There are two RISCV machines where NUMA is aware: 'virt' and 'spike'. Both of them are required to follow cluster-NUMA-node boundary. To enable the validation to warn about the irregular configuration where multiple CPUs in one cluster has been associated with multiple NUMA nodes. Signed-off-by: Gavin Shan <gshan@redhat.com> Reviewed-by: Daniel Henrique Barboza <dbarboza@ventanamicro.com> Acked-by: Igor Mammedov <imammedo@redhat.com> Acked-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20230509002739.18388-4-gshan@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
		
			
				
	
	
		
			384 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			384 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU RISC-V Spike Board
 | |
|  *
 | |
|  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
 | |
|  * Copyright (c) 2017-2018 SiFive, Inc.
 | |
|  *
 | |
|  * This provides a RISC-V Board with the following devices:
 | |
|  *
 | |
|  * 0) HTIF Console and Poweroff
 | |
|  * 1) CLINT (Timer and IPI)
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms and conditions of the GNU General Public License,
 | |
|  * version 2 or later, as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope it will be useful, but WITHOUT
 | |
|  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | |
|  * more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License along with
 | |
|  * this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/error-report.h"
 | |
| #include "qapi/error.h"
 | |
| #include "hw/boards.h"
 | |
| #include "hw/loader.h"
 | |
| #include "hw/sysbus.h"
 | |
| #include "target/riscv/cpu.h"
 | |
| #include "hw/riscv/riscv_hart.h"
 | |
| #include "hw/riscv/spike.h"
 | |
| #include "hw/riscv/boot.h"
 | |
| #include "hw/riscv/numa.h"
 | |
| #include "hw/char/riscv_htif.h"
 | |
| #include "hw/intc/riscv_aclint.h"
 | |
| #include "chardev/char.h"
 | |
| #include "sysemu/device_tree.h"
 | |
| #include "sysemu/sysemu.h"
 | |
| 
 | |
| #include <libfdt.h>
 | |
| 
 | |
| static const MemMapEntry spike_memmap[] = {
 | |
|     [SPIKE_MROM] =     {     0x1000,     0xf000 },
 | |
|     [SPIKE_HTIF] =     {  0x1000000,     0x1000 },
 | |
|     [SPIKE_CLINT] =    {  0x2000000,    0x10000 },
 | |
|     [SPIKE_DRAM] =     { 0x80000000,        0x0 },
 | |
| };
 | |
| 
 | |
| static void create_fdt(SpikeState *s, const MemMapEntry *memmap,
 | |
|                        bool is_32_bit, bool htif_custom_base)
 | |
| {
 | |
|     void *fdt;
 | |
|     int fdt_size;
 | |
|     uint64_t addr, size;
 | |
|     unsigned long clint_addr;
 | |
|     int cpu, socket;
 | |
|     MachineState *ms = MACHINE(s);
 | |
|     uint32_t *clint_cells;
 | |
|     uint32_t cpu_phandle, intc_phandle, phandle = 1;
 | |
|     char *name, *mem_name, *clint_name, *clust_name;
 | |
|     char *core_name, *cpu_name, *intc_name;
 | |
|     static const char * const clint_compat[2] = {
 | |
|         "sifive,clint0", "riscv,clint0"
 | |
|     };
 | |
| 
 | |
|     fdt = ms->fdt = create_device_tree(&fdt_size);
 | |
|     if (!fdt) {
 | |
|         error_report("create_device_tree() failed");
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu");
 | |
|     qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev");
 | |
|     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
 | |
|     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
 | |
| 
 | |
|     qemu_fdt_add_subnode(fdt, "/htif");
 | |
|     qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0");
 | |
|     if (htif_custom_base) {
 | |
|         qemu_fdt_setprop_cells(fdt, "/htif", "reg",
 | |
|             0x0, memmap[SPIKE_HTIF].base, 0x0, memmap[SPIKE_HTIF].size);
 | |
|     }
 | |
| 
 | |
|     qemu_fdt_add_subnode(fdt, "/soc");
 | |
|     qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
 | |
|     qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
 | |
|     qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
 | |
|     qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
 | |
| 
 | |
|     qemu_fdt_add_subnode(fdt, "/cpus");
 | |
|     qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
 | |
|         RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ);
 | |
|     qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
 | |
|     qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
 | |
|     qemu_fdt_add_subnode(fdt, "/cpus/cpu-map");
