(Jocelyn Mayer) git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@5380 c046a42c-6fe2-441c-8c8c-71466251a162
		
			
				
	
	
		
			3011 lines
		
	
	
		
			75 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3011 lines
		
	
	
		
			75 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  PowerPC emulation helpers for qemu.
 | 
						|
 *
 | 
						|
 *  Copyright (c) 2003-2007 Jocelyn Mayer
 | 
						|
 *
 | 
						|
 * This library is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This library is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with this library; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 | 
						|
 */
 | 
						|
#include "exec.h"
 | 
						|
#include "host-utils.h"
 | 
						|
 | 
						|
#include "helper_regs.h"
 | 
						|
#include "op_helper.h"
 | 
						|
 | 
						|
#define MEMSUFFIX _raw
 | 
						|
#include "op_helper.h"
 | 
						|
#include "op_helper_mem.h"
 | 
						|
#if !defined(CONFIG_USER_ONLY)
 | 
						|
#define MEMSUFFIX _user
 | 
						|
#include "op_helper.h"
 | 
						|
#include "op_helper_mem.h"
 | 
						|
#define MEMSUFFIX _kernel
 | 
						|
#include "op_helper.h"
 | 
						|
#include "op_helper_mem.h"
 | 
						|
#define MEMSUFFIX _hypv
 | 
						|
#include "op_helper.h"
 | 
						|
#include "op_helper_mem.h"
 | 
						|
#endif
 | 
						|
 | 
						|
//#define DEBUG_OP
 | 
						|
//#define DEBUG_EXCEPTIONS
 | 
						|
//#define DEBUG_SOFTWARE_TLB
 | 
						|
 | 
						|
/*****************************************************************************/
 | 
						|
/* Exceptions processing helpers */
 | 
						|
 | 
						|
void do_raise_exception_err (uint32_t exception, int error_code)
 | 
						|
{
 | 
						|
#if 0
 | 
						|
    printf("Raise exception %3x code : %d\n", exception, error_code);
 | 
						|
#endif
 | 
						|
    env->exception_index = exception;
 | 
						|
    env->error_code = error_code;
 | 
						|
    cpu_loop_exit();
 | 
						|
}
 | 
						|
 | 
						|
void do_raise_exception (uint32_t exception)
 | 
						|
{
 | 
						|
    do_raise_exception_err(exception, 0);
 | 
						|
}
 | 
						|
 | 
						|
void cpu_dump_EA (target_ulong EA);
 | 
						|
void do_print_mem_EA (target_ulong EA)
 | 
						|
{
 | 
						|
    cpu_dump_EA(EA);
 | 
						|
}
 | 
						|
 | 
						|
/*****************************************************************************/
 | 
						|
/* Registers load and stores */
 | 
						|
void do_load_cr (void)
 | 
						|
{
 | 
						|
    T0 = (env->crf[0] << 28) |
 | 
						|
        (env->crf[1] << 24) |
 | 
						|
        (env->crf[2] << 20) |
 | 
						|
        (env->crf[3] << 16) |
 | 
						|
        (env->crf[4] << 12) |
 | 
						|
        (env->crf[5] << 8) |
 | 
						|
        (env->crf[6] << 4) |
 | 
						|
        (env->crf[7] << 0);
 | 
						|
}
 | 
						|
 | 
						|
void do_store_cr (uint32_t mask)
 | 
						|
{
 | 
						|
    int i, sh;
 | 
						|
 | 
						|
    for (i = 0, sh = 7; i < 8; i++, sh--) {
 | 
						|
        if (mask & (1 << sh))
 | 
						|
            env->crf[i] = (T0 >> (sh * 4)) & 0xFUL;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#if defined(TARGET_PPC64)
 | 
						|
void do_store_pri (int prio)
 | 
						|
{
 | 
						|
    env->spr[SPR_PPR] &= ~0x001C000000000000ULL;
 | 
						|
    env->spr[SPR_PPR] |= ((uint64_t)prio & 0x7) << 50;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
target_ulong ppc_load_dump_spr (int sprn)
 | 
						|
{
 | 
						|
    if (loglevel != 0) {
 | 
						|
        fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n",
 | 
						|
                sprn, sprn, env->spr[sprn]);
 | 
						|
    }
 | 
						|
 | 
						|
    return env->spr[sprn];
 | 
						|
}
 | 
						|
 | 
						|
void ppc_store_dump_spr (int sprn, target_ulong val)
 | 
						|
{
 | 
						|
    if (loglevel != 0) {
 | 
						|
        fprintf(logfile, "Write SPR %d %03x => " ADDRX " <= " ADDRX "\n",
 | 
						|
                sprn, sprn, env->spr[sprn], val);
 | 
						|
    }
 | 
						|
    env->spr[sprn] = val;
 | 
						|
}
 | 
						|
 | 
						|
/*****************************************************************************/
 | 
						|
/* Fixed point operations helpers */
 | 
						|
void do_adde (void)
 | 
						|
{
 | 
						|
    T2 = T0;
 | 
						|
    T0 += T1 + xer_ca;
 | 
						|
    if (likely(!((uint32_t)T0 < (uint32_t)T2 ||
 | 
						|
                 (xer_ca == 1 && (uint32_t)T0 == (uint32_t)T2)))) {
 | 
						|
        xer_ca = 0;
 | 
						|
    } else {
 | 
						|
        xer_ca = 1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#if defined(TARGET_PPC64)
 | 
						|
void do_adde_64 (void)
 | 
						|
{
 | 
						|
    T2 = T0;
 | 
						|
    T0 += T1 + xer_ca;
 | 
						|
    if (likely(!((uint64_t)T0 < (uint64_t)T2 ||
 | 
						|
                 (xer_ca == 1 && (uint64_t)T0 == (uint64_t)T2)))) {
 | 
						|
        xer_ca = 0;
 | 
						|
    } else {
 | 
						|
        xer_ca = 1;
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void do_addmeo (void)
 | 
						|
{
 | 
						|
    T1 = T0;
 | 
						|
    T0 += xer_ca + (-1);
 | 
						|
    xer_ov = ((uint32_t)T1 & ((uint32_t)T1 ^ (uint32_t)T0)) >> 31;
 | 
						|
    xer_so |= xer_ov;
 | 
						|
    if (likely((uint32_t)T1 != 0))
 | 
						|
        xer_ca = 1;
 | 
						|
}
 | 
						|
 | 
						|
#if defined(TARGET_PPC64)
 | 
						|
void do_addmeo_64 (void)
 | 
						|
{
 | 
						|
    T1 = T0;
 | 
						|
    T0 += xer_ca + (-1);
 | 
						|
    xer_ov = ((uint64_t)T1 & ((uint64_t)T1 ^ (uint64_t)T0)) >> 63;
 | 
						|
    xer_so |= xer_ov;
 | 
						|
    if (likely((uint64_t)T1 != 0))
 | 
						|
        xer_ca = 1;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void do_divwo (void)
 | 
						|
{
 | 
						|
    if (likely(!(((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
 | 
						|
                 (int32_t)T1 == 0))) {
 | 
						|
        xer_ov = 0;
 | 
						|
        T0 = (int32_t)T0 / (int32_t)T1;
 | 
						|
    } else {
 | 
						|
        xer_ov = 1;
 | 
						|
        T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
 | 
						|
    }
 | 
						|
    xer_so |= xer_ov;
 | 
						|
}
 | 
						|
 | 
						|
#if defined(TARGET_PPC64)
 | 
						|
void do_divdo (void)
 | 
						|
{
 | 
						|
    if (likely(!(((int64_t)T0 == INT64_MIN && (int64_t)T1 == (int64_t)-1LL) ||
 | 
						|
                 (int64_t)T1 == 0))) {
 | 
						|
        xer_ov = 0;
 | 
						|
        T0 = (int64_t)T0 / (int64_t)T1;
 | 
						|
    } else {
 | 
						|
        xer_ov = 1;
 | 
						|
        T0 = UINT64_MAX * ((uint64_t)T0 >> 63);
 | 
						|
    }
 | 
						|
    xer_so |= xer_ov;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void do_divwuo (void)
 | 
						|
{
 | 
						|
    if (likely((uint32_t)T1 != 0)) {
 | 
						|
        xer_ov = 0;
 | 
						|
        T0 = (uint32_t)T0 / (uint32_t)T1;
 | 
						|
    } else {
 | 
						|
        xer_ov = 1;
 | 
						|
        xer_so = 1;
 | 
						|
        T0 = 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#if defined(TARGET_PPC64)
 | 
						|
void do_divduo (void)
 | 
						|
{
 | 
						|
    if (likely((uint64_t)T1 != 0)) {
 | 
						|
        xer_ov = 0;
 | 
						|
        T0 = (uint64_t)T0 / (uint64_t)T1;
 | 
						|
    } else {
 | 
						|
        xer_ov = 1;
 | 
						|
        xer_so = 1;
 | 
						|
        T0 = 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void do_mullwo (void)
 | 
						|
{
 | 
						|
    int64_t res = (int64_t)(int32_t)T0 * (int64_t)(int32_t)T1;
 | 
						|
 | 
						|
    if (likely((int32_t)res == res)) {
 | 
						|
        xer_ov = 0;
 | 
						|
    } else {
 | 
						|
        xer_ov = 1;
 | 
						|
        xer_so = 1;
 | 
						|
    }
 | 
						|
    T0 = (int32_t)res;
 | 
						|
}
 | 
						|
 | 
						|
#if defined(TARGET_PPC64)
 | 
						|
void do_mulldo (void)
 | 
						|
{
 | 
						|
    int64_t th;
 | 
						|
    uint64_t tl;
 | 
						|
 | 
						|
    muls64(&tl, (uint64_t *)&th, T0, T1);
 | 
						|
    T0 = (int64_t)tl;
 | 
						|
    /* If th != 0 && th != -1, then we had an overflow */
 | 
						|
    if (likely((uint64_t)(th + 1) <= 1)) {
 | 
						|
        xer_ov = 0;
 | 
						|
    } else {
 | 
						|
        xer_ov = 1;
 | 
						|
    }
 | 
						|
    xer_so |= xer_ov;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void do_nego (void)
 | 
						|
{
 | 
						|
    if (likely((int32_t)T0 != INT32_MIN)) {
 | 
						|
        xer_ov = 0;
 | 
						|
        T0 = -(int32_t)T0;
 | 
						|
    } else {
 | 
						|
        xer_ov = 1;
 | 
						|
        xer_so = 1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#if defined(TARGET_PPC64)
 | 
						|
void do_nego_64 (void)
 | 
						|
{
 | 
						|
    if (likely((int64_t)T0 != INT64_MIN)) {
 | 
						|
        xer_ov = 0;
 | 
						|
        T0 = -(int64_t)T0;
 | 
						|
    } else {
 | 
						|
        xer_ov = 1;
 | 
						|
        xer_so = 1;
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void do_subfe (void)
 | 
						|
{
 | 
						|
    T0 = T1 + ~T0 + xer_ca;
 | 
						|
    if (likely((uint32_t)T0 >= (uint32_t)T1 &&
 | 
						|
               (xer_ca == 0 || (uint32_t)T0 != (uint32_t)T1))) {
 | 
						|
        xer_ca = 0;
 | 
						|
    } else {
 | 
						|
        xer_ca = 1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#if defined(TARGET_PPC64)
 | 
						|
void do_subfe_64 (void)
 | 
						|
{
 | 
						|
    T0 = T1 + ~T0 + xer_ca;
 | 
						|
    if (likely((uint64_t)T0 >= (uint64_t)T1 &&
 | 
						|
               (xer_ca == 0 || (uint64_t)T0 != (uint64_t)T1))) {
 | 
						|
        xer_ca = 0;
 | 
						|
    } else {
 | 
						|
        xer_ca = 1;
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void do_subfmeo (void)
 | 
						|
{
 | 
						|
    T1 = T0;
 | 
						|
    T0 = ~T0 + xer_ca - 1;
 | 
						|
    xer_ov = ((uint32_t)~T1 & ((uint32_t)~T1 ^ (uint32_t)T0)) >> 31;
 | 
						|
    xer_so |= xer_ov;
 | 
						|
    if (likely((uint32_t)T1 != UINT32_MAX))
 | 
						|
        xer_ca = 1;
 | 
						|
}
 | 
						|
 | 
						|
#if defined(TARGET_PPC64)
 | 
						|
void do_subfmeo_64 (void)
 | 
						|
{
 | 
						|
    T1 = T0;
 | 
						|
    T0 = ~T0 + xer_ca - 1;
 | 
						|
    xer_ov = ((uint64_t)~T1 & ((uint64_t)~T1 ^ (uint64_t)T0)) >> 63;
 | 
						|
    xer_so |= xer_ov;
 | 
						|
    if (likely((uint64_t)T1 != UINT64_MAX))
 | 
						|
        xer_ca = 1;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void do_subfzeo (void)
 | 
						|
{
 | 
						|
    T1 = T0;
 | 
						|
    T0 = ~T0 + xer_ca;
 | 
						|
    xer_ov = (((uint32_t)~T1 ^ UINT32_MAX) &
 | 
						|
              ((uint32_t)(~T1) ^ (uint32_t)T0)) >> 31;
 | 
						|
    xer_so |= xer_ov;
 | 
						|
    if (likely((uint32_t)T0 >= (uint32_t)~T1)) {
 | 
						|
        xer_ca = 0;
 | 
						|
    } else {
 | 
						|
        xer_ca = 1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#if defined(TARGET_PPC64)
 | 
						|
void do_subfzeo_64 (void)
 | 
						|
{
 | 
						|
    T1 = T0;
 | 
						|
    T0 = ~T0 + xer_ca;
 | 
						|
    xer_ov = (((uint64_t)~T1 ^  UINT64_MAX) &
 | 
						|
              ((uint64_t)(~T1) ^ (uint64_t)T0)) >> 63;
 | 
						|
    xer_so |= xer_ov;
 | 
						|
    if (likely((uint64_t)T0 >= (uint64_t)~T1)) {
 | 
						|
        xer_ca = 0;
 | 
						|
    } else {
 | 
						|
        xer_ca = 1;
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void do_cntlzw (void)
 | 
						|
{
 | 
						|
    T0 = clz32(T0);
 | 
						|
}
 | 
						|
 | 
						|
#if defined(TARGET_PPC64)
 | 
						|
void do_cntlzd (void)
 | 
						|
{
 | 
						|
    T0 = clz64(T0);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* shift right arithmetic helper */
 | 
						|
void do_sraw (void)
 | 
						|
{
 | 
						|
    int32_t ret;
 | 
						|
 | 
						|
    if (likely(!(T1 & 0x20UL))) {
 | 
						|
        if (likely((uint32_t)T1 != 0)) {
 | 
						|
            ret = (int32_t)T0 >> (T1 & 0x1fUL);
 | 
						|
            if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) {
 | 
						|
                xer_ca = 0;
 | 
						|
            } else {
 | 
						|
                xer_ca = 1;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            ret = T0;
 | 
						|
            xer_ca = 0;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        ret = UINT32_MAX * ((uint32_t)T0 >> 31);
 | 
						|
        if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) {
 | 
						|
            xer_ca = 0;
 | 
						|
        } else {
 | 
						|
            xer_ca = 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    T0 = ret;
 | 
						|
}
 | 
						|
 | 
						|
#if defined(TARGET_PPC64)
 | 
						|
void do_srad (void)
 | 
						|
{
 | 
						|
    int64_t ret;
 | 
						|
 | 
						|
    if (likely(!(T1 & 0x40UL))) {
 | 
						|
        if (likely((uint64_t)T1 != 0)) {
 | 
						|
            ret = (int64_t)T0 >> (T1 & 0x3FUL);
 | 
						|
            if (likely(ret >= 0 || ((int64_t)T0 & ((1 << T1) - 1)) == 0)) {
 | 
						|
                xer_ca = 0;
 | 
						|
            } else {
 | 
						|
                xer_ca = 1;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            ret = T0;
 | 
						|
            xer_ca = 0;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        ret = UINT64_MAX * ((uint64_t)T0 >> 63);
 | 
						|
        if (likely(ret >= 0 || ((uint64_t)T0 & ~0x8000000000000000ULL) == 0)) {
 | 
						|
            xer_ca = 0;
 | 
						|
        } else {
 | 
						|
            xer_ca = 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    T0 = ret;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void do_popcntb (void)
 | 
						|
{
 | 
						|
    uint32_t ret;
 | 
						|
    int i;
 | 
						|
 | 
						|
    ret = 0;
 | 
						|
    for (i = 0; i < 32; i += 8)
 | 
						|
        ret |= ctpop8((T0 >> i) & 0xFF) << i;
 | 
						|
    T0 = ret;
 | 
						|
}
 | 
						|
 | 
						|
#if defined(TARGET_PPC64)
 | 
						|
void do_popcntb_64 (void)
 | 
						|
{
 | 
						|
    uint64_t ret;
 | 
						|
    int i;
 | 
						|
 | 
						|
    ret = 0;
 | 
						|
    for (i = 0; i < 64; i += 8)
 | 
						|
        ret |= ctpop8((T0 >> i) & 0xFF) << i;
 | 
						|
