The architecture requires (R_TYTWB) that an attempt to return from EL3
when SCR_EL3.{NSE,NS} are {1,0} is an illegal exception return. (This
enforces that the CPU can't ever be executing below EL3 with the
NSE,NS bits indicating an invalid security state.)
We were missing this check; add it.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20230807150618.101357-1-peter.maydell@linaro.org
		
	
		
			
				
	
	
		
			971 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			971 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  AArch64 specific helpers
 | |
|  *
 | |
|  *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/units.h"
 | |
| #include "cpu.h"
 | |
| #include "gdbstub/helpers.h"
 | |
| #include "exec/helper-proto.h"
 | |
| #include "qemu/host-utils.h"
 | |
| #include "qemu/log.h"
 | |
| #include "qemu/main-loop.h"
 | |
| #include "qemu/bitops.h"
 | |
| #include "internals.h"
 | |
| #include "qemu/crc32c.h"
 | |
| #include "exec/exec-all.h"
 | |
| #include "exec/cpu_ldst.h"
 | |
| #include "qemu/int128.h"
 | |
| #include "qemu/atomic128.h"
 | |
| #include "fpu/softfloat.h"
 | |
| #include <zlib.h> /* For crc32 */
 | |
| 
 | |
| /* C2.4.7 Multiply and divide */
 | |
| /* special cases for 0 and LLONG_MIN are mandated by the standard */
 | |
| uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
 | |
| {
 | |
|     if (den == 0) {
 | |
|         return 0;
 | |
|     }
 | |
|     return num / den;
 | |
| }
 | |
| 
 | |
| int64_t HELPER(sdiv64)(int64_t num, int64_t den)
 | |
| {
 | |
|     if (den == 0) {
 | |
|         return 0;
 | |
|     }
 | |
|     if (num == LLONG_MIN && den == -1) {
 | |
|         return LLONG_MIN;
 | |
|     }
 | |
|     return num / den;
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(rbit64)(uint64_t x)
 | |
| {
 | |
|     return revbit64(x);
 | |
| }
 | |
| 
 | |
| void HELPER(msr_i_spsel)(CPUARMState *env, uint32_t imm)
 | |
| {
 | |
|     update_spsel(env, imm);
 | |
| }
 | |
| 
 | |
| static void daif_check(CPUARMState *env, uint32_t op,
 | |
|                        uint32_t imm, uintptr_t ra)
 | |
| {
 | |
|     /* DAIF update to PSTATE. This is OK from EL0 only if UMA is set.  */
 | |
|     if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
 | |
|         raise_exception_ra(env, EXCP_UDEF,
 | |
|                            syn_aa64_sysregtrap(0, extract32(op, 0, 3),
 | |
|                                                extract32(op, 3, 3), 4,
 | |
|                                                imm, 0x1f, 0),
 | |
|                            exception_target_el(env), ra);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void HELPER(msr_i_daifset)(CPUARMState *env, uint32_t imm)
 | |
| {
 | |
|     daif_check(env, 0x1e, imm, GETPC());
 | |
|     env->daif |= (imm << 6) & PSTATE_DAIF;
 | |
|     arm_rebuild_hflags(env);
 | |
| }
 | |
| 
 | |
| void HELPER(msr_i_daifclear)(CPUARMState *env, uint32_t imm)
 | |
| {
 | |
|     daif_check(env, 0x1f, imm, GETPC());
 | |
|     env->daif &= ~((imm << 6) & PSTATE_DAIF);
 | |
|     arm_rebuild_hflags(env);
 | |
| }
 | |
| 
 | |
| /* Convert a softfloat float_relation_ (as returned by
 | |
|  * the float*_compare functions) to the correct ARM
 | |
|  * NZCV flag state.