 | |
| 
 | |
|     for (socket = (riscv_socket_count(ms) - 1); socket >= 0; socket--) {
 | |
|         clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
 | |
|         qemu_fdt_add_subnode(fdt, clust_name);
 | |
| 
 | |
|         clint_cells =  g_new0(uint32_t, s->soc[socket].num_harts * 4);
 | |
| 
 | |
|         for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
 | |
|             cpu_phandle = phandle++;
 | |
| 
 | |
|             cpu_name = g_strdup_printf("/cpus/cpu@%d",
 | |
|                 s->soc[socket].hartid_base + cpu);
 | |
|             qemu_fdt_add_subnode(fdt, cpu_name);
 | |
|             if (is_32_bit) {
 | |
|                 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv32");
 | |
|             } else {
 | |
|                 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv48");
 | |
|             }
 | |
|             name = riscv_isa_string(&s->soc[socket].harts[cpu]);
 | |
|             qemu_fdt_setprop_string(fdt, cpu_name, "riscv,isa", name);
 | |
|             g_free(name);
 | |
|             qemu_fdt_setprop_string(fdt, cpu_name, "compatible", "riscv");
 | |
|             qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay");
 | |
|             qemu_fdt_setprop_cell(fdt, cpu_name, "reg",
 | |
|                 s->soc[socket].hartid_base + cpu);
 | |
|             qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu");
 | |
|             riscv_socket_fdt_write_id(ms, cpu_name, socket);
 | |
|             qemu_fdt_setprop_cell(fdt, cpu_name, "phandle", cpu_phandle);
 | |
| 
 | |
|             intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
 | |
|             qemu_fdt_add_subnode(fdt, intc_name);
 | |
|             intc_phandle = phandle++;
 | |
|             qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_phandle);
 | |
|             qemu_fdt_setprop_string(fdt, intc_name, "compatible",
 | |
|                 "riscv,cpu-intc");
 | |
|             qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
 | |
|             qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
 | |
| 
 | |
|             clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
 | |
|             clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
 | |
|             clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
 | |
|             clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
 | |
| 
 | |
|             core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
 | |
|             qemu_fdt_add_subnode(fdt, core_name);
 | |
|             qemu_fdt_setprop_cell(fdt, core_name, "cpu", cpu_phandle);
 | |
| 
 | |
|             g_free(core_name);
 | |
|             g_free(intc_name);
 | |
|             g_free(cpu_name);
 | |
|         }
 | |
| 
 | |
|         addr = memmap[SPIKE_DRAM].base + riscv_socket_mem_offset(ms, socket);
 | |
|         size = riscv_socket_mem_size(ms, socket);
 | |
|         mem_name = g_strdup_printf("/memory@%lx", (long)addr);
 | |
|         qemu_fdt_add_subnode(fdt, mem_name);
 | |
|         qemu_fdt_setprop_cells(fdt, mem_name, "reg",
 | |
|             addr >> 32, addr, size >> 32, size);
 | |
|         qemu_fdt_setprop_string(fdt, mem_name, "device_type", "memory");
 | |
|         riscv_socket_fdt_write_id(ms, mem_name, socket);
 | |
|         g_free(mem_name);
 | |
| 
 | |
|         clint_addr = memmap[SPIKE_CLINT].base +
 | |
|             (memmap[SPIKE_CLINT].size * socket);
 | |
|         clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
 | |
|         qemu_fdt_add_subnode(fdt, clint_name);
 | |
|         qemu_fdt_setprop_string_array(fdt, clint_name, "compatible",
 | |
|             (char **)&clint_compat, ARRAY_SIZE(clint_compat));
 | |
|         qemu_fdt_setprop_cells(fdt, clint_name, "reg",
 | |
|             0x0, clint_addr, 0x0, memmap[SPIKE_CLINT].size);
 | |
|         qemu_fdt_setprop(fdt, clint_name, "interrupts-extended",
 | |
|             clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
 | |
|         riscv_socket_fdt_write_id(ms, clint_name, socket);
 | |
| 
 | |
|         g_free(clint_name);
 | |
|         g_free(clint_cells);
 | |
|         g_free(clust_name);
 | |
|     }
 | |
| 
 | |
|     riscv_socket_fdt_write_distance_matrix(ms);
 | |
| 
 | |
|     qemu_fdt_add_subnode(fdt, "/chosen");
 | |
|     qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", "/htif");