    T0 = ret;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*****************************************************************************/
 | 
						|
/* Floating point operations helpers */
 | 
						|
static always_inline int fpisneg (float64 d)
 | 
						|
{
 | 
						|
    CPU_DoubleU u;
 | 
						|
 | 
						|
    u.d = d;
 | 
						|
 | 
						|
    return u.ll >> 63 != 0;
 | 
						|
}
 | 
						|
 | 
						|
static always_inline int isden (float64 d)
 | 
						|
{
 | 
						|
    CPU_DoubleU u;
 | 
						|
 | 
						|
    u.d = d;
 | 
						|
 | 
						|
    return ((u.ll >> 52) & 0x7FF) == 0;
 | 
						|
}
 | 
						|
 | 
						|
static always_inline int iszero (float64 d)
 | 
						|
{
 | 
						|
    CPU_DoubleU u;
 | 
						|
 | 
						|
    u.d = d;
 | 
						|
 | 
						|
    return (u.ll & ~0x8000000000000000ULL) == 0;
 | 
						|
}
 | 
						|
 | 
						|
static always_inline int isinfinity (float64 d)
 | 
						|
{
 | 
						|
    CPU_DoubleU u;
 | 
						|
 | 
						|
    u.d = d;
 | 
						|
 | 
						|
    return ((u.ll >> 52) & 0x7FF) == 0x7FF &&
 | 
						|
        (u.ll & 0x000FFFFFFFFFFFFFULL) == 0;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_SOFTFLOAT
 | 
						|
static always_inline int isfinite (float64 d)
 | 
						|
{
 | 
						|
    CPU_DoubleU u;
 | 
						|
 | 
						|
    u.d = d;
 | 
						|
 | 
						|
    return (((u.ll >> 52) & 0x7FF) != 0x7FF);
 | 
						|
}
 | 
						|
 | 
						|
static always_inline int isnormal (float64 d)
 | 
						|
{
 | 
						|
    CPU_DoubleU u;
 | 
						|
 | 
						|
    u.d = d;
 | 
						|
 | 
						|
    uint32_t exp = (u.ll >> 52) & 0x7FF;
 | 
						|
    return ((0 < exp) && (exp < 0x7FF));
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
void do_compute_fprf (int set_fprf)
 | 
						|
{
 | 
						|
    int isneg;
 | 
						|
 | 
						|
    isneg = fpisneg(FT0);
 | 
						|
    if (unlikely(float64_is_nan(FT0))) {
 | 
						|
        if (float64_is_signaling_nan(FT0)) {
 | 
						|
            /* Signaling NaN: flags are undefined */
 | 
						|
            T0 = 0x00;
 | 
						|
        } else {
 | 
						|
            /* Quiet NaN */
 | 
						|
            T0 = 0x11;
 | 
						|
        }
 | 
						|
    } else if (unlikely(isinfinity(FT0))) {
 | 
						|
        /* +/- infinity */
 | 
						|
        if (isneg)
 | 
						|
            T0 = 0x09;
 | 
						|
        else
 | 
						|
            T0 = 0x05;
 | 
						|
    } else {
 | 
						|
        if (iszero(FT0)) {
 | 
						|
            /* +/- zero */
 | 
						|
            if (isneg)
 | 
						|
                T0 = 0x12;
 | 
						|
            else
 | 
						|
                T0 = 0x02;
 | 
						|
        } else {
 | 
						|
            if (isden(FT0)) {
 | 
						|
                /* Denormalized numbers */
 | 
						|
                T0 = 0x10;
 | 
						|
            } else {
 | 
						|
                /* Normalized numbers */
 | 
						|
                T0 = 0x00;
 | 
						|
            }
 | 
						|
            if (isneg) {
 | 
						|
                T0 |= 0x08;
 | 
						|
            } else {
 | 
						|
                T0 |= 0x04;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (set_fprf) {
 | 
						|
        /* We update FPSCR_FPRF */
 | 
						|
        env->fpscr &= ~(0x1F << FPSCR_FPRF);
 | 
						|
        env->fpscr |= T0 << FPSCR_FPRF;
 | 
						|
    }
 | 
						|
    /* We just need fpcc to update Rc1 */
 | 
						|
    T0 &= 0xF;
 | 
						|
}
 | 
						|
 | 
						|
/* Floating-point invalid operations exception */
 | 
						|
static always_inline void fload_invalid_op_excp (int op)
 | 
						|
{
 | 
						|
    int ve;
 | 
						|
 | 
						|
    ve = fpscr_ve;
 | 
						|
    if (op & POWERPC_EXCP_FP_VXSNAN) {
 | 
						|
        /* Operation on signaling NaN */
 | 
						|
        env->fpscr |= 1 << FPSCR_VXSNAN;
 | 
						|
    }
 | 
						|
    if (op & POWERPC_EXCP_FP_VXSOFT) {
 | 
						|
        /* Software-defined condition */
 | 
						|
        env->fpscr |= 1 << FPSCR_VXSOFT;
 | 
						|
    }
 | 
						|
    switch (op & ~(POWERPC_EXCP_FP_VXSOFT | POWERPC_EXCP_FP_VXSNAN)) {
 | 
						|
    case POWERPC_EXCP_FP_VXISI:
 | 
						|
        /* Magnitude subtraction of infinities */
 | 
						|
        env->fpscr |= 1 << FPSCR_VXISI;
 | 
						|
        goto update_arith;
 | 
						|
    case POWERPC_EXCP_FP_VXIDI:
 | 
						|
        /* Division of infinity by infinity */
 | 
						|
        env->fpscr |= 1 << FPSCR_VXIDI;
 | 
						|
        goto update_arith;
 | 
						|
    case POWERPC_EXCP_FP_VXZDZ:
 | 
						|
        /* Division of zero by zero */
 | 
						|
        env->fpscr |= 1 << FPSCR_VXZDZ;
 | 
						|
        goto update_arith;
 | 
						|
    case POWERPC_EXCP_FP_VXIMZ:
 | 
						|
        /* Multiplication of zero by infinity */
 | 
						|
        env->fpscr |= 1 << FPSCR_VXIMZ;
 | 
						|
        goto update_arith;
 | 
						|
    case POWERPC_EXCP_FP_VXVC:
 | 
						|
        /* Ordered comparison of NaN */
 | 
						|
        env->fpscr |= 1 << FPSCR_VXVC;
 | 
						|
        env->fpscr &= ~(0xF << FPSCR_FPCC);
 | 
						|
        env->fpscr |= 0x11 << FPSCR_FPCC;
 | 
						|
        /* We must update the target FPR before raising the exception */
 | 
						|
        if (ve != 0) {
 | 
						|
            env->exception_index = POWERPC_EXCP_PROGRAM;
 | 
						|
            env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
 | 
						|
            /* Update the floating-point enabled exception summary */
 | 
						|
            env->fpscr |= 1 << FPSCR_FEX;
 | 
						|
            /* Exception is differed */
 | 
						|
            ve = 0;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case POWERPC_EXCP_FP_VXSQRT:
 | 
						|
        /* Square root of a negative number */
 | 
						|
        env->fpscr |= 1 << FPSCR_VXSQRT;
 | 
						|
    update_arith:
 | 
						|
        env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
 | 
						|
        if (ve == 0) {
 | 
						|
            /* Set the result to quiet NaN */
 | 
						|
            FT0 = UINT64_MAX;
 | 
						|
            env->fpscr &= ~(0xF << FPSCR_FPCC);
 | 
						|
            env->fpscr |= 0x11 << FPSCR_FPCC;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case POWERPC_EXCP_FP_VXCVI:
 | 
						|
        /* Invalid conversion */
 | 
						|
        env->fpscr |= 1 << FPSCR_VXCVI;
 | 
						|
        env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
 | 
						|
        if (ve == 0) {
 | 
						|
            /* Set the result to quiet NaN */
 | 
						|
            FT0 = UINT64_MAX;
 | 
						|
            env->fpscr &= ~(0xF << FPSCR_FPCC);
 | 
						|
            env->fpscr |= 0x11 << FPSCR_FPCC;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    /* Update the floating-point invalid operation summary */
 | 
						|
    env->fpscr |= 1 << FPSCR_VX;
 | 
						|
    /* Update the floating-point exception summary */
 | 
						|
    env->fpscr |= 1 << FPSCR_FX;
 | 
						|
    if (ve != 0) {
 | 
						|
        /* Update the floating-point enabled exception summary */
 | 
						|
        env->fpscr |= 1 << FPSCR_FEX;
 | 
						|
        if (msr_fe0 != 0 || msr_fe1 != 0)
 | 
						|
            do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static always_inline void float_zero_divide_excp (void)
 | 
						|
{
 | 
						|
    CPU_DoubleU u0, u1;
 | 
						|
 | 
						|
    env->fpscr |= 1 << FPSCR_ZX;
 | 
						|
    env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
 | 
						|
    /* Update the floating-point exception summary */
 | 
						|
    env->fpscr |= 1 << FPSCR_FX;
 | 
						|
    if (fpscr_ze != 0) {
 | 
						|
        /* Update the floating-point enabled exception summary */
 | 
						|
        env->fpscr |= 1 << FPSCR_FEX;
 | 
						|
        if (msr_fe0 != 0 || msr_fe1 != 0) {
 | 
						|
            do_raise_exception_err(POWERPC_EXCP_PROGRAM,
 | 
						|
                                   POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        /* Set the result to infinity */
 | 
						|
        u0.d = FT0;
 | 
						|
        u1.d = FT1;
 | 
						|
        u0.ll = ((u0.ll ^ u1.ll) & 0x8000000000000000ULL);
 | 
						|
        u0.ll |= 0x7FFULL << 52;
 | 
						|
        FT0 = u0.d;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static always_inline void float_overflow_excp (void)
 | 
						|
{
 | 
						|
    env->fpscr |= 1 << FPSCR_OX;
 | 
						|
    /* Update the floating-point exception summary */
 | 
						|
    env->fpscr |= 1 << FPSCR_FX;
 | 
						|
    if (fpscr_oe != 0) {
 | 
						|
        /* XXX: should adjust the result */
 | 
						|
        /* Update the floating-point enabled exception summary */
 | 
						|
        env->fpscr |= 1 << FPSCR_FEX;
 | 
						|
        /* We must update the target FPR before raising the exception */
 | 
						|
        env->exception_index = POWERPC_EXCP_PROGRAM;
 | 
						|
        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
 | 
						|
    } else {
 | 
						|
        env->fpscr |= 1 << FPSCR_XX;
 | 
						|
        env->fpscr |= 1 << FPSCR_FI;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static always_inline void float_underflow_excp (void)
 | 
						|
{
 | 
						|
    env->fpscr |= 1 << FPSCR_UX;
 | 
						|
    /* Update the floating-point exception summary */
 | 
						|
    env->fpscr |= 1 << FPSCR_FX;
 | 
						|
    if (fpscr_ue != 0) {
 | 
						|
        /* XXX: should adjust the result */
 | 
						|
        /* Update the floating-point enabled exception summary */
 | 
						|
        env->fpscr |= 1 << FPSCR_FEX;
 | 
						|
        /* We must update the target FPR before raising the exception */
 | 
						|
        env->exception_index = POWERPC_EXCP_PROGRAM;
 | 
						|
        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static always_inline void float_inexact_excp (void)
 | 
						|
{
 | 
						|
    env->fpscr |= 1 << FPSCR_XX;
 | 
						|
    /* Update the floating-point exception summary */
 | 
						|
    env->fpscr |= 1 << FPSCR_FX;
 | 
						|
    if (fpscr_xe != 0) {
 | 
						|
        /* Update the floating-point enabled exception summary */
 | 
						|
        env->fpscr |= 1 << FPSCR_FEX;
 | 
						|
        /* We must update the target FPR before raising the exception */
 | 
						|
        env->exception_index = POWERPC_EXCP_PROGRAM;
 | 
						|
        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static always_inline void fpscr_set_rounding_mode (void)
 | 
						|
{
 | 
						|
    int rnd_type;
 | 
						|
 | 
						|
    /* Set rounding mode */
 | 
						|
    switch (fpscr_rn) {
 | 
						|
    case 0:
 | 
						|
        /* Best approximation (round to nearest) */
 | 
						|
        rnd_type = float_round_nearest_even;
 | 
						|
        break;
 | 
						|
    case 1:
 | 
						|
        /* Smaller magnitude (round toward zero) */
 | 
						|
        rnd_type = float_round_to_zero;
 | 
						|
        break;
 | 
						|
    case 2:
 | 
						|
        /* Round toward +infinite */
 | 
						|
        rnd_type = float_round_up;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
    case 3:
 | 
						|
        /* Round toward -infinite */
 | 
						|
        rnd_type = float_round_down;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    set_float_rounding_mode(rnd_type, &env->fp_status);
 | 
						|
}
 | 
						|
 | 
						|
void do_fpscr_setbit (int bit)
 | 
						|
{
 | 
						|
    int prev;
 | 
						|
 | 
						|
    prev = (env->fpscr >> bit) & 1;
 | 
						|
    env->fpscr |= 1 << bit;
 | 
						|
    if (prev == 0) {
 | 
						|
        switch (bit) {
 | 
						|
        case FPSCR_VX:
 | 
						|
            env->fpscr |= 1 << FPSCR_FX;
 | 
						|
            if (fpscr_ve)
 | 
						|
                goto raise_ve;
 | 
						|
        case FPSCR_OX:
 | 
						|
            env->fpscr |= 1 << FPSCR_FX;
 | 
						|
            if (fpscr_oe)
 | 
						|
                goto raise_oe;
 | 
						|
            break;
 | 
						|
        case FPSCR_UX:
 | 
						|
            env->fpscr |= 1 << FPSCR_FX;
 | 
						|
            if (fpscr_ue)
 | 
						|
                goto raise_ue;
 | 
						|
            break;
 | 
						|
        case FPSCR_ZX:
 | 
						|
            env->fpscr |= 1 << FPSCR_FX;
 | 
						|
            if (fpscr_ze)
 | 
						|
                goto raise_ze;
 | 
						|
            break;
 | 
						|
        case FPSCR_XX:
 | 
						|
            env->fpscr |= 1 << FPSCR_FX;
 | 
						|
            if (fpscr_xe)
 | 
						|
                goto raise_xe;
 | 
						|
            break;
 | 
						|
        case FPSCR_VXSNAN:
 | 
						|
        case FPSCR_VXISI:
 | 
						|
        case FPSCR_VXIDI:
 | 
						|
        case FPSCR_VXZDZ:
 | 
						|
        case FPSCR_VXIMZ:
 | 
						|
        case FPSCR_VXVC:
 | 
						|
        case FPSCR_VXSOFT:
 | 
						|
        case FPSCR_VXSQRT:
 | 
						|
        case FPSCR_VXCVI:
 | 
						|
            env->fpscr |= 1 << FPSCR_VX;
 | 
						|
            env->fpscr |= 1 << FPSCR_FX;
 | 
						|
            if (fpscr_ve != 0)
 | 
						|
                goto raise_ve;
 | 
						|
            break;
 | 
						|
        case FPSCR_VE:
 | 
						|
            if (fpscr_vx != 0) {
 | 
						|
            raise_ve:
 | 
						|
                env->error_code = POWERPC_EXCP_FP;
 | 
						|
                if (fpscr_vxsnan)
 | 
						|
                    env->error_code |= POWERPC_EXCP_FP_VXSNAN;
 | 
						|
                if (fpscr_vxisi)
 | 
						|
                    env->error_code |= POWERPC_EXCP_FP_VXISI;
 | 
						|
                if (fpscr_vxidi)
 | 
						|
                    env->error_code |= POWERPC_EXCP_FP_VXIDI;
 | 
						|
                if (fpscr_vxzdz)
 | 
						|
                    env->error_code |= POWERPC_EXCP_FP_VXZDZ;
 | 
						|
                if (fpscr_vximz)
 | 
						|
                    env->error_code |= POWERPC_EXCP_FP_VXIMZ;
 | 
						|
                if (fpscr_vxvc)
 | 
						|
                    env->error_code |= POWERPC_EXCP_FP_VXVC;
 | 
						|
                if (fpscr_vxsoft)
 | 
						|
                    env->error_code |= POWERPC_EXCP_FP_VXSOFT;
 | 
						|
                if (fpscr_vxsqrt)
 | 
						|
                    env->error_code |= POWERPC_EXCP_FP_VXSQRT;
