Make results_to_text a tool to dump results saved in JSON file. Signed-off-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com> Message-Id: <20201021145859.11201-21-vsementsov@virtuozzo.com> Reviewed-by: Max Reitz <mreitz@redhat.com> Signed-off-by: Max Reitz <mreitz@redhat.com>
		
			
				
	
	
		
			127 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			127 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			Python
		
	
	
		
			Executable File
		
	
	
	
	
| #!/usr/bin/env python3
 | |
| #
 | |
| # Simple benchmarking framework
 | |
| #
 | |
| # Copyright (c) 2019 Virtuozzo International GmbH.
 | |
| #
 | |
| # This program is free software; you can redistribute it and/or modify
 | |
| # it under the terms of the GNU General Public License as published by
 | |
| # the Free Software Foundation; either version 2 of the License, or
 | |
| # (at your option) any later version.
 | |
| #
 | |
| # This program is distributed in the hope that it will be useful,
 | |
| # but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
| # GNU General Public License for more details.
 | |
| #
 | |
| # You should have received a copy of the GNU General Public License
 | |
| # along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
| #
 | |
| 
 | |
| import math
 | |
| import tabulate
 | |
| 
 | |
| # We want leading whitespace for difference row cells (see below)
 | |
| tabulate.PRESERVE_WHITESPACE = True
 | |
| 
 | |
| 
 | |
| def format_value(x, stdev):
 | |
|     stdev_pr = stdev / x * 100
 | |
|     if stdev_pr < 1.5:
 | |
|         # don't care too much
 | |
|         return f'{x:.2g}'
 | |
|     else:
 | |
|         return f'{x:.2g} ± {math.ceil(stdev_pr)}%'
 | |
| 
 | |
| 
 | |
| def result_to_text(result):
 | |
|     """Return text representation of bench_one() returned dict."""
 | |
|     if 'average' in result:
 | |
|         s = format_value(result['average'], result['stdev'])
 | |
|         if 'n-failed' in result:
 | |
|             s += '\n({} failed)'.format(result['n-failed'])
 | |
|         return s
 | |
|     else:
 | |
|         return 'FAILED'
 | |
| 
 | |
| 
 | |
| def results_dimension(results):
 | |
|     dim = None
 | |
|     for case in results['cases']:
 | |
|         for env in results['envs']:
 | |
|             res = results['tab'][case['id']][env['id']]
 | |
|             if dim is None:
 | |
|                 dim = res['dimension']
 | |
|             else:
 | |
|                 assert dim == res['dimension']
 | |
| 
 | |
|     assert dim in ('iops', 'seconds')
 | |
| 
 | |
|     return dim
 | |
| 
 | |
| 
 | |
| def results_to_text(results):
 | |
|     """Return text representation of bench() returned dict."""
 | |
|     n_columns = len(results['envs'])
 | |
|     named_columns = n_columns > 2
 | |
|     dim = results_dimension(results)
 | |
|     tab = []
 | |
| 
 | |
|     if named_columns:
 | |
|         # Environment columns are named A, B, ...
 | |
|         tab.append([''] + [chr(ord('A') + i) for i in range(n_columns)])
 | |
| 
 | |
|     tab.append([''] + [c['id'] for c in results['envs']])
 | |
| 
 | |
|     for case in results['cases']:
 | |
|         row = [case['id']]
 | |
|         case_results = results['tab'][case['id']]
 | |
|         for env in results['envs']:
 | |
|             res = case_results[env['id']]
 | |
|             row.append(result_to_text(res))
 | |
|         tab.append(row)
 | |
| 
 | |
|         # Add row of difference between columns. For each column starting from
 | |
|         # B we calculate difference with all previous columns.
 | |
|         row = ['', '']  # case name and first column
 | |
|         for i in range(1, n_columns):
 | |
|             cell = ''
 | |
|             env = results['envs'][i]
 | |
|             res = case_results[env['id']]
 | |
| 
 | |
|             if 'average' not in res:
 | |
|                 # Failed result
 | |
|                 row.append(cell)
 | |
|                 continue
 | |
| 
 | |
|             for j in range(0, i):
 | |
|                 env_j = results['envs'][j]
 | |
|                 res_j = case_results[env_j['id']]
 | |
|                 cell += ' '
 | |
| 
 | |
|                 if 'average' not in res_j:
 | |
|                     # Failed result
 | |
|                     cell += '--'
 | |
|                     continue
 | |
| 
 | |
|                 col_j = tab[0][j + 1] if named_columns else ''
 | |
|                 diff_pr = round((res['average'] - res_j['average']) /
 | |
|                                 res_j['average'] * 100)
 | |
|                 cell += f' {col_j}{diff_pr:+}%'
 | |
|             row.append(cell)
 | |
|         tab.append(row)
 | |
| 
 | |
|     return f'All results are in {dim}\n\n' + tabulate.tabulate(tab)
 | |
| 
 | |
| 
 | |
| if __name__ == '__main__':
 | |
|     import sys
 | |
|     import json
 | |
| 
 | |
|     if len(sys.argv) < 2:
 | |
|         print(f'USAGE: {sys.argv[0]} results.json')
 | |
|         exit(1)
 | |
| 
 | |
|     with open(sys.argv[1]) as f:
 | |
|         print(results_to_text(json.load(f)))
 |