 | |
| }
 | |
| 
 | |
| static bool spike_test_elf_image(char *filename)
 | |
| {
 | |
|     Error *err = NULL;
 | |
| 
 | |
|     load_elf_hdr(filename, NULL, NULL, &err);
 | |
|     if (err) {
 | |
|         error_free(err);
 | |
|         return false;
 | |
|     } else {
 | |
|         return true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void spike_board_init(MachineState *machine)
 | |
| {
 | |
|     const MemMapEntry *memmap = spike_memmap;
 | |
|     SpikeState *s = SPIKE_MACHINE(machine);
 | |
|     MemoryRegion *system_memory = get_system_memory();
 | |
|     MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
 | |
|     target_ulong firmware_end_addr = memmap[SPIKE_DRAM].base;
 | |
|     target_ulong kernel_start_addr;
 | |
|     char *firmware_name;
 | |
|     uint32_t fdt_load_addr;
 | |
|     uint64_t kernel_entry;
 | |
|     char *soc_name;
 | |
|     int i, base_hartid, hart_count;
 | |
|     bool htif_custom_base = false;
 | |
| 
 | |
|     /* Check socket count limit */
 | |
|     if (SPIKE_SOCKETS_MAX < riscv_socket_count(machine)) {
 | |
|         error_report("number of sockets/nodes should be less than %d",
 | |
|             SPIKE_SOCKETS_MAX);
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     /* Initialize sockets */
 | |
|     for (i = 0; i < riscv_socket_count(machine); i++) {
 | |
|         if (!riscv_socket_check_hartids(machine, i)) {
 | |
|             error_report("discontinuous hartids in socket%d", i);
 | |
|             exit(1);
 | |
|         }
 | |
| 
 | |
|         base_hartid = riscv_socket_first_hartid(machine, i);
 | |
|         if (base_hartid < 0) {
 | |
|             error_report("can't find hartid base for socket%d", i);
 | |
|             exit(1);
 | |
|         }
 | |
| 
 | |
|         hart_count = riscv_socket_hart_count(machine, i);
 | |
|         if (hart_count < 0) {
 | |
|             error_report("can't find hart count for socket%d", i);
 | |
|             exit(1);
 | |
|         }
 | |
| 
 | |
|         soc_name = g_strdup_printf("soc%d", i);
 | |
|         object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
 | |
|                                 TYPE_RISCV_HART_ARRAY);
 | |
|         g_free(soc_name);
 | |
|         object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
 | |
|                                 machine->cpu_type, &error_abort);
 | |
|         object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
 | |
|                                 base_hartid, &error_abort);
 | |
|         object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
 | |
|                                 hart_count, &error_abort);
 | |
|         sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_fatal);
 | |
| 
 | |
|         /* Core Local Interruptor (timer and IPI) for each socket */
 | |
|         riscv_aclint_swi_create(
 | |
|             memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size,
 | |
|             base_hartid, hart_count, false);
 | |
|         riscv_aclint_mtimer_create(
 | |
|             memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size +
 | |
|                 RISCV_ACLINT_SWI_SIZE,
 | |
|             RISCV_ACLINT_DEFAULT_MTIMER_SIZE, base_hartid, hart_count,
 | |
|             RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
 | |
|             RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, false);
 | |
|     }
 | |
| 
 | |
|     /* register system main memory (actual RAM) */
 | |
|     memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
 | |
|         machine->ram);
 | |
| 
 | |
|     /* boot rom */
 | |
|     memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom",
 | |
|                            memmap[SPIKE_MROM].size, &error_fatal);
 | |
|     memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
 | |
|                                 mask_rom);
 | |
| 
 | |
|     /* Find firmware */
 | |
|     firmware_name = riscv_find_firmware(machine->firmware,
 | |
|                         riscv_default_firmware_name(&s->soc[0]));
 | |
| 
 | |
|     /*
 | |
|      * Test the given firmware or kernel file to see if it is an ELF image.
 | |
|      * If it is an ELF, we assume it contains the symbols required for
 | |
|      * the HTIF console, otherwise we fall back to use the custom base
 | |
|      * passed from device tree for the HTIF console.