 | 
						|
                if (fpscr_vxcvi)
 | 
						|
                    env->error_code |= POWERPC_EXCP_FP_VXCVI;
 | 
						|
                goto raise_excp;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case FPSCR_OE:
 | 
						|
            if (fpscr_ox != 0) {
 | 
						|
            raise_oe:
 | 
						|
                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
 | 
						|
                goto raise_excp;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case FPSCR_UE:
 | 
						|
            if (fpscr_ux != 0) {
 | 
						|
            raise_ue:
 | 
						|
                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
 | 
						|
                goto raise_excp;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case FPSCR_ZE:
 | 
						|
            if (fpscr_zx != 0) {
 | 
						|
            raise_ze:
 | 
						|
                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
 | 
						|
                goto raise_excp;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case FPSCR_XE:
 | 
						|
            if (fpscr_xx != 0) {
 | 
						|
            raise_xe:
 | 
						|
                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
 | 
						|
                goto raise_excp;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case FPSCR_RN1:
 | 
						|
        case FPSCR_RN:
 | 
						|
            fpscr_set_rounding_mode();
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            break;
 | 
						|
        raise_excp:
 | 
						|
            /* Update the floating-point enabled exception summary */
 | 
						|
            env->fpscr |= 1 << FPSCR_FEX;
 | 
						|
                /* We have to update Rc1 before raising the exception */
 | 
						|
            env->exception_index = POWERPC_EXCP_PROGRAM;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#if defined(WORDS_BIGENDIAN)
 | 
						|
#define WORD0 0
 | 
						|
#define WORD1 1
 | 
						|
#else
 | 
						|
#define WORD0 1
 | 
						|
#define WORD1 0
 | 
						|
#endif
 | 
						|
void do_store_fpscr (uint32_t mask)
 | 
						|
{
 | 
						|
    /*
 | 
						|
     * We use only the 32 LSB of the incoming fpr
 | 
						|
     */
 | 
						|
    CPU_DoubleU u;
 | 
						|
    uint32_t prev, new;
 | 
						|
    int i;
 | 
						|
 | 
						|
    u.d = FT0;
 | 
						|
    prev = env->fpscr;
 | 
						|
    new = u.l.lower;
 | 
						|
    new &= ~0x90000000;
 | 
						|
    new |= prev & 0x90000000;
 | 
						|
    for (i = 0; i < 7; i++) {
 | 
						|
        if (mask & (1 << i)) {
 | 
						|
            env->fpscr &= ~(0xF << (4 * i));
 | 
						|
            env->fpscr |= new & (0xF << (4 * i));
 | 
						|
        }
 | 
						|
    }
 | 
						|
    /* Update VX and FEX */
 | 
						|
    if (fpscr_ix != 0)
 | 
						|
        env->fpscr |= 1 << FPSCR_VX;
 | 
						|
    else
 | 
						|
        env->fpscr &= ~(1 << FPSCR_VX);
 | 
						|
    if ((fpscr_ex & fpscr_eex) != 0) {
 | 
						|
        env->fpscr |= 1 << FPSCR_FEX;
 | 
						|
        env->exception_index = POWERPC_EXCP_PROGRAM;
 | 
						|
        /* XXX: we should compute it properly */
 | 
						|
        env->error_code = POWERPC_EXCP_FP;
 | 
						|
    }
 | 
						|
    else
 | 
						|
        env->fpscr &= ~(1 << FPSCR_FEX);
 | 
						|
    fpscr_set_rounding_mode();
 | 
						|
}
 | 
						|
#undef WORD0
 | 
						|
#undef WORD1
 | 
						|
 | 
						|
#ifdef CONFIG_SOFTFLOAT
 | 
						|
void do_float_check_status (void)
 | 
						|
{
 | 
						|
    if (env->exception_index == POWERPC_EXCP_PROGRAM &&
 | 
						|
        (env->error_code & POWERPC_EXCP_FP)) {
 | 
						|
        /* Differred floating-point exception after target FPR update */
 | 
						|
        if (msr_fe0 != 0 || msr_fe1 != 0)
 | 
						|
            do_raise_exception_err(env->exception_index, env->error_code);
 | 
						|
    } else if (env->fp_status.float_exception_flags & float_flag_overflow) {
 | 
						|
        float_overflow_excp();
 | 
						|
    } else if (env->fp_status.float_exception_flags & float_flag_underflow) {
 | 
						|
        float_underflow_excp();
 | 
						|
    } else if (env->fp_status.float_exception_flags & float_flag_inexact) {
 | 
						|
        float_inexact_excp();
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#if USE_PRECISE_EMULATION
 | 
						|
void do_fadd (void)
 | 
						|
{
 | 
						|
    if (unlikely(float64_is_signaling_nan(FT0) ||
 | 
						|
                 float64_is_signaling_nan(FT1))) {
 | 
						|
        /* sNaN addition */
 | 
						|
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
 | 
						|
    } else if (likely(isfinite(FT0) || isfinite(FT1) ||
 | 
						|
                      fpisneg(FT0) == fpisneg(FT1))) {
 | 
						|
        FT0 = float64_add(FT0, FT1, &env->fp_status);
 | 
						|
    } else {
 | 
						|
        /* Magnitude subtraction of infinities */
 | 
						|
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void do_fsub (void)
 | 
						|
{
 | 
						|
    if (unlikely(float64_is_signaling_nan(FT0) ||
 | 
						|
                 float64_is_signaling_nan(FT1))) {
 | 
						|
        /* sNaN subtraction */
 | 
						|
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
 | 
						|
    } else if (likely(isfinite(FT0) || isfinite(FT1) ||
 | 
						|
                      fpisneg(FT0) != fpisneg(FT1))) {
 | 
						|
        FT0 = float64_sub(FT0, FT1, &env->fp_status);
 | 
						|
    } else {
 | 
						|
        /* Magnitude subtraction of infinities */
 | 
						|
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void do_fmul (void)
 | 
						|
{
 | 
						|
    if (unlikely(float64_is_signaling_nan(FT0) ||
 | 
						|
                 float64_is_signaling_nan(FT1))) {
 | 
						|
        /* sNaN multiplication */
 | 
						|
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
 | 
						|
    } else if (unlikely((isinfinity(FT0) && iszero(FT1)) ||
 | 
						|
                        (iszero(FT0) && isinfinity(FT1)))) {
 | 
						|
        /* Multiplication of zero by infinity */
 | 
						|
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
 | 
						|
    } else {
 | 
						|
        FT0 = float64_mul(FT0, FT1, &env->fp_status);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void do_fdiv (void)
 | 
						|
{
 | 
						|
    if (unlikely(float64_is_signaling_nan(FT0) ||
 | 
						|
                 float64_is_signaling_nan(FT1))) {
 | 
						|
        /* sNaN division */
 | 
						|
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
 | 
						|
    } else if (unlikely(isinfinity(FT0) && isinfinity(FT1))) {
 | 
						|
        /* Division of infinity by infinity */
 | 
						|
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI);
 | 
						|
    } else if (unlikely(iszero(FT1))) {
 | 
						|
        if (iszero(FT0)) {
 | 
						|
            /* Division of zero by zero */
 | 
						|
            fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ);
 | 
						|
        } else {
 | 
						|
            /* Division by zero */
 | 
						|
            float_zero_divide_excp();
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        FT0 = float64_div(FT0, FT1, &env->fp_status);
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif /* USE_PRECISE_EMULATION */
 | 
						|
 | 
						|
void do_fctiw (void)
 | 
						|
{
 | 
						|
    CPU_DoubleU p;
 | 
						|
 | 
						|
    if (unlikely(float64_is_signaling_nan(FT0))) {
 | 
						|
        /* sNaN conversion */
 | 
						|
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
 | 
						|
    } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
 | 
						|
        /* qNan / infinity conversion */
 | 
						|
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
 | 
						|
    } else {
 | 
						|
        p.ll = float64_to_int32(FT0, &env->fp_status);
 | 
						|
#if USE_PRECISE_EMULATION
 | 
						|
        /* XXX: higher bits are not supposed to be significant.
 | 
						|
         *     to make tests easier, return the same as a real PowerPC 750
 | 
						|
         */
 | 
						|
        p.ll |= 0xFFF80000ULL << 32;
 | 
						|
#endif
 | 
						|
        FT0 = p.d;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void do_fctiwz (void)
 | 
						|
{
 | 
						|
    CPU_DoubleU p;
 | 
						|
 | 
						|
    if (unlikely(float64_is_signaling_nan(FT0))) {
 | 
						|
        /* sNaN conversion */
 | 
						|
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
 | 
						|
    } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
 | 
						|
        /* qNan / infinity conversion */
 | 
						|
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
 | 
						|
    } else {
 | 
						|
        p.ll = float64_to_int32_round_to_zero(FT0, &env->fp_status);
 | 
						|
#if USE_PRECISE_EMULATION
 | 
						|
        /* XXX: higher bits are not supposed to be significant.
 | 
						|
         *     to make tests easier, return the same as a real PowerPC 750
 | 
						|
         */
 | 
						|
        p.ll |= 0xFFF80000ULL << 32;
 | 
						|
#endif
 | 
						|
        FT0 = p.d;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#if defined(TARGET_PPC64)
 | 
						|
void do_fcfid (void)
 | 
						|
{
 | 
						|
    CPU_DoubleU p;
 | 
						|
 | 
						|
    p.d = FT0;
 | 
						|
    FT0 = int64_to_float64(p.ll, &env->fp_status);
 | 
						|
}
 | 
						|
 | 
						|
void do_fctid (void)
 | 
						|
{
 | 
						|
    CPU_DoubleU p;
 | 
						|
 | 
						|
    if (unlikely(float64_is_signaling_nan(FT0))) {
 | 
						|
        /* sNaN conversion */
 | 
						|
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
 | 
						|
    } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
 | 
						|
        /* qNan / infinity conversion */
 | 
						|
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
 | 
						|
    } else {
 | 
						|
        p.ll = float64_to_int64(FT0, &env->fp_status);
 | 
						|
        FT0 = p.d;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void do_fctidz (void)
 | 
						|
{
 | 
						|
    CPU_DoubleU p;
 | 
						|
 | 
						|
    if (unlikely(float64_is_signaling_nan(FT0))) {
 | 
						|
        /* sNaN conversion */
 | 
						|
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
 | 
						|
    } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
 | 
						|
        /* qNan / infinity conversion */
 | 
						|
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
 | 
						|
    } else {
 | 
						|
        p.ll = float64_to_int64_round_to_zero(FT0, &env->fp_status);
 | 
						|
        FT0 = p.d;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
static always_inline void do_fri (int rounding_mode)
 | 
						|
{
 | 
						|
    if (unlikely(float64_is_signaling_nan(FT0))) {
 | 
						|
        /* sNaN round */
 | 
						|
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
 | 
						|
    } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
 | 
						|
        /* qNan / infinity round */
 | 
						|
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
 | 
						|
    } else {
 | 
						|
        set_float_rounding_mode(rounding_mode, &env->fp_status);
 | 
						|
        FT0 = float64_round_to_int(FT0, &env->fp_status);
 | 
						|
        /* Restore rounding mode from FPSCR */
 | 
						|
        fpscr_set_rounding_mode();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void do_frin (void)
 | 
						|
{
 | 
						|
    do_fri(float_round_nearest_even);
 | 
						|
}
 | 
						|
 | 
						|
void do_friz (void)
 | 
						|
{
 | 
						|
    do_fri(float_round_to_zero);
 | 
						|
}
 | 
						|
 | 
						|
void do_frip (void)
 | 
						|
{
 | 
						|
    do_fri(float_round_up);
 | 
						|
}
 | 
						|
 | 
						|
void do_frim (void)
 | 
						|
{
 | 
						|
    do_fri(float_round_down);
 | 
						|
}
 | 
						|
 | 
						|
#if USE_PRECISE_EMULATION
 | 
						|
void do_fmadd (void)
 | 
						|
{
 | 
						|
    if (unlikely(float64_is_signaling_nan(FT0) ||
 | 
						|
                 float64_is_signaling_nan(FT1) ||
 | 
						|
                 float64_is_signaling_nan(FT2))) {
 | 
						|
        /* sNaN operation */
 | 
						|
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
 | 
						|
    } else {
 | 
						|
#ifdef FLOAT128
 | 
						|
        /* This is the way the PowerPC specification defines it */
 | 
						|
        float128 ft0_128, ft1_128;
 | 
						|
 | 
						|
        ft0_128 = float64_to_float128(FT0, &env->fp_status);
 | 
						|
        ft1_128 = float64_to_float128(FT1, &env->fp_status);
 | 
						|
        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
 | 
						|
        ft1_128 = float64_to_float128(FT2, &env->fp_status);
 | 
						|
        ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
 | 
						|
        FT0 = float128_to_float64(ft0_128, &env->fp_status);
 | 
						|
#else
 | 
						|
        /* This is OK on x86 hosts */
 | 
						|
        FT0 = (FT0 * FT1) + FT2;
 | 
						|
#endif
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void do_fmsub (void)
 | 
						|
{
 | 
						|
    if (unlikely(float64_is_signaling_nan(FT0) ||
 | 
						|
                 float64_is_signaling_nan(FT1) ||
 | 
						|
                 float64_is_signaling_nan(FT2))) {
 | 
						|
        /* sNaN operation */
 | 
						|
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
 | 
						|
    } else {
 | 
						|
#ifdef FLOAT128
 | 
						|
        /* This is the way the PowerPC specification defines it */
 | 
						|
        float128 ft0_128, ft1_128;
 | 
						|
 | 
						|
        ft0_128 = float64_to_float128(FT0, &env->fp_status);
 | 
						|
        ft1_128 = float64_to_float128(FT1, &env->fp_status);
 | 
						|
        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
 | 
						|
        ft1_128 = float64_to_float128(FT2, &env->fp_status);
 | 
						|
        ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
 | 
						|
        FT0 = float128_to_float64(ft0_128, &env->fp_status);
 | 
						|
#else
 | 
						|
        /* This is OK on x86 hosts */
 | 
						|
        FT0 = (FT0 * FT1) - FT2;
 | 
						|
#endif
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif /* USE_PRECISE_EMULATION */
 | 
						|
 | 
						|
void do_fnmadd (void)
 | 
						|