 | |
|  */
 | |
| static inline uint32_t float_rel_to_flags(int res)
 | |
| {
 | |
|     uint64_t flags;
 | |
|     switch (res) {
 | |
|     case float_relation_equal:
 | |
|         flags = PSTATE_Z | PSTATE_C;
 | |
|         break;
 | |
|     case float_relation_less:
 | |
|         flags = PSTATE_N;
 | |
|         break;
 | |
|     case float_relation_greater:
 | |
|         flags = PSTATE_C;
 | |
|         break;
 | |
|     case float_relation_unordered:
 | |
|     default:
 | |
|         flags = PSTATE_C | PSTATE_V;
 | |
|         break;
 | |
|     }
 | |
|     return flags;
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(vfp_cmph_a64)(uint32_t x, uint32_t y, void *fp_status)
 | |
| {
 | |
|     return float_rel_to_flags(float16_compare_quiet(x, y, fp_status));
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(vfp_cmpeh_a64)(uint32_t x, uint32_t y, void *fp_status)
 | |
| {
 | |
|     return float_rel_to_flags(float16_compare(x, y, fp_status));
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status)
 | |
| {
 | |
|     return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status)
 | |
| {
 | |
|     return float_rel_to_flags(float32_compare(x, y, fp_status));
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status)
 | |
| {
 | |
|     return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status)
 | |
| {
 | |
|     return float_rel_to_flags(float64_compare(x, y, fp_status));
 | |
| }
 | |
| 
 | |
| float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
| 
 | |
|     a = float32_squash_input_denormal(a, fpst);
 | |
|     b = float32_squash_input_denormal(b, fpst);
 | |
| 
 | |
|     if ((float32_is_zero(a) && float32_is_infinity(b)) ||
 | |
|         (float32_is_infinity(a) && float32_is_zero(b))) {
 | |
|         /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
 | |
|         return make_float32((1U << 30) |
 | |
|                             ((float32_val(a) ^ float32_val(b)) & (1U << 31)));
 | |
|     }
 | |
|     return float32_mul(a, b, fpst);
 | |
| }
 | |
| 
 | |
| float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
| 
 | |
|     a = float64_squash_input_denormal(a, fpst);
 | |
|     b = float64_squash_input_denormal(b, fpst);
 | |
| 
 | |
|     if ((float64_is_zero(a) && float64_is_infinity(b)) ||
 | |
|         (float64_is_infinity(a) && float64_is_zero(b))) {
 | |
|         /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
 | |
|         return make_float64((1ULL << 62) |
 | |
|                             ((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
 | |
|     }
 | |
|     return float64_mul(a, b, fpst);
 | |
| }
 | |
| 
 | |
| /* 64bit/double versions of the neon float compare functions */
 | |
| uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     return -float64_eq_quiet(a, b, fpst);
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     return -float64_le(b, a, fpst);
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     return -float64_lt(b, a, fpst);
 | |
| }
 | |
| 
 | |
| /* Reciprocal step and sqrt step. Note that unlike the A32/T32
 | |
|  * versions, these do a fully fused multiply-add or
 | |
|  * multiply-add-and-halve.
 | |
|  */
 | |
| 
 | |
| uint32_t HELPER(recpsf_f16)(uint32_t a, uint32_t b, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
| 
 | |
|     a = float16_squash_input_denormal(a, fpst);
 | |
|     b = float16_squash_input_denormal(b, fpst);
 | |
| 
 | |
|     a = float16_chs(a);
 | |
|     if ((float16_is_infinity(a) && float16_is_zero(b)) ||
 | |
|         (float16_is_infinity(b) && float16_is_zero(a))) {
 | |
|         return float16_two;
 | |
|     }
 | |
|     return float16_muladd(a, b, float16_two, 0, fpst);
 | |
| }
 | |
| 
 | |
| float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
| 
 | |
|     a = float32_squash_input_denormal(a, fpst);
 | |
|     b = float32_squash_input_denormal(b, fpst);
 | |
| 
 | |
|     a = float32_chs(a);
 | |
|     if ((float32_is_infinity(a) && float32_is_zero(b)) ||
 | |
|         (float32_is_infinity(b) && float32_is_zero(a))) {
 | |
|         return float32_two;
 | |
|     }
 | |
|     return float32_muladd(a, b, float32_two, 0, fpst);
 | |
| }
 | |
| 
 | |
| float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
| 
 | |
