->id = id;
 | |
|     timer_init_ns(&t->timer, QEMU_CLOCK_VIRTUAL, aspeed_timer_expire, t);
 | |
| }
 | |
| 
 | |
| static void aspeed_timer_realize(DeviceState *dev, Error **errp)
 | |
| {
 | |
|     int i;
 | |
|     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
 | |
|     AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
 | |
| 
 | |
|     assert(s->scu);
 | |
| 
 | |
|     for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
 | |
|         aspeed_init_one_timer(s, i);
 | |
|         sysbus_init_irq(sbd, &s->timers[i].irq);
 | |
|     }
 | |
|     memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_timer_ops, s,
 | |
|                           TYPE_ASPEED_TIMER, 0x1000);
 | |
|     sysbus_init_mmio(sbd, &s->iomem);
 | |
| }
 | |
| 
 | |
| static void aspeed_timer_reset(DeviceState *dev)
 | |
| {
 | |
|     int i;
 | |
|     AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
 | |
| 
 | |
|     for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
 | |
|         AspeedTimer *t = &s->timers[i];
 | |
|         /* Explicitly call helpers to avoid any conditional behaviour through
 | |
|          * aspeed_timer_set_ctrl().
 | |
|          */
 | |
|         aspeed_timer_ctrl_enable(t, false);
 | |
|         aspeed_timer_ctrl_external_clock(t, TIMER_CLOCK_USE_APB);
 | |
|         aspeed_timer_ctrl_overflow_interrupt(t, false);
 | |
|         aspeed_timer_ctrl_pulse_enable(t, false);
 | |
|         t->level = 0;
 | |
|         t->reload = 0;
 | |
|         t->match[0] = 0;
 | |
|         t->match[1] = 0;
 | |
|     }
 | |
|     s->ctrl = 0;
 | |
|     s->ctrl2 = 0;
 | |
|     s->ctrl3 = 0;
 | |
|     s->irq_sts = 0;
 | |
| }
 | |
| 
 | |
| static const VMStateDescription vmstate_aspeed_timer = {
 | |
|     .name = "aspeed.timer",
 | |
|     .version_id = 2,
 | |
|     .minimum_version_id = 2,
 | |
|     .fields = (VMStateField[]) {
 | |
|         VMSTATE_UINT8(id, AspeedTimer),
 | |
|         VMSTATE_INT32(level, AspeedTimer),
 | |
|         VMSTATE_TIMER(timer, AspeedTimer),
 | |
|         VMSTATE_UINT32(reload, AspeedTimer),
 | |
|         VMSTATE_UINT32_ARRAY(match, AspeedTimer, 2),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     }
 | |
| };
 | |
| 
 | |
| static const VMStateDescription vmstate_aspeed_timer_state = {
 | |
|     .name = "aspeed.timerctrl",
 | |
|     .version_id = 2,
 | |
|     .minimum_version_id = 2,
 | |
|     .fields = (VMStateField[]) {
 | |
|         VMSTATE_UINT32(ctrl, AspeedTimerCtrlState),
 | |
|         VMSTATE_UINT32(ctrl2, AspeedTimerCtrlState),
 | |
|         VMSTATE_UINT32(ctrl3, AspeedTimerCtrlState),
 | |
|         VMSTATE_UINT32(irq_sts, AspeedTimerCtrlState),
 | |
|         VMSTATE_STRUCT_ARRAY(timers, AspeedTimerCtrlState,
 | |
|                              ASPEED_TIMER_NR_TIMERS, 1, vmstate_aspeed_timer,
 | |
|                              AspeedTimer),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     }
 | |
| };
 | |
| 
 | |
| static Property aspeed_timer_properties[] = {