{
 | 
						|
    if (unlikely(float64_is_signaling_nan(FT0) ||
 | 
						|
                 float64_is_signaling_nan(FT1) ||
 | 
						|
                 float64_is_signaling_nan(FT2))) {
 | 
						|
        /* sNaN operation */
 | 
						|
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
 | 
						|
    } else {
 | 
						|
#if USE_PRECISE_EMULATION
 | 
						|
#ifdef FLOAT128
 | 
						|
        /* This is the way the PowerPC specification defines it */
 | 
						|
        float128 ft0_128, ft1_128;
 | 
						|
 | 
						|
        ft0_128 = float64_to_float128(FT0, &env->fp_status);
 | 
						|
        ft1_128 = float64_to_float128(FT1, &env->fp_status);
 | 
						|
        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
 | 
						|
        ft1_128 = float64_to_float128(FT2, &env->fp_status);
 | 
						|
        ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
 | 
						|
        FT0 = float128_to_float64(ft0_128, &env->fp_status);
 | 
						|
#else
 | 
						|
        /* This is OK on x86 hosts */
 | 
						|
        FT0 = (FT0 * FT1) + FT2;
 | 
						|
#endif
 | 
						|
#else
 | 
						|
        FT0 = float64_mul(FT0, FT1, &env->fp_status);
 | 
						|
        FT0 = float64_add(FT0, FT2, &env->fp_status);
 | 
						|
#endif
 | 
						|
        if (likely(!isnan(FT0)))
 | 
						|
            FT0 = float64_chs(FT0);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void do_fnmsub (void)
 | 
						|
{
 | 
						|
    if (unlikely(float64_is_signaling_nan(FT0) ||
 | 
						|
                 float64_is_signaling_nan(FT1) ||
 | 
						|
                 float64_is_signaling_nan(FT2))) {
 | 
						|
        /* sNaN operation */
 | 
						|
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
 | 
						|
    } else {
 | 
						|
#if USE_PRECISE_EMULATION
 | 
						|
#ifdef FLOAT128
 | 
						|
        /* This is the way the PowerPC specification defines it */
 | 
						|
        float128 ft0_128, ft1_128;
 | 
						|
 | 
						|
        ft0_128 = float64_to_float128(FT0, &env->fp_status);
 | 
						|
        ft1_128 = float64_to_float128(FT1, &env->fp_status);
 | 
						|
        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
 | 
						|
        ft1_128 = float64_to_float128(FT2, &env->fp_status);
 | 
						|
        ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
 | 
						|
        FT0 = float128_to_float64(ft0_128, &env->fp_status);
 | 
						|
#else
 | 
						|
        /* This is OK on x86 hosts */
 | 
						|
        FT0 = (FT0 * FT1) - FT2;
 | 
						|
#endif
 | 
						|
#else
 | 
						|
        FT0 = float64_mul(FT0, FT1, &env->fp_status);
 | 
						|
        FT0 = float64_sub(FT0, FT2, &env->fp_status);
 | 
						|
#endif
 | 
						|
        if (likely(!isnan(FT0)))
 | 
						|
            FT0 = float64_chs(FT0);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#if USE_PRECISE_EMULATION
 | 
						|
void do_frsp (void)
 | 
						|
{
 | 
						|
    if (unlikely(float64_is_signaling_nan(FT0))) {
 | 
						|
        /* sNaN square root */
 | 
						|
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
 | 
						|
    } else {
 | 
						|
        FT0 = float64_to_float32(FT0, &env->fp_status);
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif /* USE_PRECISE_EMULATION */
 | 
						|
 | 
						|
void do_fsqrt (void)
 | 
						|
{
 | 
						|
    if (unlikely(float64_is_signaling_nan(FT0))) {
 | 
						|
        /* sNaN square root */
 | 
						|
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
 | 
						|
    } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) {
 | 
						|
        /* Square root of a negative nonzero number */
 | 
						|
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
 | 
						|
    } else {
 | 
						|
        FT0 = float64_sqrt(FT0, &env->fp_status);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void do_fre (void)
 | 
						|
{
 | 
						|
    CPU_DoubleU p;
 | 
						|
 | 
						|
    if (unlikely(float64_is_signaling_nan(FT0))) {
 | 
						|
        /* sNaN reciprocal */
 | 
						|
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
 | 
						|
    } else if (unlikely(iszero(FT0))) {
 | 
						|
        /* Zero reciprocal */
 | 
						|
        float_zero_divide_excp();
 | 
						|
    } else if (likely(isnormal(FT0))) {
 | 
						|
        FT0 = float64_div(1.0, FT0, &env->fp_status);
 | 
						|
    } else {
 | 
						|
        p.d = FT0;
 | 
						|
        if (p.ll == 0x8000000000000000ULL) {
 | 
						|
            p.ll = 0xFFF0000000000000ULL;
 | 
						|
        } else if (p.ll == 0x0000000000000000ULL) {
 | 
						|
            p.ll = 0x7FF0000000000000ULL;
 | 
						|
        } else if (isnan(FT0)) {
 | 
						|
            p.ll = 0x7FF8000000000000ULL;
 | 
						|
        } else if (fpisneg(FT0)) {
 | 
						|
            p.ll = 0x8000000000000000ULL;
 | 
						|
        } else {
 | 
						|
            p.ll = 0x0000000000000000ULL;
 | 
						|
        }
 | 
						|
        FT0 = p.d;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void do_fres (void)
 | 
						|
{
 | 
						|
    CPU_DoubleU p;
 | 
						|
 | 
						|
    if (unlikely(float64_is_signaling_nan(FT0))) {
 | 
						|
        /* sNaN reciprocal */
 | 
						|
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
 | 
						|
    } else if (unlikely(iszero(FT0))) {
 | 
						|
        /* Zero reciprocal */
 | 
						|
        float_zero_divide_excp();
 | 
						|
    } else if (likely(isnormal(FT0))) {
 | 
						|
#if USE_PRECISE_EMULATION
 | 
						|
        FT0 = float64_div(1.0, FT0, &env->fp_status);
 | 
						|
        FT0 = float64_to_float32(FT0, &env->fp_status);
 | 
						|
#else
 | 
						|
        FT0 = float32_div(1.0, FT0, &env->fp_status);
 | 
						|
#endif
 | 
						|
    } else {
 | 
						|
        p.d = FT0;
 | 
						|
        if (p.ll == 0x8000000000000000ULL) {
 | 
						|
            p.ll = 0xFFF0000000000000ULL;
 | 
						|
        } else if (p.ll == 0x0000000000000000ULL) {
 | 
						|
            p.ll = 0x7FF0000000000000ULL;
 | 
						|
        } else if (isnan(FT0)) {
 | 
						|
            p.ll = 0x7FF8000000000000ULL;
 | 
						|
        } else if (fpisneg(FT0)) {
 | 
						|
            p.ll = 0x8000000000000000ULL;
 | 
						|
        } else {
 | 
						|
            p.ll = 0x0000000000000000ULL;
 | 
						|
        }
 | 
						|
        FT0 = p.d;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void do_frsqrte (void)
 | 
						|
{
 | 
						|
    CPU_DoubleU p;
 | 
						|
 | 
						|
    if (unlikely(float64_is_signaling_nan(FT0))) {
 | 
						|
        /* sNaN reciprocal square root */
 | 
						|
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
 | 
						|
    } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) {
 | 
						|
        /* Reciprocal square root of a negative nonzero number */
 | 
						|
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
 | 
						|
    } else if (likely(isnormal(FT0))) {
 | 
						|
        FT0 = float64_sqrt(FT0, &env->fp_status);
 | 
						|
        FT0 = float32_div(1.0, FT0, &env->fp_status);
 | 
						|
    } else {
 | 
						|
        p.d = FT0;
 | 
						|
        if (p.ll == 0x8000000000000000ULL) {
 | 
						|
            p.ll = 0xFFF0000000000000ULL;
 | 
						|
        } else if (p.ll == 0x0000000000000000ULL) {
 | 
						|
            p.ll = 0x7FF0000000000000ULL;
 | 
						|
        } else if (isnan(FT0)) {
 | 
						|
            p.ll |= 0x000FFFFFFFFFFFFFULL;
 | 
						|
        } else if (fpisneg(FT0)) {
 | 
						|
            p.ll = 0x7FF8000000000000ULL;
 | 
						|
        } else {
 | 
						|
            p.ll = 0x0000000000000000ULL;
 | 
						|
        }
 | 
						|
        FT0 = p.d;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void do_fsel (void)
 | 
						|
{
 | 
						|
    if (!fpisneg(FT0) || iszero(FT0))
 | 
						|
        FT0 = FT1;
 | 
						|
    else
 | 
						|
        FT0 = FT2;
 | 
						|
}
 | 
						|
 | 
						|
void do_fcmpu (void)
 | 
						|
{
 | 
						|
    if (unlikely(float64_is_signaling_nan(FT0) ||
 | 
						|
                 float64_is_signaling_nan(FT1))) {
 | 
						|
        /* sNaN comparison */
 | 
						|
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
 | 
						|
    } else {
 | 
						|
        if (float64_lt(FT0, FT1, &env->fp_status)) {
 | 
						|
            T0 = 0x08UL;
 | 
						|
        } else if (!float64_le(FT0, FT1, &env->fp_status)) {
 | 
						|
            T0 = 0x04UL;
 | 
						|
        } else {
 | 
						|
            T0 = 0x02UL;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    env->fpscr &= ~(0x0F << FPSCR_FPRF);
 | 
						|
    env->fpscr |= T0 << FPSCR_FPRF;
 | 
						|
}
 | 
						|
 | 
						|
void do_fcmpo (void)
 | 
						|
{
 | 
						|
    if (unlikely(float64_is_nan(FT0) ||
 | 
						|
                 float64_is_nan(FT1))) {
 | 
						|
        if (float64_is_signaling_nan(FT0) ||
 | 
						|
            float64_is_signaling_nan(FT1)) {
 | 
						|
            /* sNaN comparison */
 | 
						|
            fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN |
 | 
						|
                                  POWERPC_EXCP_FP_VXVC);
 | 
						|
        } else {
 | 
						|
            /* qNaN comparison */
 | 
						|
            fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC);
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        if (float64_lt(FT0, FT1, &env->fp_status)) {
 | 
						|
            T0 = 0x08UL;
 | 
						|
        } else if (!float64_le(FT0, FT1, &env->fp_status)) {
 | 
						|
            T0 = 0x04UL;
 | 
						|
        } else {
 | 
						|
            T0 = 0x02UL;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    env->fpscr &= ~(0x0F << FPSCR_FPRF);
 | 
						|
    env->fpscr |= T0 << FPSCR_FPRF;
 | 
						|
}
 | 
						|
 | 
						|
#if !defined (CONFIG_USER_ONLY)
 | 
						|
void cpu_dump_rfi (target_ulong RA, target_ulong msr);
 | 
						|
 | 
						|
void do_store_msr (void)
 | 
						|
{
 | 
						|
    T0 = hreg_store_msr(env, T0, 0);
 | 
						|
    if (T0 != 0) {
 | 
						|
        env->interrupt_request |= CPU_INTERRUPT_EXITTB;
 | 
						|
        do_raise_exception(T0);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static always_inline void __do_rfi (target_ulong nip, target_ulong msr,
 | 
						|
                                    target_ulong msrm, int keep_msrh)
 | 
						|
{
 | 
						|
#if defined(TARGET_PPC64)
 | 
						|
    if (msr & (1ULL << MSR_SF)) {
 | 
						|
        nip = (uint64_t)nip;
 | 
						|
        msr &= (uint64_t)msrm;
 | 
						|
    } else {
 | 
						|
        nip = (uint32_t)nip;
 | 
						|
        msr = (uint32_t)(msr & msrm);
 | 
						|
        if (keep_msrh)
 | 
						|
            msr |= env->msr & ~((uint64_t)0xFFFFFFFF);
 | 
						|
    }
 | 
						|
#else
 | 
						|
    nip = (uint32_t)nip;
 | 
						|
    msr &= (uint32_t)msrm;
 | 
						|
#endif
 | 
						|
    /* XXX: beware: this is false if VLE is supported */
 | 
						|
    env->nip = nip & ~((target_ulong)0x00000003);
 | 
						|
    hreg_store_msr(env, msr, 1);
 | 
						|
#if defined (DEBUG_OP)
 | 
						|
    cpu_dump_rfi(env->nip, env->msr);
 | 
						|
#endif
 | 
						|
    /* No need to raise an exception here,
 | 
						|
     * as rfi is always the last insn of a TB
 | 
						|
     */
 | 
						|
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
 | 
						|
}
 | 
						|
 | 
						|
void do_rfi (void)
 | 
						|
{
 | 
						|
    __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
 | 
						|
             ~((target_ulong)0xFFFF0000), 1);
 | 
						|
}
 | 
						|
 | 
						|
#if defined(TARGET_PPC64)
 | 
						|
void do_rfid (void)
 | 
						|
{
 | 
						|
    __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
 | 
						|
             ~((target_ulong)0xFFFF0000), 0);
 | 
						|
}
 | 
						|
 | 
						|
void do_hrfid (void)
 | 
						|
{
 | 
						|
    __do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1],
 | 
						|
             ~((target_ulong)0xFFFF0000), 0);
 | 
						|
}
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
 | 
						|
void do_tw (int flags)
 | 
						|
{
 | 
						|
    if (!likely(!(((int32_t)T0 < (int32_t)T1 && (flags & 0x10)) ||
 | 
						|
                  ((int32_t)T0 > (int32_t)T1 && (flags & 0x08)) ||
 | 
						|
                  ((int32_t)T0 == (int32_t)T1 && (flags & 0x04)) ||
 | 
						|
                  ((uint32_t)T0 < (uint32_t)T1 && (flags & 0x02)) ||
 | 
						|
                  ((uint32_t)T0 > (uint32_t)T1 && (flags & 0x01))))) {
 | 
						|
        do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#if defined(TARGET_PPC64)
 | 
						|
void do_td (int flags)
 | 
						|
{
 | 
						|
    if (!likely(!(((int64_t)T0 < (int64_t)T1 && (flags & 0x10)) ||
 | 
						|
                  ((int64_t)T0 > (int64_t)T1 && (flags & 0x08)) ||
 | 
						|
                  ((int64_t)T0 == (int64_t)T1 && (flags & 0x04)) ||
 | 
						|
                  ((uint64_t)T0 < (uint64_t)T1 && (flags & 0x02)) ||
 | 
						|
                  ((uint64_t)T0 > (uint64_t)T1 && (flags & 0x01)))))
 | 
						|
        do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*****************************************************************************/
 | 
						|
/* PowerPC 601 specific instructions (POWER bridge) */
 | 
						|
void do_POWER_abso (void)
 | 
						|
{
 | 
						|
    if ((int32_t)T0 == INT32_MIN) {
 | 
						|
        T0 = INT32_MAX;
 | 
						|
        xer_ov = 1;
 | 
						|
    } else if ((int32_t)T0 < 0) {
 | 
						|
        T0 = -T0;
 | 
						|
        xer_ov = 0;
 | 
						|
    } else {
 | 
						|
        xer_ov = 0;
 | 
						|
    }
 | 
						|
    xer_so |= xer_ov;
 | 
						|
}
 | 
						|
 | 
						|
void do_POWER_clcs (void)
 | 
						|
{
 | 
						|
    switch (T0) {
 | 
						|
    case 0x0CUL:
 | 
						|
        /* Instruction cache line size */
 | 
						|
        T0 = env->icache_line_size;
 | 
						|
        break;
 | 
						|
    case 0x0DUL:
 | 
						|
        /* Data cache line size */
 | 
						|
        T0 = env->dcache_line_size;
 | 
						|
        break;
 | 
						|
    case 0x0EUL:
 | 
						|
        /* Minimum cache line size */
 | 
						|
        T0 = env->icache_line_size < env->dcache_line_size ?