|     a = float64_squash_input_denormal(a, fpst);
 | |
|     b = float64_squash_input_denormal(b, fpst);
 | |
| 
 | |
|     a = float64_chs(a);
 | |
|     if ((float64_is_infinity(a) && float64_is_zero(b)) ||
 | |
|         (float64_is_infinity(b) && float64_is_zero(a))) {
 | |
|         return float64_two;
 | |
|     }
 | |
|     return float64_muladd(a, b, float64_two, 0, fpst);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(rsqrtsf_f16)(uint32_t a, uint32_t b, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
| 
 | |
|     a = float16_squash_input_denormal(a, fpst);
 | |
|     b = float16_squash_input_denormal(b, fpst);
 | |
| 
 | |
|     a = float16_chs(a);
 | |
|     if ((float16_is_infinity(a) && float16_is_zero(b)) ||
 | |
|         (float16_is_infinity(b) && float16_is_zero(a))) {
 | |
|         return float16_one_point_five;
 | |
|     }
 | |
|     return float16_muladd(a, b, float16_three, float_muladd_halve_result, fpst);
 | |
| }
 | |
| 
 | |
| float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
| 
 | |
|     a = float32_squash_input_denormal(a, fpst);
 | |
|     b = float32_squash_input_denormal(b, fpst);
 | |
| 
 | |
|     a = float32_chs(a);
 | |
|     if ((float32_is_infinity(a) && float32_is_zero(b)) ||
 | |
|         (float32_is_infinity(b) && float32_is_zero(a))) {
 | |
|         return float32_one_point_five;
 | |
|     }
 | |
|     return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst);
 | |
| }
 | |
| 
 | |
| float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
| 
 | |
|     a = float64_squash_input_denormal(a, fpst);
 | |
|     b = float64_squash_input_denormal(b, fpst);
 | |
| 
 | |
|     a = float64_chs(a);
 | |
|     if ((float64_is_infinity(a) && float64_is_zero(b)) ||
 | |
|         (float64_is_infinity(b) && float64_is_zero(a))) {
 | |
|         return float64_one_point_five;
 | |
|     }
 | |
|     return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst);
 | |
| }
 | |
| 
 | |
| /* Pairwise long add: add pairs of adjacent elements into
 | |
|  * double-width elements in the result (eg _s8 is an 8x8->16 op)
 | |
|  */
 | |
| uint64_t HELPER(neon_addlp_s8)(uint64_t a)
 | |
| {
 | |
|     uint64_t nsignmask = 0x0080008000800080ULL;
 | |
|     uint64_t wsignmask = 0x8000800080008000ULL;
 | |
|     uint64_t elementmask = 0x00ff00ff00ff00ffULL;
 | |
|     uint64_t tmp1, tmp2;
 | |
|     uint64_t res, signres;
 | |
| 
 | |
|     /* Extract odd elements, sign extend each to a 16 bit field */
 | |
|     tmp1 = a & elementmask;
 | |
|     tmp1 ^= nsignmask;
 | |
|     tmp1 |= wsignmask;
 | |
|     tmp1 = (tmp1 - nsignmask) ^ wsignmask;
 | |
|     /* Ditto for the even elements */
 | |
|     tmp2 = (a >> 8) & elementmask;
 | |
|     tmp2 ^= nsignmask;
 | |
|     tmp2 |= wsignmask;
 | |
|     tmp2 = (tmp2 - nsignmask) ^ wsignmask;
 | |
| 
 | |
|     /* calculate the result by summing bits 0..14, 16..22, etc,
 | |
|      * and then adjusting the sign bits 15, 23, etc manually.
 | |
|      * This ensures the addition can't overflow the 16 bit field.
 | |
|      */
 | |
|     signres = (tmp1 ^ tmp2) & wsignmask;
 | |
|     res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask);
 | |
|     res ^= signres;
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(neon_addlp_u8)(uint64_t a)
 | |
| {
 | |
|     uint64_t tmp;
 | |
| 
 | |
|     tmp = a & 0x00ff00ff00ff00ffULL;
 | |
|     tmp += (a >> 8) & 0x00ff00ff00ff00ffULL;
 | |
|     return tmp;
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(neon_addlp_s16)(uint64_t a)
 | |
| {
 | |
|     int32_t reslo, reshi;
 | |
| 
 | |
|     reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16);
 | |
|     reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48);
 | |
| 
 | |
|     return (uint32_t)reslo | (((uint64_t)reshi) << 32);
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(neon_addlp_u16)(uint64_t a)
 | |
| {
 | |
|     uint64_t tmp;
 | |
| 
 | |
|     tmp = a & 0x0000ffff0000ffffULL;
 | |
|     tmp += (a >> 16) & 0x0000ffff0000ffffULL;
 | |
|     return tmp;
 | |
| }
 | |
| 
 | |
| /* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
 | |
| uint32_t HELPER(frecpx_f16)(uint32_t a, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     uint16_t val16, sbit;
 | |
|     int16_t exp;
 | |
| 
 | |
|     if (float16_is_any_nan(a)) {