 | |
|     DEFINE_PROP_LINK("scu", AspeedTimerCtrlState, scu, TYPE_ASPEED_SCU,
 | |
|                      AspeedSCUState *),
 | |
|     DEFINE_PROP_END_OF_LIST(),
 | |
| };
 | |
| 
 | |
| static void timer_class_init(ObjectClass *klass, void *data)
 | |
| {
 | |
|     DeviceClass *dc = DEVICE_CLASS(klass);
 | |
| 
 | |
|     dc->realize = aspeed_timer_realize;
 | |
|     dc->reset = aspeed_timer_reset;
 | |
|     dc->desc = "ASPEED Timer";
 | |
|     dc->vmsd = &vmstate_aspeed_timer_state;
 | |
|     device_class_set_props(dc, aspeed_timer_properties);
 | |
| }
 | |
| 
 | |
| static const TypeInfo aspeed_timer_info = {
 | |
|     .name = TYPE_ASPEED_TIMER,
 | |
|     .parent = TYPE_SYS_BUS_DEVICE,
 | |
|     .instance_size = sizeof(AspeedTimerCtrlState),
 | |
|     .class_init = timer_class_init,
 | |
|     .class_size = sizeof(AspeedTimerClass),
 | |
|     .abstract   = true,
 | |
| };
 | |
| 
 | |
| static void aspeed_2400_timer_class_init(ObjectClass *klass, void *data)
 | |
| {
 | |
|     DeviceClass *dc = DEVICE_CLASS(klass);
 | |
|     AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
 | |
| 
 | |
|     dc->desc = "ASPEED 2400 Timer";
 | |
|     awc->read = aspeed_2400_timer_read;
 | |
|     awc->write = aspeed_2400_timer_write;
 | |
| }
 | |
| 
 | |
| static const TypeInfo aspeed_2400_timer_info = {
 | |
|     .name = TYPE_ASPEED_2400_TIMER,
 | |
|     .parent = TYPE_ASPEED_TIMER,
 | |
|     .class_init = aspeed_2400_timer_class_init,
 | |
| };
 | |
| 
 | |
| static void aspeed_2500_timer_class_init(ObjectClass *klass, void *data)
 | |
| {
 | |
|     DeviceClass *dc = DEVICE_CLASS(klass);
 | |
|     AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
 | |
| 
 | |
|     dc->desc = "ASPEED 2500 Timer";
 | |
|     awc->read = aspeed_2500_timer_read;
 | |
|     awc->write = aspeed_2500_timer_write;
 | |
| }
 | |
| 
 | |
| static const TypeInfo aspeed_2500_timer_info = {
 | |
|     .name = TYPE_ASPEED_2500_TIMER,
 | |
|     .parent = TYPE_ASPEED_TIMER,
 | |
|     .class_init = aspeed_2500_timer_class_init,
 | |
| };
 | |
| 
 | |
| static void aspeed_2600_timer_class_init(ObjectClass *klass, void *data)
 | |
| {
 | |
|     DeviceClass *dc = DEVICE_CLASS(klass);
 | |
|     AspeedTimerClass *awc = ASPEED_TIMER_CLASS(klass);
 | |
| 
 | |
|     dc->desc = "ASPEED 2600 Timer";
 | |
|     awc->read = aspeed_2600_timer_read;
 | |
|     awc->write = aspeed_2600_timer_write;
 | |
| }
 | |
| 
 | |
| static const TypeInfo aspeed_2600_timer_info = {
 | |
|     .name = TYPE_ASPEED_2600_TIMER,
 | |
|     .parent = TYPE_ASPEED_TIMER,
 | |
|     .class_init = aspeed_2600_timer_class_init,
 | |
| };
 | |
| 
 | |
| static void aspeed_timer_register_types(void)
 | |
| {
 | |
|     type_register_static(&aspeed_timer_info);
 | |
|     type_register_static(&aspeed_2400_timer_info);
 | |
|     type_register_static(&aspeed_2500_timer_info);
 | |
|     type_register_static(&aspeed_2600_timer_info);
 | |
| }
 | |
| 
 | |
| type_init(aspeed_timer_register_types)
 |