 | 
						|
            env->icache_line_size : env->dcache_line_size;
 | 
						|
        break;
 | 
						|
    case 0x0FUL:
 | 
						|
        /* Maximum cache line size */
 | 
						|
        T0 = env->icache_line_size > env->dcache_line_size ?
 | 
						|
            env->icache_line_size : env->dcache_line_size;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        /* Undefined */
 | 
						|
        break;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void do_POWER_div (void)
 | 
						|
{
 | 
						|
    uint64_t tmp;
 | 
						|
 | 
						|
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
 | 
						|
        (int32_t)T1 == 0) {
 | 
						|
        T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
 | 
						|
        env->spr[SPR_MQ] = 0;
 | 
						|
    } else {
 | 
						|
        tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
 | 
						|
        env->spr[SPR_MQ] = tmp % T1;
 | 
						|
        T0 = tmp / (int32_t)T1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void do_POWER_divo (void)
 | 
						|
{
 | 
						|
    int64_t tmp;
 | 
						|
 | 
						|
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
 | 
						|
        (int32_t)T1 == 0) {
 | 
						|
        T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
 | 
						|
        env->spr[SPR_MQ] = 0;
 | 
						|
        xer_ov = 1;
 | 
						|
    } else {
 | 
						|
        tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
 | 
						|
        env->spr[SPR_MQ] = tmp % T1;
 | 
						|
        tmp /= (int32_t)T1;
 | 
						|
        if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) {
 | 
						|
            xer_ov = 1;
 | 
						|
        } else {
 | 
						|
            xer_ov = 0;
 | 
						|
        }
 | 
						|
        T0 = tmp;
 | 
						|
    }
 | 
						|
    xer_so |= xer_ov;
 | 
						|
}
 | 
						|
 | 
						|
void do_POWER_divs (void)
 | 
						|
{
 | 
						|
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
 | 
						|
        (int32_t)T1 == 0) {
 | 
						|
        T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
 | 
						|
        env->spr[SPR_MQ] = 0;
 | 
						|
    } else {
 | 
						|
        env->spr[SPR_MQ] = T0 % T1;
 | 
						|
        T0 = (int32_t)T0 / (int32_t)T1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void do_POWER_divso (void)
 | 
						|
{
 | 
						|
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
 | 
						|
        (int32_t)T1 == 0) {
 | 
						|
        T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
 | 
						|
        env->spr[SPR_MQ] = 0;
 | 
						|
        xer_ov = 1;
 | 
						|
    } else {
 | 
						|
        T0 = (int32_t)T0 / (int32_t)T1;
 | 
						|
        env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1;
 | 
						|
        xer_ov = 0;
 | 
						|
    }
 | 
						|
    xer_so |= xer_ov;
 | 
						|
}
 | 
						|
 | 
						|
void do_POWER_dozo (void)
 | 
						|
{
 | 
						|
    if ((int32_t)T1 > (int32_t)T0) {
 | 
						|
        T2 = T0;
 | 
						|
        T0 = T1 - T0;
 | 
						|
        if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) &
 | 
						|
            ((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) {
 | 
						|
            xer_ov = 1;
 | 
						|
            xer_so = 1;
 | 
						|
        } else {
 | 
						|
            xer_ov = 0;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        T0 = 0;
 | 
						|
        xer_ov = 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void do_POWER_maskg (void)
 | 
						|
{
 | 
						|
    uint32_t ret;
 | 
						|
 | 
						|
    if ((uint32_t)T0 == (uint32_t)(T1 + 1)) {
 | 
						|
        ret = UINT32_MAX;
 | 
						|
    } else {
 | 
						|
        ret = (UINT32_MAX >> ((uint32_t)T0)) ^
 | 
						|
            ((UINT32_MAX >> ((uint32_t)T1)) >> 1);
 | 
						|
        if ((uint32_t)T0 > (uint32_t)T1)
 | 
						|
            ret = ~ret;
 | 
						|
    }
 | 
						|
    T0 = ret;
 | 
						|
}
 | 
						|
 | 
						|
void do_POWER_mulo (void)
 | 
						|
{
 | 
						|
    uint64_t tmp;
 | 
						|
 | 
						|
    tmp = (uint64_t)T0 * (uint64_t)T1;
 | 
						|
    env->spr[SPR_MQ] = tmp >> 32;
 | 
						|
    T0 = tmp;
 | 
						|
    if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) {
 | 
						|
        xer_ov = 1;
 | 
						|
        xer_so = 1;
 | 
						|
    } else {
 | 
						|
        xer_ov = 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#if !defined (CONFIG_USER_ONLY)
 | 
						|
void do_POWER_rac (void)
 | 
						|
{
 | 
						|
    mmu_ctx_t ctx;
 | 
						|
    int nb_BATs;
 | 
						|
 | 
						|
    /* We don't have to generate many instances of this instruction,
 | 
						|
     * as rac is supervisor only.
 | 
						|
     */
 | 
						|
    /* XXX: FIX THIS: Pretend we have no BAT */
 | 
						|
    nb_BATs = env->nb_BATs;
 | 
						|
    env->nb_BATs = 0;
 | 
						|
    if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT) == 0)
 | 
						|
        T0 = ctx.raddr;
 | 
						|
    env->nb_BATs = nb_BATs;
 | 
						|
}
 | 
						|
 | 
						|
void do_POWER_rfsvc (void)
 | 
						|
{
 | 
						|
    __do_rfi(env->lr, env->ctr, 0x0000FFFF, 0);
 | 
						|
}
 | 
						|
 | 
						|
void do_store_hid0_601 (void)
 | 
						|
{
 | 
						|
    uint32_t hid0;
 | 
						|
 | 
						|
    hid0 = env->spr[SPR_HID0];
 | 
						|
    if ((T0 ^ hid0) & 0x00000008) {
 | 
						|
        /* Change current endianness */
 | 
						|
        env->hflags &= ~(1 << MSR_LE);
 | 
						|
        env->hflags_nmsr &= ~(1 << MSR_LE);
 | 
						|
        env->hflags_nmsr |= (1 << MSR_LE) & (((T0 >> 3) & 1) << MSR_LE);
 | 
						|
        env->hflags |= env->hflags_nmsr;
 | 
						|
        if (loglevel != 0) {
 | 
						|
            fprintf(logfile, "%s: set endianness to %c => " ADDRX "\n",
 | 
						|
                    __func__, T0 & 0x8 ? 'l' : 'b', env->hflags);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    env->spr[SPR_HID0] = T0;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*****************************************************************************/
 | 
						|
/* 602 specific instructions */
 | 
						|
/* mfrom is the most crazy instruction ever seen, imho ! */
 | 
						|
/* Real implementation uses a ROM table. Do the same */
 | 
						|
#define USE_MFROM_ROM_TABLE
 | 
						|
void do_op_602_mfrom (void)
 | 
						|
{
 | 
						|
    if (likely(T0 < 602)) {
 | 
						|
#if defined(USE_MFROM_ROM_TABLE)
 | 
						|
#include "mfrom_table.c"
 | 
						|
        T0 = mfrom_ROM_table[T0];
 | 
						|
#else
 | 
						|
        double d;
 | 
						|
        /* Extremly decomposed:
 | 
						|
         *                    -T0 / 256
 | 
						|
         * T0 = 256 * log10(10          + 1.0) + 0.5
 | 
						|
         */
 | 
						|
        d = T0;
 | 
						|
        d = float64_div(d, 256, &env->fp_status);
 | 
						|
        d = float64_chs(d);
 | 
						|
        d = exp10(d); // XXX: use float emulation function
 | 
						|
        d = float64_add(d, 1.0, &env->fp_status);
 | 
						|
        d = log10(d); // XXX: use float emulation function
 | 
						|
        d = float64_mul(d, 256, &env->fp_status);
 | 
						|
        d = float64_add(d, 0.5, &env->fp_status);
 | 
						|
        T0 = float64_round_to_int(d, &env->fp_status);
 | 
						|
#endif
 | 
						|
    } else {
 | 
						|
        T0 = 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*****************************************************************************/
 | 
						|
/* Embedded PowerPC specific helpers */
 | 
						|
void do_405_check_sat (void)
 | 
						|
{
 | 
						|
    if (!likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) ||
 | 
						|
                !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
 | 
						|
        /* Saturate result */
 | 
						|
        if (T2 >> 31) {
 | 
						|
            T0 = INT32_MIN;
 | 
						|
        } else {
 | 
						|
            T0 = INT32_MAX;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* XXX: to be improved to check access rights when in user-mode */
 | 
						|
void do_load_dcr (void)
 | 
						|
{
 | 
						|
    target_ulong val;
 | 
						|
 | 
						|
    if (unlikely(env->dcr_env == NULL)) {
 | 
						|
        if (loglevel != 0) {
 | 
						|
            fprintf(logfile, "No DCR environment\n");
 | 
						|
        }
 | 
						|
        do_raise_exception_err(POWERPC_EXCP_PROGRAM,
 | 
						|
                               POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
 | 
						|
    } else if (unlikely(ppc_dcr_read(env->dcr_env, T0, &val) != 0)) {
 | 
						|
        if (loglevel != 0) {
 | 
						|
            fprintf(logfile, "DCR read error %d %03x\n", (int)T0, (int)T0);
 | 
						|
        }
 | 
						|
        do_raise_exception_err(POWERPC_EXCP_PROGRAM,
 | 
						|
                               POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
 | 
						|
    } else {
 | 
						|
        T0 = val;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void do_store_dcr (void)
 | 
						|
{
 | 
						|
    if (unlikely(env->dcr_env == NULL)) {
 | 
						|
        if (loglevel != 0) {
 | 
						|
            fprintf(logfile, "No DCR environment\n");
 | 
						|
        }
 | 
						|
        do_raise_exception_err(POWERPC_EXCP_PROGRAM,
 | 
						|
                               POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
 | 
						|
    } else if (unlikely(ppc_dcr_write(env->dcr_env, T0, T1) != 0)) {
 | 
						|
        if (loglevel != 0) {
 | 
						|
            fprintf(logfile, "DCR write error %d %03x\n", (int)T0, (int)T0);
 | 
						|
        }
 | 
						|
        do_raise_exception_err(POWERPC_EXCP_PROGRAM,
 | 
						|
                               POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#if !defined(CONFIG_USER_ONLY)
 | 
						|
void do_40x_rfci (void)
 | 
						|
{
 | 
						|
    __do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3],
 | 
						|
             ~((target_ulong)0xFFFF0000), 0);
 | 
						|
}
 | 
						|
 | 
						|
void do_rfci (void)
 | 
						|
{
 | 
						|
    __do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1,
 | 
						|
             ~((target_ulong)0x3FFF0000), 0);
 | 
						|
}
 | 
						|
 | 
						|
void do_rfdi (void)
 | 
						|
{
 | 
						|
    __do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1,
 | 
						|
             ~((target_ulong)0x3FFF0000), 0);
 | 
						|
}
 | 
						|
 | 
						|
void do_rfmci (void)
 | 
						|
{
 | 
						|
    __do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1,
 | 
						|
             ~((target_ulong)0x3FFF0000), 0);
 | 
						|
}
 | 
						|
 | 
						|
void do_load_403_pb (int num)
 | 
						|
{
 | 
						|
    T0 = env->pb[num];
 | 
						|
}
 | 
						|
 | 
						|
void do_store_403_pb (int num)
 | 
						|
{
 | 
						|
    if (likely(env->pb[num] != T0)) {
 | 
						|
        env->pb[num] = T0;
 | 
						|
        /* Should be optimized */
 | 
						|
        tlb_flush(env, 1);
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* 440 specific */
 | 
						|
void do_440_dlmzb (void)
 | 
						|
{
 | 
						|
    target_ulong mask;
 | 
						|
    int i;
 | 
						|
 | 
						|
    i = 1;
 | 
						|
    for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
 | 
						|
        if ((T0 & mask) == 0)
 | 
						|
            goto done;
 | 
						|
        i++;
 | 
						|
    }
 | 
						|
    for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
 | 
						|
        if ((T1 & mask) == 0)
 | 
						|
            break;
 | 
						|
        i++;
 | 
						|
    }
 | 
						|
 done:
 | 
						|
    T0 = i;
 | 
						|
}
 | 
						|
 | 
						|
/* SPE extension helpers */
 | 
						|
/* Use a table to make this quicker */
 | 
						|
static uint8_t hbrev[16] = {
 | 
						|
    0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
 | 
						|
    0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
 | 
						|
};
 | 
						|
 | 
						|
static always_inline uint8_t byte_reverse (uint8_t val)
 | 
						|
{
 | 
						|
    return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
 | 
						|
}
 | 
						|
 | 
						|
static always_inline uint32_t word_reverse (uint32_t val)
 | 
						|
{
 | 
						|
    return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
 | 
						|
        (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
 | 
						|
}
 | 
						|
 | 
						|
#define MASKBITS 16 // Random value - to be fixed (implementation dependant)
 | 
						|
void do_brinc (void)
 | 
						|
{
 | 
						|
    uint32_t a, b, d, mask;
 | 
						|
 | 
						|
    mask = UINT32_MAX >> (32 - MASKBITS);
 | 
						|
    a = T0 & mask;
 | 
						|
    b = T1 & mask;
 | 
						|
    d = word_reverse(1 + word_reverse(a | ~b));
 | 
						|
    T0 = (T0 & ~mask) | (d & b);
 | 
						|
}
 | 
						|
 | 
						|
#define DO_SPE_OP2(name)                                                      \
 | 
						|
void do_ev##name (void)                                                       \
 | 
						|
{                                                                             \
 | 
						|
    T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32, T1_64 >> 32) << 32) |         \
 | 
						|
        (uint64_t)_do_e##name(T0_64, T1_64);                                  \