 | |
|         float16 nan = a;
 | |
|         if (float16_is_signaling_nan(a, fpst)) {
 | |
|             float_raise(float_flag_invalid, fpst);
 | |
|             if (!fpst->default_nan_mode) {
 | |
|                 nan = float16_silence_nan(a, fpst);
 | |
|             }
 | |
|         }
 | |
|         if (fpst->default_nan_mode) {
 | |
|             nan = float16_default_nan(fpst);
 | |
|         }
 | |
|         return nan;
 | |
|     }
 | |
| 
 | |
|     a = float16_squash_input_denormal(a, fpst);
 | |
| 
 | |
|     val16 = float16_val(a);
 | |
|     sbit = 0x8000 & val16;
 | |
|     exp = extract32(val16, 10, 5);
 | |
| 
 | |
|     if (exp == 0) {
 | |
|         return make_float16(deposit32(sbit, 10, 5, 0x1e));
 | |
|     } else {
 | |
|         return make_float16(deposit32(sbit, 10, 5, ~exp));
 | |
|     }
 | |
| }
 | |
| 
 | |
| float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     uint32_t val32, sbit;
 | |
|     int32_t exp;
 | |
| 
 | |
|     if (float32_is_any_nan(a)) {
 | |
|         float32 nan = a;
 | |
|         if (float32_is_signaling_nan(a, fpst)) {
 | |
|             float_raise(float_flag_invalid, fpst);
 | |
|             if (!fpst->default_nan_mode) {
 | |
|                 nan = float32_silence_nan(a, fpst);
 | |
|             }
 | |
|         }
 | |
|         if (fpst->default_nan_mode) {
 | |
|             nan = float32_default_nan(fpst);
 | |
|         }
 | |
|         return nan;
 | |
|     }
 | |
| 
 | |
|     a = float32_squash_input_denormal(a, fpst);
 | |
| 
 | |
|     val32 = float32_val(a);
 | |
|     sbit = 0x80000000ULL & val32;
 | |
|     exp = extract32(val32, 23, 8);
 | |
| 
 | |
|     if (exp == 0) {
 | |
|         return make_float32(sbit | (0xfe << 23));
 | |
|     } else {
 | |
|         return make_float32(sbit | (~exp & 0xff) << 23);
 | |
|     }
 | |
| }
 | |
| 
 | |
| float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     uint64_t val64, sbit;
 | |
|     int64_t exp;
 | |
| 
 | |
|     if (float64_is_any_nan(a)) {
 | |
|         float64 nan = a;
 | |
|         if (float64_is_signaling_nan(a, fpst)) {
 | |
|             float_raise(float_flag_invalid, fpst);
 | |
|             if (!fpst->default_nan_mode) {
 | |
|                 nan = float64_silence_nan(a, fpst);
 | |
|             }
 | |
|         }
 | |
|         if (fpst->default_nan_mode) {
 | |
|             nan = float64_default_nan(fpst);
 | |
|         }
 | |
|         return nan;
 | |
|     }
 | |
| 
 | |
|     a = float64_squash_input_denormal(a, fpst);
 | |
| 
 | |
|     val64 = float64_val(a);
 | |
|     sbit = 0x8000000000000000ULL & val64;
 | |
|     exp = extract64(float64_val(a), 52, 11);
 | |
| 
 | |
|     if (exp == 0) {
 | |
|         return make_float64(sbit | (0x7feULL << 52));
 | |
|     } else {
 | |
|         return make_float64(sbit | (~exp & 0x7ffULL) << 52);
 | |
|     }
 | |
| }
 | |
| 
 | |
| float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env)
 | |
| {
 | |
|     /* Von Neumann rounding is implemented by using round-to-zero
 | |
|      * and then setting the LSB of the result if Inexact was raised.
 | |
|      */
 | |
|     float32 r;
 | |
|     float_status *fpst = &env->vfp.fp_status;
 | |
|     float_status tstat = *fpst;
 | |
|     int exflags;
 | |
| 
 | |
|     set_float_rounding_mode(float_round_to_zero, &tstat);
 | |
|     set_float_exception_flags(0, &tstat);
 | |
|     r = float64_to_float32(a, &tstat);
 | |
|     exflags = get_float_exception_flags(&tstat);
 | |
|     if (exflags & float_flag_inexact) {
 | |
|         r = make_float32(float32_val(r) | 1);
 | |
|     }
 | |
|     exflags |= get_float_exception_flags(fpst);
 | |
|     set_float_exception_flags(exflags, fpst);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| /* 64-bit versions of the CRC helpers. Note that although the operation
 | |
|  * (and the prototypes of crc32c() and crc32() mean that only the bottom
 | |
|  * 32 bits of the accumulator and result are used, we pass and return
 | |
|  * uint64_t for convenience of the generated code. Unlike the 32-bit
 | |
|  * instruction set versions, val may genuinely have 64 bits of data in it.
 | |
|  * The upper bytes of val (above the number specified by 'bytes') must have
 | |
|  * been zeroed out by the caller.