 | |
|      */
 | |
|     if (!firmware_name && !machine->kernel_filename) {
 | |
|         htif_custom_base = true;
 | |
|     } else {
 | |
|         if (firmware_name) {
 | |
|             htif_custom_base = !spike_test_elf_image(firmware_name);
 | |
|         }
 | |
|         if (!htif_custom_base && machine->kernel_filename) {
 | |
|             htif_custom_base = !spike_test_elf_image(machine->kernel_filename);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Load firmware */
 | |
|     if (firmware_name) {
 | |
|         firmware_end_addr = riscv_load_firmware(firmware_name,
 | |
|                                                 memmap[SPIKE_DRAM].base,
 | |
|                                                 htif_symbol_callback);
 | |
|         g_free(firmware_name);
 | |
|     }
 | |
| 
 | |
|     /* Create device tree */
 | |
|     create_fdt(s, memmap, riscv_is_32bit(&s->soc[0]), htif_custom_base);
 | |
| 
 | |
|     /* Load kernel */
 | |
|     if (machine->kernel_filename) {
 | |
|         kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
 | |
|                                                          firmware_end_addr);
 | |
| 
 | |
|         kernel_entry = riscv_load_kernel(machine, &s->soc[0],
 | |
|                                          kernel_start_addr,
 | |
|                                          true, htif_symbol_callback);
 | |
|     } else {
 | |
|        /*
 | |
|         * If dynamic firmware is used, it doesn't know where is the next mode
 | |
|         * if kernel argument is not set.
 | |
|         */
 | |
|         kernel_entry = 0;
 | |
|     }
 | |
| 
 | |
|     fdt_load_addr = riscv_compute_fdt_addr(memmap[SPIKE_DRAM].base,
 | |
|                                            memmap[SPIKE_DRAM].size,
 | |
|                                            machine);
 | |
|     riscv_load_fdt(fdt_load_addr, machine->fdt);
 | |
| 
 | |
|     /* load the reset vector */
 | |
|     riscv_setup_rom_reset_vec(machine, &s->soc[0], memmap[SPIKE_DRAM].base,
 | |
|                               memmap[SPIKE_MROM].base,
 | |
|                               memmap[SPIKE_MROM].size, kernel_entry,
 | |
|                               fdt_load_addr);
 | |
| 
 | |
|     /* initialize HTIF using symbols found in load_kernel */
 | |
|     htif_mm_init(system_memory, serial_hd(0), memmap[SPIKE_HTIF].base,
 | |
|                  htif_custom_base);
 | |
| }
 | |
| 
 | |
| static void spike_set_signature(Object *obj, const char *val, Error **errp)
 | |
| {
 | |
|     sig_file = g_strdup(val);
 | |
| }
 | |
| 
 | |
| static void spike_machine_instance_init(Object *obj)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void spike_machine_class_init(ObjectClass *oc, void *data)
 | |
| {
 | |
|     MachineClass *mc = MACHINE_CLASS(oc);
 | |
| 
 | |
|     mc->desc = "RISC-V Spike board";
 | |
|     mc->init = spike_board_init;
 | |
|     mc->max_cpus = SPIKE_CPUS_MAX;
 | |
|     mc->is_default = true;
 | |
|     mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
 | |
|     mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
 | |
|     mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
 | |
|     mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
 | |
|     mc->numa_mem_supported = true;
 | |
|     /* platform instead of architectural choice */
 | |
|     mc->cpu_cluster_has_numa_boundary = true;
 | |
|     mc->default_ram_id = "riscv.spike.ram";
 | |
|     object_class_property_add_str(oc, "signature", NULL, spike_set_signature);
 | |
|     object_class_property_set_description(oc, "signature",
 | |
|                                           "File to write ACT test signature");
 | |
|     object_class_property_add_uint8_ptr(oc, "signature-granularity",
 | |
|                                         &line_size, OBJ_PROP_FLAG_WRITE);
 | |
|     object_class_property_set_description(oc, "signature-granularity",
 | |
|                                           "Size of each line in ACT signature "
 | |
|                                           "file");
 | |
| }
 | |
| 
 | |
| static const TypeInfo spike_machine_typeinfo = {
 | |
|     .name       = MACHINE_TYPE_NAME("spike"),
 | |
|     .parent     = TYPE_MACHINE,
 | |
|     .class_init = spike_machine_class_init,
 | |
|     .instance_init = spike_machine_instance_init,
 | |
|     .instance_size = sizeof(SpikeState),
 | |
| };
 | |
| 
 | |
| static void spike_machine_init_register_types(void)
 | |
| {
 | |
|     type_register_static(&spike_machine_typeinfo);
 | |
| }
 | |
| 
 | |
| type_init(spike_machine_init_register_types)
 |