 | 
						|
}
 | 
						|
 | 
						|
#define DO_SPE_OP1(name)                                                      \
 | 
						|
void do_ev##name (void)                                                       \
 | 
						|
{                                                                             \
 | 
						|
    T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32) << 32) |                      \
 | 
						|
        (uint64_t)_do_e##name(T0_64);                                         \
 | 
						|
}
 | 
						|
 | 
						|
/* Fixed-point vector arithmetic */
 | 
						|
static always_inline uint32_t _do_eabs (uint32_t val)
 | 
						|
{
 | 
						|
    if ((val & 0x80000000) && val != 0x80000000)
 | 
						|
        val -= val;
 | 
						|
 | 
						|
    return val;
 | 
						|
}
 | 
						|
 | 
						|
static always_inline uint32_t _do_eaddw (uint32_t op1, uint32_t op2)
 | 
						|
{
 | 
						|
    return op1 + op2;
 | 
						|
}
 | 
						|
 | 
						|
static always_inline int _do_ecntlsw (uint32_t val)
 | 
						|
{
 | 
						|
    if (val & 0x80000000)
 | 
						|
        return clz32(~val);
 | 
						|
    else
 | 
						|
        return clz32(val);
 | 
						|
}
 | 
						|
 | 
						|
static always_inline int _do_ecntlzw (uint32_t val)
 | 
						|
{
 | 
						|
    return clz32(val);
 | 
						|
}
 | 
						|
 | 
						|
static always_inline uint32_t _do_eneg (uint32_t val)
 | 
						|
{
 | 
						|
    if (val != 0x80000000)
 | 
						|
        val -= val;
 | 
						|
 | 
						|
    return val;
 | 
						|
}
 | 
						|
 | 
						|
static always_inline uint32_t _do_erlw (uint32_t op1, uint32_t op2)
 | 
						|
{
 | 
						|
    return rotl32(op1, op2);
 | 
						|
}
 | 
						|
 | 
						|
static always_inline uint32_t _do_erndw (uint32_t val)
 | 
						|
{
 | 
						|
    return (val + 0x000080000000) & 0xFFFF0000;
 | 
						|
}
 | 
						|
 | 
						|
static always_inline uint32_t _do_eslw (uint32_t op1, uint32_t op2)
 | 
						|
{
 | 
						|
    /* No error here: 6 bits are used */
 | 
						|
    return op1 << (op2 & 0x3F);
 | 
						|
}
 | 
						|
 | 
						|
static always_inline int32_t _do_esrws (int32_t op1, uint32_t op2)
 | 
						|
{
 | 
						|
    /* No error here: 6 bits are used */
 | 
						|
    return op1 >> (op2 & 0x3F);
 | 
						|
}
 | 
						|
 | 
						|
static always_inline uint32_t _do_esrwu (uint32_t op1, uint32_t op2)
 | 
						|
{
 | 
						|
    /* No error here: 6 bits are used */
 | 
						|
    return op1 >> (op2 & 0x3F);
 | 
						|
}
 | 
						|
 | 
						|
static always_inline uint32_t _do_esubfw (uint32_t op1, uint32_t op2)
 | 
						|
{
 | 
						|
    return op2 - op1;
 | 
						|
}
 | 
						|
 | 
						|
/* evabs */
 | 
						|
DO_SPE_OP1(abs);
 | 
						|
/* evaddw */
 | 
						|
DO_SPE_OP2(addw);
 | 
						|
/* evcntlsw */
 | 
						|
DO_SPE_OP1(cntlsw);
 | 
						|
/* evcntlzw */
 | 
						|
DO_SPE_OP1(cntlzw);
 | 
						|
/* evneg */
 | 
						|
DO_SPE_OP1(neg);
 | 
						|
/* evrlw */
 | 
						|
DO_SPE_OP2(rlw);
 | 
						|
/* evrnd */
 | 
						|
DO_SPE_OP1(rndw);
 | 
						|
/* evslw */
 | 
						|
DO_SPE_OP2(slw);
 | 
						|
/* evsrws */
 | 
						|
DO_SPE_OP2(srws);
 | 
						|
/* evsrwu */
 | 
						|
DO_SPE_OP2(srwu);
 | 
						|
/* evsubfw */
 | 
						|
DO_SPE_OP2(subfw);
 | 
						|
 | 
						|
/* evsel is a little bit more complicated... */
 | 
						|
static always_inline uint32_t _do_esel (uint32_t op1, uint32_t op2, int n)
 | 
						|
{
 | 
						|
    if (n)
 | 
						|
        return op1;
 | 
						|
    else
 | 
						|
        return op2;
 | 
						|
}
 | 
						|
 | 
						|
void do_evsel (void)
 | 
						|
{
 | 
						|
    T0_64 = ((uint64_t)_do_esel(T0_64 >> 32, T1_64 >> 32, T0 >> 3) << 32) |
 | 
						|
        (uint64_t)_do_esel(T0_64, T1_64, (T0 >> 2) & 1);
 | 
						|
}
 | 
						|
 | 
						|
/* Fixed-point vector comparisons */
 | 
						|
#define DO_SPE_CMP(name)                                                      \
 | 
						|
void do_ev##name (void)                                                       \
 | 
						|
{                                                                             \
 | 
						|
    T0 = _do_evcmp_merge((uint64_t)_do_e##name(T0_64 >> 32,                   \
 | 
						|
                                               T1_64 >> 32) << 32,            \
 | 
						|
                         _do_e##name(T0_64, T1_64));                          \
 | 
						|
}
 | 
						|
 | 
						|
static always_inline uint32_t _do_evcmp_merge (int t0, int t1)
 | 
						|
{
 | 
						|
    return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
 | 
						|
}
 | 
						|
static always_inline int _do_ecmpeq (uint32_t op1, uint32_t op2)
 | 
						|
{
 | 
						|
    return op1 == op2 ? 1 : 0;
 | 
						|
}
 | 
						|
 | 
						|
static always_inline int _do_ecmpgts (int32_t op1, int32_t op2)
 | 
						|
{
 | 
						|
    return op1 > op2 ? 1 : 0;
 | 
						|
}
 | 
						|
 | 
						|
static always_inline int _do_ecmpgtu (uint32_t op1, uint32_t op2)
 | 
						|
{
 | 
						|
    return op1 > op2 ? 1 : 0;
 | 
						|
}
 | 
						|
 | 
						|
static always_inline int _do_ecmplts (int32_t op1, int32_t op2)
 | 
						|
{
 | 
						|
    return op1 < op2 ? 1 : 0;
 | 
						|
}
 | 
						|
 | 
						|
static always_inline int _do_ecmpltu (uint32_t op1, uint32_t op2)
 | 
						|
{
 | 
						|
    return op1 < op2 ? 1 : 0;
 | 
						|
}
 | 
						|
 | 
						|
/* evcmpeq */
 | 
						|
DO_SPE_CMP(cmpeq);
 | 
						|
/* evcmpgts */
 | 
						|
DO_SPE_CMP(cmpgts);
 | 
						|
/* evcmpgtu */
 | 
						|
DO_SPE_CMP(cmpgtu);
 | 
						|
/* evcmplts */
 | 
						|
DO_SPE_CMP(cmplts);
 | 
						|
/* evcmpltu */
 | 
						|
DO_SPE_CMP(cmpltu);
 | 
						|
 | 
						|
/* Single precision floating-point conversions from/to integer */
 | 
						|
static always_inline uint32_t _do_efscfsi (int32_t val)
 | 
						|
{
 | 
						|
    CPU_FloatU u;
 | 
						|
 | 
						|
    u.f = int32_to_float32(val, &env->spe_status);
 | 
						|
 | 
						|
    return u.l;
 | 
						|
}
 | 
						|
 | 
						|
static always_inline uint32_t _do_efscfui (uint32_t val)
 | 
						|
{
 | 
						|
    CPU_FloatU u;
 | 
						|
 | 
						|
    u.f = uint32_to_float32(val, &env->spe_status);
 | 
						|
 | 
						|
    return u.l;
 | 
						|
}
 | 
						|
 | 
						|
static always_inline int32_t _do_efsctsi (uint32_t val)
 | 
						|
{
 | 
						|
    CPU_FloatU u;
 | 
						|
 | 
						|
    u.l = val;
 | 
						|
    /* NaN are not treated the same way IEEE 754 does */
 | 
						|
    if (unlikely(isnan(u.f)))
 | 
						|
        return 0;
 | 
						|
 | 
						|
    return float32_to_int32(u.f, &env->spe_status);
 | 
						|
}
 | 
						|
 | 
						|
static always_inline uint32_t _do_efsctui (uint32_t val)
 | 
						|
{
 | 
						|
    CPU_FloatU u;
 | 
						|
 | 
						|
    u.l = val;
 | 
						|
    /* NaN are not treated the same way IEEE 754 does */
 | 
						|
    if (unlikely(isnan(u.f)))
 | 
						|
        return 0;
 | 
						|
 | 
						|
    return float32_to_uint32(u.f, &env->spe_status);
 | 
						|
}
 | 
						|
 | 
						|
static always_inline int32_t _do_efsctsiz (uint32_t val)
 | 
						|
{
 | 
						|
    CPU_FloatU u;
 | 
						|
 | 
						|
    u.l = val;
 | 
						|
    /* NaN are not treated the same way IEEE 754 does */
 | 
						|
    if (unlikely(isnan(u.f)))
 | 
						|
        return 0;
 | 
						|
 | 
						|
    return float32_to_int32_round_to_zero(u.f, &env->spe_status);
 | 
						|
}
 | 
						|
 | 
						|
static always_inline uint32_t _do_efsctuiz (uint32_t val)
 | 
						|
{
 | 
						|
    CPU_FloatU u;
 | 
						|
 | 
						|
    u.l = val;
 | 
						|
    /* NaN are not treated the same way IEEE 754 does */
 | 
						|
    if (unlikely(isnan(u.f)))
 | 
						|
        return 0;
 | 
						|
 | 
						|
    return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
 | 
						|
}
 | 
						|
 | 
						|
void do_efscfsi (void)
 | 
						|
{
 | 
						|
    T0_64 = _do_efscfsi(T0_64);
 | 
						|
}
 | 
						|
 | 
						|
void do_efscfui (void)
 | 
						|
{
 | 
						|
    T0_64 = _do_efscfui(T0_64);
 | 
						|
}
 | 
						|
 | 
						|
void do_efsctsi (void)
 | 
						|
{
 | 
						|
    T0_64 = _do_efsctsi(T0_64);
 | 
						|
}
 | 
						|
 | 
						|
void do_efsctui (void)
 | 
						|
{
 | 
						|
    T0_64 = _do_efsctui(T0_64);
 | 
						|
}
 | 
						|
 | 
						|
void do_efsctsiz (void)
 | 
						|
{
 | 
						|
    T0_64 = _do_efsctsiz(T0_64);
 | 
						|
}
 | 
						|
 | 
						|
void do_efsctuiz (void)
 | 
						|
{
 | 
						|
    T0_64 = _do_efsctuiz(T0_64);
 | 
						|
}
 | 
						|
 | 
						|
/* Single precision floating-point conversion to/from fractional */
 | 
						|
static always_inline uint32_t _do_efscfsf (uint32_t val)
 | 
						|
{
 | 
						|
    CPU_FloatU u;
 | 
						|
    float32 tmp;
 | 
						|
 | 
						|
    u.f = int32_to_float32(val, &env->spe_status);
 | 
						|
    tmp = int64_to_float32(1ULL << 32, &env->spe_status);
 | 
						|
    u.f = float32_div(u.f, tmp, &env->spe_status);
 | 
						|
 | 
						|
    return u.l;
 | 
						|
}
 | 
						|
 | 
						|
static always_inline uint32_t _do_efscfuf (uint32_t val)
 | 
						|
{
 | 
						|
    CPU_FloatU u;
 | 
						|
    float32 tmp;
 | 
						|
 | 
						|
    u.f = uint32_to_float32(val, &env->spe_status);
 | 
						|
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
 | 
						|
    u.f = float32_div(u.f, tmp, &env->spe_status);
 | 
						|
 | 
						|
    return u.l;
 | 
						|
}
 | 
						|
 | 
						|
static always_inline int32_t _do_efsctsf (uint32_t val)
 | 
						|
{
 | 
						|
    CPU_FloatU u;
 | 
						|
    float32 tmp;
 | 
						|
 | 
						|
    u.l = val;
 | 
						|
    /* NaN are not treated the same way IEEE 754 does */
 | 
						|
    if (unlikely(isnan(u.f)))
 | 
						|
        return 0;
 | 
						|
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
 | 
						|
    u.f = float32_mul(u.f, tmp, &env->spe_status);
 | 
						|
 | 
						|
    return float32_to_int32(u.f, &env->spe_status);
 | 
						|
}
 | 
						|
 | 
						|
static always_inline uint32_t _do_efsctuf (uint32_t val)
 | 
						|
{
 | 
						|
    CPU_FloatU u;
 | 
						|
    float32 tmp;
 | 
						|
 | 
						|
    u.l = val;
 | 
						|
    /* NaN are not treated the same way IEEE 754 does */
 | 
						|
    if (unlikely(isnan(u.f)))
 | 
						|
        return 0;
 | 
						|
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
 | 
						|
    u.f = float32_mul(u.f, tmp, &env->spe_status);
 | 
						|
 | 
						|
    return float32_to_uint32(u.f, &env->spe_status);
 | 
						|
}
 | 
						|
 | 
						|
static always_inline int32_t _do_efsctsfz (uint32_t val)
 | 
						|
{
 | 
						|
    CPU_FloatU u;
 | 
						|
    float32 tmp;
 | 
						|
 | 
						|
    u.l = val;
 | 
						|
    /* NaN are not treated the same way IEEE 754 does */
 | 
						|
    if (unlikely(isnan(u.f)))
 | 
						|
        return 0;
 | 
						|
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
 | 
						|
    u.f = float32_mul(u.f, tmp, &env->spe_status);
 | 
						|
 | 
						|
    return float32_to_int32_round_to_zero(u.f, &env->spe_status);
 | 
						|
}
 | 
						|
 | 
						|
static always_inline uint32_t _do_efsctufz (uint32_t val)
 | 
						|
{
 | 
						|
    CPU_FloatU u;
 | 
						|
    float32 tmp;
 | 
						|
 | 
						|
    u.l = val;
 | 
						|
    /* NaN are not treated the same way IEEE 754 does */
 | 
						|
    if (unlikely(isnan(u.f)))
 | 
						|
        return 0;
 | 
						|
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
 | 
						|
    u.f = float32_mul(u.f, tmp, &env->spe_status);
 | 
						|
 | 
						|
    return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
 | 
						|
}
 | 
						|
 | 
						|
void do_efscfsf (void)
 | 
						|
{
 | 
						|
    T0_64 = _do_efscfsf(T0_64);
 | 
						|
}
 | 
						|
 | 
						|
void do_efscfuf (void)
 | 
						|
{
 | 
						|
    T0_64 = _do_efscfuf(T0_64);
 | 
						|
}
 | 
						|
 | 
						|
void do_efsctsf (void)
 | 
						|
{
 | 
						|
    T0_64 = _do_efsctsf(T0_64);
 | 
						|
}
 | 
						|
 | 
						|
void do_efsctuf (void)
 | 
						|
{
 | 
						|
    T0_64 = _do_efsctuf(T0_64);
 | 
						|
}
 | 
						|
 | 
						|
void do_efsctsfz (void)
 | 
						|
{
 | 
						|
    T0_64 = _do_efsctsfz(T0_64);
 | 
						|
}
 | 
						|
 | 
						|
void do_efsctufz (void)
 | 
						|
{
 | 
						|
    T0_64 = _do_efsctufz(T0_64);
 | 
						|
}
 | 
						|
 | 
						|
/* Double precision floating point helpers */
 | 
						|
static always_inline int _do_efdcmplt (uint64_t op1, uint64_t op2)
 | 
						|
{
 | 
						|
    /* XXX: TODO: test special values (NaN, infinites, ...) */
 | 
						|
    return _do_efdtstlt(op1, op2);
 | 
						|
}
 | 
						|
 | 
						|
static always_inline int _do_efdcmpgt (uint64_t op1, uint64_t op2)
 | 
						|
{
 | 
						|
    /* XXX: TODO: test special values (NaN, infinites, ...) */
 | 
						|
    return _do_efdtstgt(op1, op2);
 | 
						|
}
 | 
						|
 | 
						|
static always_inline int _do_efdcmpeq (uint64_t op1, uint64_t op2)
 | 
						|
{
 | 
						|
    /* XXX: TODO: test special values (NaN, infinites, ...) */
 | 
						|
    return _do_efdtsteq(op1, op2);