 | |
|  */
 | |
| uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
 | |
| {
 | |
|     uint8_t buf[8];
 | |
| 
 | |
|     stq_le_p(buf, val);
 | |
| 
 | |
|     /* zlib crc32 converts the accumulator and output to one's complement.  */
 | |
|     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
 | |
| {
 | |
|     uint8_t buf[8];
 | |
| 
 | |
|     stq_le_p(buf, val);
 | |
| 
 | |
|     /* Linux crc32c converts the output to one's complement.  */
 | |
|     return crc32c(acc, buf, bytes) ^ 0xffffffff;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * AdvSIMD half-precision
 | |
|  */
 | |
| 
 | |
| #define ADVSIMD_HELPER(name, suffix) HELPER(glue(glue(advsimd_, name), suffix))
 | |
| 
 | |
| #define ADVSIMD_HALFOP(name) \
 | |
| uint32_t ADVSIMD_HELPER(name, h)(uint32_t a, uint32_t b, void *fpstp) \
 | |
| { \
 | |
|     float_status *fpst = fpstp; \
 | |
|     return float16_ ## name(a, b, fpst);    \
 | |
| }
 | |
| 
 | |
| ADVSIMD_HALFOP(add)
 | |
| ADVSIMD_HALFOP(sub)
 | |
| ADVSIMD_HALFOP(mul)
 | |
| ADVSIMD_HALFOP(div)
 | |
| ADVSIMD_HALFOP(min)
 | |
| ADVSIMD_HALFOP(max)
 | |
| ADVSIMD_HALFOP(minnum)
 | |
| ADVSIMD_HALFOP(maxnum)
 | |
| 
 | |
| #define ADVSIMD_TWOHALFOP(name)                                         \
 | |
| uint32_t ADVSIMD_HELPER(name, 2h)(uint32_t two_a, uint32_t two_b, void *fpstp) \
 | |
| { \
 | |
|     float16  a1, a2, b1, b2;                        \
 | |
|     uint32_t r1, r2;                                \
 | |
|     float_status *fpst = fpstp;                     \
 | |
|     a1 = extract32(two_a, 0, 16);                   \
 | |
|     a2 = extract32(two_a, 16, 16);                  \
 | |
|     b1 = extract32(two_b, 0, 16);                   \
 | |
|     b2 = extract32(two_b, 16, 16);                  \
 | |
|     r1 = float16_ ## name(a1, b1, fpst);            \
 | |
|     r2 = float16_ ## name(a2, b2, fpst);            \
 | |
|     return deposit32(r1, 16, 16, r2);               \
 | |
| }
 | |
| 
 | |
| ADVSIMD_TWOHALFOP(add)
 | |
| ADVSIMD_TWOHALFOP(sub)
 | |
| ADVSIMD_TWOHALFOP(mul)
 | |
| ADVSIMD_TWOHALFOP(div)
 | |
| ADVSIMD_TWOHALFOP(min)
 | |
| ADVSIMD_TWOHALFOP(max)
 | |
| ADVSIMD_TWOHALFOP(minnum)
 | |
| ADVSIMD_TWOHALFOP(maxnum)
 | |
| 
 | |
| /* Data processing - scalar floating-point and advanced SIMD */
 | |
| static float16 float16_mulx(float16 a, float16 b, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
| 
 | |
|     a = float16_squash_input_denormal(a, fpst);
 | |
|     b = float16_squash_input_denormal(b, fpst);
 | |
| 
 | |
|     if ((float16_is_zero(a) && float16_is_infinity(b)) ||
 | |
|         (float16_is_infinity(a) && float16_is_zero(b))) {
 | |
|         /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
 | |
|         return make_float16((1U << 14) |
 | |
|                             ((float16_val(a) ^ float16_val(b)) & (1U << 15)));
 | |
|     }
 | |
|     return float16_mul(a, b, fpst);
 | |
| }
 | |
| 
 | |
| ADVSIMD_HALFOP(mulx)
 | |
| ADVSIMD_TWOHALFOP(mulx)
 | |
| 
 | |
| /* fused multiply-accumulate */
 | |
| uint32_t HELPER(advsimd_muladdh)(uint32_t a, uint32_t b, uint32_t c,
 | |
|                                  void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     return float16_muladd(a, b, c, 0, fpst);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(advsimd_muladd2h)(uint32_t two_a, uint32_t two_b,
 | |
|                                   uint32_t two_c, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     float16  a1, a2, b1, b2, c1, c2;
 | |
|     uint32_t r1, r2;
 | |
|     a1 = extract32(two_a, 0, 16);
 | |
|     a2 = extract32(two_a, 16, 16);
 | |
|     b1 = extract32(two_b, 0, 16);
 | |
|     b2 = extract32(two_b, 16, 16);
 | |
|     c1 = extract32(two_c, 0, 16);
 | |
|     c2 = extract32(two_c, 16, 16);
 | |
|     r1 = float16_muladd(a1, b1, c1, 0, fpst);
 | |
|     r2 = float16_muladd(a2, b2, c2, 0, fpst);
 | |
|     return deposit32(r1, 16, 16, r2);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Floating point comparisons produce an integer result. Softfloat
 | |
|  * routines return float_relation types which we convert to the 0/-1
 | |
|  * Neon requires.
 | |
|  */
 | |
| 
 | |
| #define ADVSIMD_CMPRES(test) (test) ? 0xffff : 0
 | |
| 
 | |
| uint32_t HELPER(advsimd_ceq_f16)(uint32_t a, uint32_t b, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     int compare = float16_compare_quiet(a, b, fpst);
 | |
|     return ADVSIMD_CMPRES(compare == float_relation_equal);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(advsimd_cge_f16)(uint32_t a, uint32_t b, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     int compare = float16_compare(a, b, fpst);
 | |
|     return ADVSIMD_CMPRES(compare == float_relation_greater ||
 | |
|                           compare == float_relation_equal);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(advsimd_cgt_f16)(uint32_t a, uint32_t b, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     int compare = float16_compare(a, b, fpst);
 | |
|     return ADVSIMD_CMPRES(compare == float_relation_greater);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(advsimd_acge_f16)(uint32_t a, uint32_t b, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     float16 f0 = float16_abs(a);
 | |
|     float16 f1 = float16_abs(b);
 | |
|     int compare = float16_compare(f0, f1, fpst);
 | |
|     return ADVSIMD_CMPRES(compare == float_relation_greater ||
 | |
|                           compare == float_relation_equal);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(advsimd_acgt_f16)(uint32_t a, uint32_t b, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     float16 f0 = float16_abs(a);
 | |
|     float16 f1 = float16_abs(b);
 | |
|     int compare = float16_compare(f0, f1, fpst);
 | |
|     return ADVSIMD_CMPRES(compare == float_relation_greater);
 | |
| }
 | |
| 
 | |
| /* round to integral */
 | |
| uint32_t HELPER(advsimd_rinth_exact)(uint32_t x, void *fp_status)
 | |
| {
 | |
|     return float16_round_to_int(x, fp_status);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(advsimd_rinth)(uint32_t x, void *fp_status)
 | |
| {
 | |
|     int old_flags = get_float_exception_flags(fp_status), new_flags;
 | |
|     float16 ret;
 | |
| 
 | |
|     ret = float16_round_to_int(x, fp_status);
 | |
| 
 | |
|     /* Suppress any inexact exceptions the conversion produced */
 | |
|     if (!(old_flags & float_flag_inexact)) {
 | |
|         new_flags = get_float_exception_flags(fp_status);
 | |
|         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Half-precision floating point conversion functions
 | |
|  *
 | |
|  * There are a multitude of conversion functions with various
 | |
|  * different rounding modes. This is dealt with by the calling code
 | |
|  * setting the mode appropriately before calling the helper.
 | |
|  */
 | |
| 
 | |
| uint32_t HELPER(advsimd_f16tosinth)(uint32_t a, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
| 
 | |
|     /* Invalid if we are passed a NaN */
 | |
|     if (float16_is_any_nan(a)) {
 | |
|         float_raise(float_flag_invalid, fpst);
 | |
|         return 0;
 | |
|     }
 | |
|     return float16_to_int16(a, fpst);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(advsimd_f16touinth)(uint32_t a, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
| 
 | |
|     /* Invalid if we are passed a NaN */
 | |
|     if (float16_is_any_nan(a)) {
 | |
|         float_raise(float_flag_invalid, fpst);
 | |
|         return 0;
 | |
|     }
 | |
|     return float16_to_uint16(a, fpst);
 | |
| }
 | |
| 
 | |
| static int el_from_spsr(uint32_t spsr)
 | |
| {
 | |
|     /* Return the exception level that this SPSR is requesting a return to,
 | |
|      * or -1 if it is invalid (an illegal return)
 | |
|      */
 | |
|     if (spsr & PSTATE_nRW) {
 | |
|         switch (spsr & CPSR_M) {
 | |
|         case ARM_CPU_MODE_USR:
 | |
|             return 0;
 | |
|         case ARM_CPU_MODE_HYP:
 | |
|             return 2;
 | |
|         case ARM_CPU_MODE_FIQ:
 | |
|         case ARM_CPU_MODE_IRQ:
 | |
|         case ARM_CPU_MODE_SVC:
 | |
|         case ARM_CPU_MODE_ABT:
 | |
|         case ARM_CPU_MODE_UND:
 | |
|         case ARM_CPU_MODE_SYS:
 | |
|             return 1;
 | |
|         case ARM_CPU_MODE_MON:
 | |
|             /* Returning to Mon from AArch64 is never possible,
 | |
|              * so this is an illegal return.
 | |
|              */
 | |
|         default:
 | |
|             return -1;
 | |
|         }
 | |
|     } else {
 | |
|         if (extract32(spsr, 1, 1)) {
 | |
|             /* Return with reserved M[1] bit set */
 | |
|             return -1;
 | |
|         }
 | |
|         if (extract32(spsr, 0, 4) == 1) {
 | |
|             /* return to EL0 with M[0] bit set */
 | |
|             return -1;
 | |
|         }
 | |
|         return extract32(spsr, 2, 2);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void cpsr_write_from_spsr_elx(CPUARMState *env,
 | |
|                                      uint32_t val)
 | |
| {
 | |
|     uint32_t mask;
 | |
| 
 | |
|     /* Save SPSR_ELx.SS into PSTATE. */
 | |
|     env->pstate = (env->pstate & ~PSTATE_SS) | (val & PSTATE_SS);
 | |
|     val &= ~PSTATE_SS;
 | |
| 
 | |
|     /* Move DIT to the correct location for CPSR */
 | |
|     if (val & PSTATE_DIT) {
 | |
|         val &= ~PSTATE_DIT;
 | |
|         val |= CPSR_DIT;
 | |
|     }
 | |
| 
 | |
|     mask = aarch32_cpsr_valid_mask(env->features, \
 | |
|         &env_archcpu(env)->isar);
 | |
|     cpsr_write(env, val, mask, CPSRWriteRaw);
 | |
| }
 | |
| 
 | |
| void HELPER(exception_return)(CPUARMState *env, uint64_t new_pc)
 | |
| {
 | |
|     int cur_el = arm_current_el(env);
 | |
|     unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
 | |
|     uint32_t spsr = env->banked_spsr[spsr_idx];
 | |
|     int new_el;
 | |
|     bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
 | |
| 
 | |
|     aarch64_save_sp(env, cur_el);
 | |
| 
 | |
|     arm_clear_exclusive(env);
 | |
| 
 | |
|     /* We must squash the PSTATE.SS bit to zero unless both of the
 | |
|      * following hold:
 | |
|      *  1. debug exceptions are currently disabled
 | |
|      *  2. singlestep will be active in the EL we return to
 | |
|      * We check 1 here and 2 after we've done the pstate/cpsr write() to
 | |
|      * transition to the EL we're going to.