 | 
						|
}
 | 
						|
 | 
						|
void do_efdcmplt (void)
 | 
						|
{
 | 
						|
    T0 = _do_efdcmplt(T0_64, T1_64);
 | 
						|
}
 | 
						|
 | 
						|
void do_efdcmpgt (void)
 | 
						|
{
 | 
						|
    T0 = _do_efdcmpgt(T0_64, T1_64);
 | 
						|
}
 | 
						|
 | 
						|
void do_efdcmpeq (void)
 | 
						|
{
 | 
						|
    T0 = _do_efdcmpeq(T0_64, T1_64);
 | 
						|
}
 | 
						|
 | 
						|
/* Double precision floating-point conversion to/from integer */
 | 
						|
static always_inline uint64_t _do_efdcfsi (int64_t val)
 | 
						|
{
 | 
						|
    CPU_DoubleU u;
 | 
						|
 | 
						|
    u.d = int64_to_float64(val, &env->spe_status);
 | 
						|
 | 
						|
    return u.ll;
 | 
						|
}
 | 
						|
 | 
						|
static always_inline uint64_t _do_efdcfui (uint64_t val)
 | 
						|
{
 | 
						|
    CPU_DoubleU u;
 | 
						|
 | 
						|
    u.d = uint64_to_float64(val, &env->spe_status);
 | 
						|
 | 
						|
    return u.ll;
 | 
						|
}
 | 
						|
 | 
						|
static always_inline int64_t _do_efdctsi (uint64_t val)
 | 
						|
{
 | 
						|
    CPU_DoubleU u;
 | 
						|
 | 
						|
    u.ll = val;
 | 
						|
    /* NaN are not treated the same way IEEE 754 does */
 | 
						|
    if (unlikely(isnan(u.d)))
 | 
						|
        return 0;
 | 
						|
 | 
						|
    return float64_to_int64(u.d, &env->spe_status);
 | 
						|
}
 | 
						|
 | 
						|
static always_inline uint64_t _do_efdctui (uint64_t val)
 | 
						|
{
 | 
						|
    CPU_DoubleU u;
 | 
						|
 | 
						|
    u.ll = val;
 | 
						|
    /* NaN are not treated the same way IEEE 754 does */
 | 
						|
    if (unlikely(isnan(u.d)))
 | 
						|
        return 0;
 | 
						|
 | 
						|
    return float64_to_uint64(u.d, &env->spe_status);
 | 
						|
}
 | 
						|
 | 
						|
static always_inline int64_t _do_efdctsiz (uint64_t val)
 | 
						|
{
 | 
						|
    CPU_DoubleU u;
 | 
						|
 | 
						|
    u.ll = val;
 | 
						|
    /* NaN are not treated the same way IEEE 754 does */
 | 
						|
    if (unlikely(isnan(u.d)))
 | 
						|
        return 0;
 | 
						|
 | 
						|
    return float64_to_int64_round_to_zero(u.d, &env->spe_status);
 | 
						|
}
 | 
						|
 | 
						|
static always_inline uint64_t _do_efdctuiz (uint64_t val)
 | 
						|
{
 | 
						|
    CPU_DoubleU u;
 | 
						|
 | 
						|
    u.ll = val;
 | 
						|
    /* NaN are not treated the same way IEEE 754 does */
 | 
						|
    if (unlikely(isnan(u.d)))
 | 
						|
        return 0;
 | 
						|
 | 
						|
    return float64_to_uint64_round_to_zero(u.d, &env->spe_status);
 | 
						|
}
 | 
						|
 | 
						|
void do_efdcfsi (void)
 | 
						|
{
 | 
						|
    T0_64 = _do_efdcfsi(T0_64);
 | 
						|
}
 | 
						|
 | 
						|
void do_efdcfui (void)
 | 
						|
{
 | 
						|
    T0_64 = _do_efdcfui(T0_64);
 | 
						|
}
 | 
						|
 | 
						|
void do_efdctsi (void)
 | 
						|
{
 | 
						|
    T0_64 = _do_efdctsi(T0_64);
 | 
						|
}
 | 
						|
 | 
						|
void do_efdctui (void)
 | 
						|
{
 | 
						|
    T0_64 = _do_efdctui(T0_64);
 | 
						|
}
 | 
						|
 | 
						|
void do_efdctsiz (void)
 | 
						|
{
 | 
						|
    T0_64 = _do_efdctsiz(T0_64);
 | 
						|
}
 | 
						|
 | 
						|
void do_efdctuiz (void)
 | 
						|
{
 | 
						|
    T0_64 = _do_efdctuiz(T0_64);
 | 
						|
}
 | 
						|
 | 
						|
/* Double precision floating-point conversion to/from fractional */
 | 
						|
static always_inline uint64_t _do_efdcfsf (int64_t val)
 | 
						|
{
 | 
						|
    CPU_DoubleU u;
 | 
						|
    float64 tmp;
 | 
						|
 | 
						|
    u.d = int32_to_float64(val, &env->spe_status);
 | 
						|
    tmp = int64_to_float64(1ULL << 32, &env->spe_status);
 | 
						|
    u.d = float64_div(u.d, tmp, &env->spe_status);
 | 
						|
 | 
						|
    return u.ll;
 | 
						|
}
 | 
						|
 | 
						|
static always_inline uint64_t _do_efdcfuf (uint64_t val)
 | 
						|
{
 | 
						|
    CPU_DoubleU u;
 | 
						|
    float64 tmp;
 | 
						|
 | 
						|
    u.d = uint32_to_float64(val, &env->spe_status);
 | 
						|
    tmp = int64_to_float64(1ULL << 32, &env->spe_status);
 | 
						|
    u.d = float64_div(u.d, tmp, &env->spe_status);
 | 
						|
 | 
						|
    return u.ll;
 | 
						|
}
 | 
						|
 | 
						|
static always_inline int64_t _do_efdctsf (uint64_t val)
 | 
						|
{
 | 
						|
    CPU_DoubleU u;
 | 
						|
    float64 tmp;
 | 
						|
 | 
						|
    u.ll = val;
 | 
						|
    /* NaN are not treated the same way IEEE 754 does */
 | 
						|
    if (unlikely(isnan(u.d)))
 | 
						|
        return 0;
 | 
						|
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
 | 
						|
    u.d = float64_mul(u.d, tmp, &env->spe_status);
 | 
						|
 | 
						|
    return float64_to_int32(u.d, &env->spe_status);
 | 
						|
}
 | 
						|
 | 
						|
static always_inline uint64_t _do_efdctuf (uint64_t val)
 | 
						|
{
 | 
						|
    CPU_DoubleU u;
 | 
						|
    float64 tmp;
 | 
						|
 | 
						|
    u.ll = val;
 | 
						|
    /* NaN are not treated the same way IEEE 754 does */
 | 
						|
    if (unlikely(isnan(u.d)))
 | 
						|
        return 0;
 | 
						|
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
 | 
						|
    u.d = float64_mul(u.d, tmp, &env->spe_status);
 | 
						|
 | 
						|
    return float64_to_uint32(u.d, &env->spe_status);
 | 
						|
}
 | 
						|
 | 
						|
static always_inline int64_t _do_efdctsfz (uint64_t val)
 | 
						|
{
 | 
						|
    CPU_DoubleU u;
 | 
						|
    float64 tmp;
 | 
						|
 | 
						|
    u.ll = val;
 | 
						|
    /* NaN are not treated the same way IEEE 754 does */
 | 
						|
    if (unlikely(isnan(u.d)))
 | 
						|
        return 0;
 | 
						|
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
 | 
						|
    u.d = float64_mul(u.d, tmp, &env->spe_status);
 | 
						|
 | 
						|
    return float64_to_int32_round_to_zero(u.d, &env->spe_status);
 | 
						|
}
 | 
						|
 | 
						|
static always_inline uint64_t _do_efdctufz (uint64_t val)
 | 
						|
{
 | 
						|
    CPU_DoubleU u;
 | 
						|
    float64 tmp;
 | 
						|
 | 
						|
    u.ll = val;
 | 
						|
    /* NaN are not treated the same way IEEE 754 does */
 | 
						|
    if (unlikely(isnan(u.d)))
 | 
						|
        return 0;
 | 
						|
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
 | 
						|
    u.d = float64_mul(u.d, tmp, &env->spe_status);
 | 
						|
 | 
						|
    return float64_to_uint32_round_to_zero(u.d, &env->spe_status);
 | 
						|
}
 | 
						|
 | 
						|
void do_efdcfsf (void)
 | 
						|
{
 | 
						|
    T0_64 = _do_efdcfsf(T0_64);
 | 
						|
}
 | 
						|
 | 
						|
void do_efdcfuf (void)
 | 
						|
{
 | 
						|
    T0_64 = _do_efdcfuf(T0_64);
 | 
						|
}
 | 
						|
 | 
						|
void do_efdctsf (void)
 | 
						|
{
 | 
						|
    T0_64 = _do_efdctsf(T0_64);
 | 
						|
}
 | 
						|
 | 
						|
void do_efdctuf (void)
 | 
						|
{
 | 
						|
    T0_64 = _do_efdctuf(T0_64);
 | 
						|
}
 | 
						|
 | 
						|
void do_efdctsfz (void)
 | 
						|
{
 | 
						|
    T0_64 = _do_efdctsfz(T0_64);
 | 
						|
}
 | 
						|
 | 
						|
void do_efdctufz (void)
 | 
						|
{
 | 
						|
    T0_64 = _do_efdctufz(T0_64);
 | 
						|
}
 | 
						|
 | 
						|
/* Floating point conversion between single and double precision */
 | 
						|
static always_inline uint32_t _do_efscfd (uint64_t val)
 | 
						|
{
 | 
						|
    CPU_DoubleU u1;
 | 
						|
    CPU_FloatU u2;
 | 
						|
 | 
						|
    u1.ll = val;
 | 
						|
    u2.f = float64_to_float32(u1.d, &env->spe_status);
 | 
						|
 | 
						|
    return u2.l;
 | 
						|
}
 | 
						|
 | 
						|
static always_inline uint64_t _do_efdcfs (uint32_t val)
 | 
						|
{
 | 
						|
    CPU_DoubleU u2;
 | 
						|
    CPU_FloatU u1;
 | 
						|
 | 
						|
    u1.l = val;
 | 
						|
    u2.d = float32_to_float64(u1.f, &env->spe_status);
 | 
						|
 | 
						|
    return u2.ll;
 | 
						|
}
 | 
						|
 | 
						|
void do_efscfd (void)
 | 
						|
{
 | 
						|
    T0_64 = _do_efscfd(T0_64);
 | 
						|
}
 | 
						|
 | 
						|
void do_efdcfs (void)
 | 
						|
{
 | 
						|
    T0_64 = _do_efdcfs(T0_64);
 | 
						|
}
 | 
						|
 | 
						|
/* Single precision fixed-point vector arithmetic */
 | 
						|
/* evfsabs */
 | 
						|
DO_SPE_OP1(fsabs);
 | 
						|
/* evfsnabs */
 | 
						|
DO_SPE_OP1(fsnabs);
 | 
						|
/* evfsneg */
 | 
						|
DO_SPE_OP1(fsneg);
 | 
						|
/* evfsadd */
 | 
						|
DO_SPE_OP2(fsadd);
 | 
						|
/* evfssub */
 | 
						|
DO_SPE_OP2(fssub);
 | 
						|
/* evfsmul */
 | 
						|
DO_SPE_OP2(fsmul);
 | 
						|
/* evfsdiv */
 | 
						|
DO_SPE_OP2(fsdiv);
 | 
						|
 | 
						|
/* Single-precision floating-point comparisons */
 | 
						|
static always_inline int _do_efscmplt (uint32_t op1, uint32_t op2)
 | 
						|
{
 | 
						|
    /* XXX: TODO: test special values (NaN, infinites, ...) */
 | 
						|
    return _do_efststlt(op1, op2);
 | 
						|
}
 | 
						|
 | 
						|
static always_inline int _do_efscmpgt (uint32_t op1, uint32_t op2)
 | 
						|
{
 | 
						|
    /* XXX: TODO: test special values (NaN, infinites, ...) */
 | 
						|
    return _do_efststgt(op1, op2);
 | 
						|
}
 | 
						|
 | 
						|
static always_inline int _do_efscmpeq (uint32_t op1, uint32_t op2)
 | 
						|
{
 | 
						|
    /* XXX: TODO: test special values (NaN, infinites, ...) */
 | 
						|
    return _do_efststeq(op1, op2);
 | 
						|
}
 | 
						|
 | 
						|
void do_efscmplt (void)
 | 
						|
{
 | 
						|
    T0 = _do_efscmplt(T0_64, T1_64);
 | 
						|
}
 | 
						|
 | 
						|
void do_efscmpgt (void)
 | 
						|
{
 | 
						|
    T0 = _do_efscmpgt(T0_64, T1_64);
 | 
						|
}
 | 
						|
 | 
						|
void do_efscmpeq (void)
 | 
						|
{
 | 
						|
    T0 = _do_efscmpeq(T0_64, T1_64);
 | 
						|
}
 | 
						|
 | 
						|
/* Single-precision floating-point vector comparisons */
 | 
						|
/* evfscmplt */
 | 
						|
DO_SPE_CMP(fscmplt);
 | 
						|
/* evfscmpgt */
 | 
						|
DO_SPE_CMP(fscmpgt);
 | 
						|
/* evfscmpeq */
 | 
						|
DO_SPE_CMP(fscmpeq);
 | 
						|
/* evfststlt */
 | 
						|
DO_SPE_CMP(fststlt);
 | 
						|
/* evfststgt */
 | 
						|
DO_SPE_CMP(fststgt);
 | 
						|
/* evfststeq */
 | 
						|
DO_SPE_CMP(fststeq);
 | 
						|
 | 
						|
/* Single-precision floating-point vector conversions */
 | 
						|
/* evfscfsi */
 | 
						|
DO_SPE_OP1(fscfsi);
 | 
						|
/* evfscfui */
 | 
						|
DO_SPE_OP1(fscfui);
 | 
						|
/* evfscfuf */
 | 
						|
DO_SPE_OP1(fscfuf);
 | 
						|
/* evfscfsf */
 | 
						|
DO_SPE_OP1(fscfsf);
 | 
						|
/* evfsctsi */
 | 
						|
DO_SPE_OP1(fsctsi);
 | 
						|
/* evfsctui */
 | 
						|
DO_SPE_OP1(fsctui);
 | 
						|
/* evfsctsiz */
 | 
						|
DO_SPE_OP1(fsctsiz);
 | 
						|
/* evfsctuiz */
 | 
						|
DO_SPE_OP1(fsctuiz);
 | 
						|
/* evfsctsf */
 | 
						|
DO_SPE_OP1(fsctsf);
 | 
						|
/* evfsctuf */
 | 
						|
DO_SPE_OP1(fsctuf);
 | 
						|
 | 
						|
/*****************************************************************************/
 | 
						|
/* Softmmu support */
 | 
						|
#if !defined (CONFIG_USER_ONLY)
 | 
						|
 | 
						|
#define MMUSUFFIX _mmu
 | 
						|
 | 
						|
#define SHIFT 0
 | 
						|
#include "softmmu_template.h"
 | 
						|
 | 
						|
#define SHIFT 1
 | 
						|
#include "softmmu_template.h"
 | 
						|
 | 
						|
#define SHIFT 2
 | 
						|
#include "softmmu_template.h"
 | 
						|
 | 
						|
#define SHIFT 3
 | 
						|
#include "softmmu_template.h"
 | 
						|
 | 
						|
/* try to fill the TLB and return an exception if error. If retaddr is
 | 
						|
   NULL, it means that the function was called in C code (i.e. not
 | 
						|
   from generated code or from helper.c) */
 | 
						|
/* XXX: fix it to restore all registers */
 | 
						|
void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
 | 
						|
{
 | 
						|
    TranslationBlock *tb;
 | 
						|
    CPUState *saved_env;
 | 
						|
    unsigned long pc;
 | 
						|
    int ret;
 | 
						|
 | 
						|
    /* XXX: hack to restore env in all cases, even if not called from
 | 
						|
       generated code */
 | 
						|
    saved_env = env;
 | 
						|
    env = cpu_single_env;
 | 
						|
    ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
 | 
						|
    if (unlikely(ret != 0)) {
 | 
						|
        if (likely(retaddr)) {
 | 
						|
            /* now we have a real cpu fault */
 | 
						|
            pc = (unsigned long)retaddr;
 | 
						|
            tb = tb_find_pc(pc);
 | 
						|
            if (likely(tb)) {
 | 
						|
                /* the PC is inside the translated code. It means that we have
 | 
						|
                   a virtual CPU fault */
 | 
						|
                cpu_restore_state(tb, env, pc, NULL);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        do_raise_exception_err(env->exception_index, env->error_code);
 | 
						|
    }
 | 
						|
    env = saved_env;
 | 
						|
}
 | 
						|
 | 
						|
/* Software driven TLBs management */
 | 
						|
/* PowerPC 602/603 software TLB load instructions helpers */
 | 
						|
void do_load_6xx_tlb (int is_code)
 | 
						|
{
 | 
						|
    target_ulong RPN, CMP, EPN;
 | 
						|
    int way;
 | 
						|
 | 
						|
    RPN = env->spr[SPR_RPA];
 | 
						|
    if (is_code) {
 | 
						|