 | |
|      */
 | |
|     if (arm_generate_debug_exceptions(env)) {
 | |
|         spsr &= ~PSTATE_SS;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * FEAT_RME forbids return from EL3 with an invalid security state.
 | |
|      * We don't need an explicit check for FEAT_RME here because we enforce
 | |
|      * in scr_write() that you can't set the NSE bit without it.
 | |
|      */
 | |
|     if (cur_el == 3 && (env->cp15.scr_el3 & (SCR_NS | SCR_NSE)) == SCR_NSE) {
 | |
|         goto illegal_return;
 | |
|     }
 | |
| 
 | |
|     new_el = el_from_spsr(spsr);
 | |
|     if (new_el == -1) {
 | |
|         goto illegal_return;
 | |
|     }
 | |
|     if (new_el > cur_el || (new_el == 2 && !arm_is_el2_enabled(env))) {
 | |
|         /* Disallow return to an EL which is unimplemented or higher
 | |
|          * than the current one.
 | |
|          */
 | |
|         goto illegal_return;
 | |
|     }
 | |
| 
 | |
|     if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
 | |
|         /* Return to an EL which is configured for a different register width */
 | |
|         goto illegal_return;
 | |
|     }
 | |
| 
 | |
|     if (new_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
 | |
|         goto illegal_return;
 | |
|     }
 | |
| 
 | |
|     qemu_mutex_lock_iothread();
 | |
|     arm_call_pre_el_change_hook(env_archcpu(env));
 | |
|     qemu_mutex_unlock_iothread();
 | |
| 
 | |
|     if (!return_to_aa64) {
 | |
|         env->aarch64 = false;
 | |
|         /* We do a raw CPSR write because aarch64_sync_64_to_32()
 | |
|          * will sort the register banks out for us, and we've already
 | |
|          * caught all the bad-mode cases in el_from_spsr().
 | |
|          */
 | |
|         cpsr_write_from_spsr_elx(env, spsr);
 | |
|         if (!arm_singlestep_active(env)) {
 | |
|             env->pstate &= ~PSTATE_SS;
 | |
|         }
 | |
|         aarch64_sync_64_to_32(env);
 | |
| 
 | |
|         if (spsr & CPSR_T) {
 | |
|             env->regs[15] = new_pc & ~0x1;
 | |
|         } else {
 | |
|             env->regs[15] = new_pc & ~0x3;
 | |
|         }
 | |
|         helper_rebuild_hflags_a32(env, new_el);
 | |
|         qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
 | |
|                       "AArch32 EL%d PC 0x%" PRIx32 "\n",
 | |
|                       cur_el, new_el, env->regs[15]);
 | |
|     } else {
 | |
|         int tbii;
 | |
| 
 | |
|         env->aarch64 = true;
 | |
|         spsr &= aarch64_pstate_valid_mask(&env_archcpu(env)->isar);
 | |
|         pstate_write(env, spsr);
 | |
|         if (!arm_singlestep_active(env)) {
 | |
|             env->pstate &= ~PSTATE_SS;
 | |
|         }
 | |
|         aarch64_restore_sp(env, new_el);
 | |
|         helper_rebuild_hflags_a64(env, new_el);
 | |
| 
 | |
|         /*
 | |
|          * Apply TBI to the exception return address.  We had to delay this
 | |
|          * until after we selected the new EL, so that we could select the
 | |
|          * correct TBI+TBID bits.  This is made easier by waiting until after
 | |
|          * the hflags rebuild, since we can pull the composite TBII field
 | |
|          * from there.