        CMP = env->spr[SPR_ICMP];
 | 
						|
        EPN = env->spr[SPR_IMISS];
 | 
						|
    } else {
 | 
						|
        CMP = env->spr[SPR_DCMP];
 | 
						|
        EPN = env->spr[SPR_DMISS];
 | 
						|
    }
 | 
						|
    way = (env->spr[SPR_SRR1] >> 17) & 1;
 | 
						|
#if defined (DEBUG_SOFTWARE_TLB)
 | 
						|
    if (loglevel != 0) {
 | 
						|
        fprintf(logfile, "%s: EPN " TDX " " ADDRX " PTE0 " ADDRX
 | 
						|
                " PTE1 " ADDRX " way %d\n",
 | 
						|
                __func__, T0, EPN, CMP, RPN, way);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    /* Store this TLB */
 | 
						|
    ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
 | 
						|
                     way, is_code, CMP, RPN);
 | 
						|
}
 | 
						|
 | 
						|
void do_load_74xx_tlb (int is_code)
 | 
						|
{
 | 
						|
    target_ulong RPN, CMP, EPN;
 | 
						|
    int way;
 | 
						|
 | 
						|
    RPN = env->spr[SPR_PTELO];
 | 
						|
    CMP = env->spr[SPR_PTEHI];
 | 
						|
    EPN = env->spr[SPR_TLBMISS] & ~0x3;
 | 
						|
    way = env->spr[SPR_TLBMISS] & 0x3;
 | 
						|
#if defined (DEBUG_SOFTWARE_TLB)
 | 
						|
    if (loglevel != 0) {
 | 
						|
        fprintf(logfile, "%s: EPN " TDX " " ADDRX " PTE0 " ADDRX
 | 
						|
                " PTE1 " ADDRX " way %d\n",
 | 
						|
                __func__, T0, EPN, CMP, RPN, way);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    /* Store this TLB */
 | 
						|
    ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
 | 
						|
                     way, is_code, CMP, RPN);
 | 
						|
}
 | 
						|
 | 
						|
static always_inline target_ulong booke_tlb_to_page_size (int size)
 | 
						|
{
 | 
						|
    return 1024 << (2 * size);
 | 
						|
}
 | 
						|
 | 
						|
static always_inline int booke_page_size_to_tlb (target_ulong page_size)
 | 
						|
{
 | 
						|
    int size;
 | 
						|
 | 
						|
    switch (page_size) {
 | 
						|
    case 0x00000400UL:
 | 
						|
        size = 0x0;
 | 
						|
        break;
 | 
						|
    case 0x00001000UL:
 | 
						|
        size = 0x1;
 | 
						|
        break;
 | 
						|
    case 0x00004000UL:
 | 
						|
        size = 0x2;
 | 
						|
        break;
 | 
						|
    case 0x00010000UL:
 | 
						|
        size = 0x3;
 | 
						|
        break;
 | 
						|
    case 0x00040000UL:
 | 
						|
        size = 0x4;
 | 
						|
        break;
 | 
						|
    case 0x00100000UL:
 | 
						|
        size = 0x5;
 | 
						|
        break;
 | 
						|
    case 0x00400000UL:
 | 
						|
        size = 0x6;
 | 
						|
        break;
 | 
						|
    case 0x01000000UL:
 | 
						|
        size = 0x7;
 | 
						|
        break;
 | 
						|
    case 0x04000000UL:
 | 
						|
        size = 0x8;
 | 
						|
        break;
 | 
						|
    case 0x10000000UL:
 | 
						|
        size = 0x9;
 | 
						|
        break;
 | 
						|
    case 0x40000000UL:
 | 
						|
        size = 0xA;
 | 
						|
        break;
 | 
						|
#if defined (TARGET_PPC64)
 | 
						|
    case 0x000100000000ULL:
 | 
						|
        size = 0xB;
 | 
						|
        break;
 | 
						|
    case 0x000400000000ULL:
 | 
						|
        size = 0xC;
 | 
						|
        break;
 | 
						|
    case 0x001000000000ULL:
 | 
						|
        size = 0xD;
 | 
						|
        break;
 | 
						|
    case 0x004000000000ULL:
 | 
						|
        size = 0xE;
 | 
						|
        break;
 | 
						|
    case 0x010000000000ULL:
 | 
						|
        size = 0xF;
 | 
						|
        break;
 | 
						|
#endif
 | 
						|
    default:
 | 
						|
        size = -1;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    return size;
 | 
						|
}
 | 
						|
 | 
						|
/* Helpers for 4xx TLB management */
 | 
						|
void do_4xx_tlbre_lo (void)
 | 
						|
{
 | 
						|
    ppcemb_tlb_t *tlb;
 | 
						|
    int size;
 | 
						|
 | 
						|
    T0 &= 0x3F;
 | 
						|
    tlb = &env->tlb[T0].tlbe;
 | 
						|
    T0 = tlb->EPN;
 | 
						|
    if (tlb->prot & PAGE_VALID)
 | 
						|
        T0 |= 0x400;
 | 
						|
    size = booke_page_size_to_tlb(tlb->size);
 | 
						|
    if (size < 0 || size > 0x7)
 | 
						|
        size = 1;
 | 
						|
    T0 |= size << 7;
 | 
						|
    env->spr[SPR_40x_PID] = tlb->PID;
 | 
						|
}
 | 
						|
 | 
						|
void do_4xx_tlbre_hi (void)
 | 
						|
{
 | 
						|
    ppcemb_tlb_t *tlb;
 | 
						|
 | 
						|
    T0 &= 0x3F;
 | 
						|
    tlb = &env->tlb[T0].tlbe;
 | 
						|
    T0 = tlb->RPN;
 | 
						|
    if (tlb->prot & PAGE_EXEC)
 | 
						|
        T0 |= 0x200;
 | 
						|
    if (tlb->prot & PAGE_WRITE)
 | 
						|
        T0 |= 0x100;
 | 
						|
}
 | 
						|
 | 
						|
void do_4xx_tlbwe_hi (void)
 | 
						|
{
 | 
						|
    ppcemb_tlb_t *tlb;
 | 
						|
    target_ulong page, end;
 | 
						|
 | 
						|
#if defined (DEBUG_SOFTWARE_TLB)
 | 
						|
    if (loglevel != 0) {
 | 
						|
        fprintf(logfile, "%s T0 " TDX " T1 " TDX "\n", __func__, T0, T1);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    T0 &= 0x3F;
 | 
						|
    tlb = &env->tlb[T0].tlbe;
 | 
						|
    /* Invalidate previous TLB (if it's valid) */
 | 
						|
    if (tlb->prot & PAGE_VALID) {
 | 
						|
        end = tlb->EPN + tlb->size;
 | 
						|
#if defined (DEBUG_SOFTWARE_TLB)
 | 
						|
        if (loglevel != 0) {
 | 
						|
            fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX
 | 
						|
                    " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
 | 
						|
        }
 | 
						|
#endif
 | 
						|
        for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
 | 
						|
            tlb_flush_page(env, page);
 | 
						|
    }
 | 
						|
    tlb->size = booke_tlb_to_page_size((T1 >> 7) & 0x7);
 | 
						|
    /* We cannot handle TLB size < TARGET_PAGE_SIZE.
 | 
						|
     * If this ever occurs, one should use the ppcemb target instead
 | 
						|
     * of the ppc or ppc64 one
 | 
						|
     */
 | 
						|
    if ((T1 & 0x40) && tlb->size < TARGET_PAGE_SIZE) {
 | 
						|
        cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u "
 | 
						|
                  "are not supported (%d)\n",
 | 
						|
                  tlb->size, TARGET_PAGE_SIZE, (int)((T1 >> 7) & 0x7));
 | 
						|
    }
 | 
						|
    tlb->EPN = T1 & ~(tlb->size - 1);
 | 
						|
    if (T1 & 0x40)
 | 
						|
        tlb->prot |= PAGE_VALID;
 | 
						|
    else
 | 
						|
        tlb->prot &= ~PAGE_VALID;
 | 
						|
    if (T1 & 0x20) {
 | 
						|
        /* XXX: TO BE FIXED */
 | 
						|
        cpu_abort(env, "Little-endian TLB entries are not supported by now\n");
 | 
						|
    }
 | 
						|
    tlb->PID = env->spr[SPR_40x_PID]; /* PID */
 | 
						|
    tlb->attr = T1 & 0xFF;
 | 
						|
#if defined (DEBUG_SOFTWARE_TLB)
 | 
						|
    if (loglevel != 0) {
 | 
						|
        fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
 | 
						|
                " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
 | 
						|
                (int)T0, tlb->RPN, tlb->EPN, tlb->size,
 | 
						|
                tlb->prot & PAGE_READ ? 'r' : '-',
 | 
						|
                tlb->prot & PAGE_WRITE ? 'w' : '-',
 | 
						|
                tlb->prot & PAGE_EXEC ? 'x' : '-',
 | 
						|
                tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    /* Invalidate new TLB (if valid) */
 | 
						|
    if (tlb->prot & PAGE_VALID) {
 | 
						|
        end = tlb->EPN + tlb->size;
 | 
						|
#if defined (DEBUG_SOFTWARE_TLB)
 | 
						|
        if (loglevel != 0) {
 | 
						|
            fprintf(logfile, "%s: invalidate TLB %d start " ADDRX
 | 
						|
                    " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
 | 
						|
        }
 | 
						|
#endif
 | 
						|
        for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
 | 
						|
            tlb_flush_page(env, page);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void do_4xx_tlbwe_lo (void)
 | 
						|
{
 | 
						|
    ppcemb_tlb_t *tlb;
 | 
						|
 | 
						|
#if defined (DEBUG_SOFTWARE_TLB)
 | 
						|
    if (loglevel != 0) {
 | 
						|
        fprintf(logfile, "%s T0 " TDX " T1 " TDX "\n", __func__, T0, T1);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    T0 &= 0x3F;
 | 
						|
    tlb = &env->tlb[T0].tlbe;
 | 
						|
    tlb->RPN = T1 & 0xFFFFFC00;
 | 
						|
    tlb->prot = PAGE_READ;
 | 
						|
    if (T1 & 0x200)
 | 
						|
        tlb->prot |= PAGE_EXEC;
 | 
						|
    if (T1 & 0x100)
 | 
						|
        tlb->prot |= PAGE_WRITE;
 | 
						|
#if defined (DEBUG_SOFTWARE_TLB)
 | 
						|
    if (loglevel != 0) {
 | 
						|
        fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
 | 
						|
                " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
 | 
						|
                (int)T0, tlb->RPN, tlb->EPN, tlb->size,
 | 
						|
                tlb->prot & PAGE_READ ? 'r' : '-',
 | 
						|
                tlb->prot & PAGE_WRITE ? 'w' : '-',
 | 
						|
                tlb->prot & PAGE_EXEC ? 'x' : '-',
 | 
						|
                tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/* PowerPC 440 TLB management */
 | 
						|
void do_440_tlbwe (int word)
 | 
						|
{
 | 
						|
    ppcemb_tlb_t *tlb;
 | 
						|
    target_ulong EPN, RPN, size;
 | 
						|
    int do_flush_tlbs;
 | 
						|
 | 
						|
#if defined (DEBUG_SOFTWARE_TLB)
 | 
						|
    if (loglevel != 0) {
 | 
						|
        fprintf(logfile, "%s word %d T0 " TDX " T1 " TDX "\n",
 | 
						|
                __func__, word, T0, T1);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    do_flush_tlbs = 0;
 | 
						|
    T0 &= 0x3F;
 | 
						|
    tlb = &env->tlb[T0].tlbe;
 | 
						|
    switch (word) {
 | 
						|
    default:
 | 
						|
        /* Just here to please gcc */
 | 
						|
    case 0:
 | 
						|
        EPN = T1 & 0xFFFFFC00;
 | 
						|
        if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN)
 | 
						|
            do_flush_tlbs = 1;
 | 
						|
        tlb->EPN = EPN;
 | 
						|
        size = booke_tlb_to_page_size((T1 >> 4) & 0xF);
 | 
						|
        if ((tlb->prot & PAGE_VALID) && tlb->size < size)
 | 
						|
            do_flush_tlbs = 1;
 | 
						|
        tlb->size = size;
 | 
						|
        tlb->attr &= ~0x1;
 | 
						|
        tlb->attr |= (T1 >> 8) & 1;
 | 
						|
        if (T1 & 0x200) {
 | 
						|
            tlb->prot |= PAGE_VALID;
 | 
						|
        } else {
 | 
						|
            if (tlb->prot & PAGE_VALID) {
 | 
						|
                tlb->prot &= ~PAGE_VALID;
 | 
						|
                do_flush_tlbs = 1;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF;
 | 
						|
        if (do_flush_tlbs)
 | 
						|
            tlb_flush(env, 1);
 | 
						|
        break;
 | 
						|
    case 1:
 | 
						|
        RPN = T1 & 0xFFFFFC0F;
 | 
						|
        if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN)
 | 
						|
            tlb_flush(env, 1);
 | 
						|
        tlb->RPN = RPN;
 | 
						|
        break;
 | 
						|
    case 2:
 | 
						|
        tlb->attr = (tlb->attr & 0x1) | (T1 & 0x0000FF00);
 | 
						|
        tlb->prot = tlb->prot & PAGE_VALID;
 | 
						|
        if (T1 & 0x1)
 | 
						|
            tlb->prot |= PAGE_READ << 4;
 | 
						|
        if (T1 & 0x2)
 | 
						|
            tlb->prot |= PAGE_WRITE << 4;
 | 
						|
        if (T1 & 0x4)
 | 
						|
            tlb->prot |= PAGE_EXEC << 4;
 | 
						|
        if (T1 & 0x8)
 | 
						|
            tlb->prot |= PAGE_READ;
 | 
						|
        if (T1 & 0x10)
 | 
						|
            tlb->prot |= PAGE_WRITE;
 | 
						|
        if (T1 & 0x20)
 | 
						|
            tlb->prot |= PAGE_EXEC;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void do_440_tlbre (int word)
 | 
						|
{
 | 
						|
    ppcemb_tlb_t *tlb;
 | 
						|
    int size;
 | 
						|
 | 
						|
    T0 &= 0x3F;
 | 
						|
    tlb = &env->tlb[T0].tlbe;
 | 
						|
    switch (word) {
 | 
						|
    default:
 | 
						|
        /* Just here to please gcc */
 | 
						|
    case 0:
 | 
						|
        T0 = tlb->EPN;
 | 
						|
        size = booke_page_size_to_tlb(tlb->size);
 | 
						|
        if (size < 0 || size > 0xF)
 | 
						|
            size = 1;
 | 
						|
        T0 |= size << 4;
 | 
						|
        if (tlb->attr & 0x1)
 | 
						|
            T0 |= 0x100;
 | 
						|
        if (tlb->prot & PAGE_VALID)
 | 
						|
            T0 |= 0x200;
 | 
						|
        env->spr[SPR_440_MMUCR] &= ~0x000000FF;
 | 
						|
        env->spr[SPR_440_MMUCR] |= tlb->PID;
 | 
						|
        break;
 | 
						|
    case 1:
 | 
						|
        T0 = tlb->RPN;
 | 
						|
        break;
 | 
						|
    case 2:
 | 
						|
        T0 = tlb->attr & ~0x1;
 | 
						|
        if (tlb->prot & (PAGE_READ << 4))
 | 
						|
            T0 |= 0x1;
 | 
						|
        if (tlb->prot & (PAGE_WRITE << 4))
 | 
						|
            T0 |= 0x2;
 | 
						|
        if (tlb->prot & (PAGE_EXEC << 4))
 | 
						|
            T0 |= 0x4;
 | 
						|
        if (tlb->prot & PAGE_READ)
 | 
						|
            T0 |= 0x8;
 | 
						|
        if (tlb->prot & PAGE_WRITE)
 | 
						|
            T0 |= 0x10;
 | 
						|
        if (tlb->prot & PAGE_EXEC)
 | 
						|
            T0 |= 0x20;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif /* !CONFIG_USER_ONLY */
 |