 | |
|          */
 | |
|         tbii = EX_TBFLAG_A64(env->hflags, TBII);
 | |
|         if ((tbii >> extract64(new_pc, 55, 1)) & 1) {
 | |
|             /* TBI is enabled. */
 | |
|             int core_mmu_idx = cpu_mmu_index(env, false);
 | |
|             if (regime_has_2_ranges(core_to_aa64_mmu_idx(core_mmu_idx))) {
 | |
|                 new_pc = sextract64(new_pc, 0, 56);
 | |
|             } else {
 | |
|                 new_pc = extract64(new_pc, 0, 56);
 | |
|             }
 | |
|         }
 | |
|         env->pc = new_pc;
 | |
| 
 | |
|         qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
 | |
|                       "AArch64 EL%d PC 0x%" PRIx64 "\n",
 | |
|                       cur_el, new_el, env->pc);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Note that cur_el can never be 0.  If new_el is 0, then
 | |
|      * el0_a64 is return_to_aa64, else el0_a64 is ignored.
 | |
|      */
 | |
|     aarch64_sve_change_el(env, cur_el, new_el, return_to_aa64);
 | |
| 
 | |
|     qemu_mutex_lock_iothread();
 | |
|     arm_call_el_change_hook(env_archcpu(env));
 | |
|     qemu_mutex_unlock_iothread();
 | |
| 
 | |
|     return;
 | |
| 
 | |
| illegal_return:
 | |
|     /* Illegal return events of various kinds have architecturally
 | |
|      * mandated behaviour:
 | |
|      * restore NZCV and DAIF from SPSR_ELx
 | |
|      * set PSTATE.IL
 | |
|      * restore PC from ELR_ELx
 | |
|      * no change to exception level, execution state or stack pointer
 | |
|      */
 | |
|     env->pstate |= PSTATE_IL;
 | |
|     env->pc = new_pc;
 | |
|     spsr &= PSTATE_NZCV | PSTATE_DAIF;
 | |
|     spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
 | |
|     pstate_write(env, spsr);
 | |
|     if (!arm_singlestep_active(env)) {
 | |
|         env->pstate &= ~PSTATE_SS;
 | |
|     }
 | |
|     helper_rebuild_hflags_a64(env, cur_el);
 | |
|     qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: "
 | |
|                   "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Square Root and Reciprocal square root
 | |
|  */
 | |
| 
 | |
| uint32_t HELPER(sqrt_f16)(uint32_t a, void *fpstp)
 | |
| {
 | |
|     float_status *s = fpstp;
 | |
| 
 | |
|     return float16_sqrt(a, s);
 | |
| }
 | |
| 
 | |
| void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
 | |
| {
 | |
|     /*
 | |
|      * Implement DC ZVA, which zeroes a fixed-length block of memory.
 | |
|      * Note that we do not implement the (architecturally mandated)
 | |
|      * alignment fault for attempts to use this on Device memory
 | |
|      * (which matches the usual QEMU behaviour of not implementing either
 | |
|      * alignment faults or any memory attribute handling).
 | |
|      */
 | |
|     int blocklen = 4 << env_archcpu(env)->dcz_blocksize;
 | |
|     uint64_t vaddr = vaddr_in & ~(blocklen - 1);
 | |
|     int mmu_idx = cpu_mmu_index(env, false);
 | |
|     void *mem;
 | |
| 
 | |
|     /*
 | |
|      * Trapless lookup.  In addition to actual invalid page, may
 | |
|      * return NULL for I/O, watchpoints, clean pages, etc.
 | |
|      */
 | |
|     mem = tlb_vaddr_to_host(env, vaddr, MMU_DATA_STORE, mmu_idx);
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     if (unlikely(!mem)) {
 | |
|         uintptr_t ra = GETPC();
 | |
| 
 | |
|         /*
 | |
|          * Trap if accessing an invalid page.  DC_ZVA requires that we supply
 | |
|          * the original pointer for an invalid page.  But watchpoints require
 | |
|          * that we probe the actual space.  So do both.
 | |
|          */
 | |
|         (void) probe_write(env, vaddr_in, 1, mmu_idx, ra);
 | |
|         mem = probe_write(env, vaddr, blocklen, mmu_idx, ra);
 | |
| 
 | |
|         if (unlikely(!mem)) {
 | |
|             /*
 | |
|              * The only remaining reason for mem == NULL is I/O.
 | |
|              * Just do a series of byte writes as the architecture demands.
 | |
|              */
 | |
|             for (int i = 0; i < blocklen; i++) {
 | |
|                 cpu_stb_mmuidx_ra(env, vaddr + i, 0, mmu_idx, ra);
 | |
|             }
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     memset(mem, 0, blocklen);
 | |
| }
 | |
| 
 | |
| void HELPER(unaligned_access)(CPUARMState *env, uint64_t addr,
 | |
|                               uint32_t access_type, uint32_t mmu_idx)
 | |
| {
 | |
|     arm_cpu_do_unaligned_access(env_cpu(env), addr, access_type,
 | |
|                                 mmu_idx, GETPC());
 | |
| }
 |