This bug occurs when the SET flag of Register B is enabled. When an RTC data register (i.e. any of the ten time/calender CMOS bytes) is set, the data is (as expected) correctly stored in the cmos_data array. However, since the SET flag is enabled, the function rtc_set_time is not invoked. As a result, the field base_rtc in RTCState remains uninitialized. This causes a problem on subsequent writes which can end up overwriting data. To see this, consider writing data to Register A after having written data to any of the RTC data registers; the following figure illustrates the call stack for the Register A write operation: +- cmos_io_port_write +-- check_update_timer +---- get_next_alarm +------ rtc_update_time In rtc_update_time, get_guest_rtc calculates the wrong time and overwrites the previously written RTC data register values. Signed-off-by: Alex Horn <alex.horn@cs.ox.ac.uk> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
		
			
				
	
	
		
			914 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			914 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * QEMU MC146818 RTC emulation
 | 
						|
 *
 | 
						|
 * Copyright (c) 2003-2004 Fabrice Bellard
 | 
						|
 *
 | 
						|
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 | 
						|
 * of this software and associated documentation files (the "Software"), to deal
 | 
						|
 * in the Software without restriction, including without limitation the rights
 | 
						|
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | 
						|
 * copies of the Software, and to permit persons to whom the Software is
 | 
						|
 * furnished to do so, subject to the following conditions:
 | 
						|
 *
 | 
						|
 * The above copyright notice and this permission notice shall be included in
 | 
						|
 * all copies or substantial portions of the Software.
 | 
						|
 *
 | 
						|
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | 
						|
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | 
						|
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 | 
						|
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | 
						|
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | 
						|
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | 
						|
 * THE SOFTWARE.
 | 
						|
 */
 | 
						|
#include "hw.h"
 | 
						|
#include "qemu-timer.h"
 | 
						|
#include "sysemu.h"
 | 
						|
#include "mc146818rtc.h"
 | 
						|
#include "qapi/qapi-visit-core.h"
 | 
						|
 | 
						|
#ifdef TARGET_I386
 | 
						|
#include "apic.h"
 | 
						|
#endif
 | 
						|
 | 
						|
//#define DEBUG_CMOS
 | 
						|
//#define DEBUG_COALESCED
 | 
						|
 | 
						|
#ifdef DEBUG_CMOS
 | 
						|
# define CMOS_DPRINTF(format, ...)      printf(format, ## __VA_ARGS__)
 | 
						|
#else
 | 
						|
# define CMOS_DPRINTF(format, ...)      do { } while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef DEBUG_COALESCED
 | 
						|
# define DPRINTF_C(format, ...)      printf(format, ## __VA_ARGS__)
 | 
						|
#else
 | 
						|
# define DPRINTF_C(format, ...)      do { } while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
#define NSEC_PER_SEC    1000000000LL
 | 
						|
#define SEC_PER_MIN     60
 | 
						|
#define MIN_PER_HOUR    60
 | 
						|
#define SEC_PER_HOUR    3600
 | 
						|
#define HOUR_PER_DAY    24
 | 
						|
#define SEC_PER_DAY     86400
 | 
						|
 | 
						|
#define RTC_REINJECT_ON_ACK_COUNT 20
 | 
						|
#define RTC_CLOCK_RATE            32768
 | 
						|
#define UIP_HOLD_LENGTH           (8 * NSEC_PER_SEC / 32768)
 | 
						|
 | 
						|
typedef struct RTCState {
 | 
						|
    ISADevice dev;
 | 
						|
    MemoryRegion io;
 | 
						|
    uint8_t cmos_data[128];
 | 
						|
    uint8_t cmos_index;
 | 
						|
    int32_t base_year;
 | 
						|
    uint64_t base_rtc;
 | 
						|
    uint64_t last_update;
 | 
						|
    int64_t offset;
 | 
						|
    qemu_irq irq;
 | 
						|
    qemu_irq sqw_irq;
 | 
						|
    int it_shift;
 | 
						|
    /* periodic timer */
 | 
						|
    QEMUTimer *periodic_timer;
 | 
						|
    int64_t next_periodic_time;
 | 
						|
    /* update-ended timer */
 | 
						|
    QEMUTimer *update_timer;
 | 
						|
    uint64_t next_alarm_time;
 | 
						|
    uint16_t irq_reinject_on_ack_count;
 | 
						|
    uint32_t irq_coalesced;
 | 
						|
    uint32_t period;
 | 
						|
    QEMUTimer *coalesced_timer;
 | 
						|
    Notifier clock_reset_notifier;
 | 
						|
    LostTickPolicy lost_tick_policy;
 | 
						|
    Notifier suspend_notifier;
 | 
						|
} RTCState;
 | 
						|
 | 
						|
static void rtc_set_time(RTCState *s);
 | 
						|
static void rtc_update_time(RTCState *s);
 | 
						|
static void rtc_set_cmos(RTCState *s, const struct tm *tm);
 | 
						|
static inline int rtc_from_bcd(RTCState *s, int a);
 | 
						|
static uint64_t get_next_alarm(RTCState *s);
 | 
						|
 | 
						|
static inline bool rtc_running(RTCState *s)
 | 
						|
{
 | 
						|
    return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) &&
 | 
						|
            (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t get_guest_rtc_ns(RTCState *s)
 | 
						|
{
 | 
						|
    uint64_t guest_rtc;
 | 
						|
    uint64_t guest_clock = qemu_get_clock_ns(rtc_clock);
 | 
						|
 | 
						|
    guest_rtc = s->base_rtc * NSEC_PER_SEC
 | 
						|
                 + guest_clock - s->last_update + s->offset;
 | 
						|
    return guest_rtc;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef TARGET_I386
 | 
						|
static void rtc_coalesced_timer_update(RTCState *s)
 | 
						|
{
 | 
						|
    if (s->irq_coalesced == 0) {
 | 
						|
        qemu_del_timer(s->coalesced_timer);
 | 
						|
    } else {
 | 
						|
        /* divide each RTC interval to 2 - 8 smaller intervals */
 | 
						|
        int c = MIN(s->irq_coalesced, 7) + 1; 
 | 
						|
        int64_t next_clock = qemu_get_clock_ns(rtc_clock) +
 | 
						|
            muldiv64(s->period / c, get_ticks_per_sec(), RTC_CLOCK_RATE);
 | 
						|
        qemu_mod_timer(s->coalesced_timer, next_clock);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void rtc_coalesced_timer(void *opaque)
 | 
						|
{
 | 
						|
    RTCState *s = opaque;
 | 
						|
 | 
						|
    if (s->irq_coalesced != 0) {
 | 
						|
        apic_reset_irq_delivered();
 | 
						|
        s->cmos_data[RTC_REG_C] |= 0xc0;
 | 
						|
        DPRINTF_C("cmos: injecting from timer\n");
 | 
						|
        qemu_irq_raise(s->irq);
 | 
						|
        if (apic_get_irq_delivered()) {
 | 
						|
            s->irq_coalesced--;
 | 
						|
            DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
 | 
						|
                      s->irq_coalesced);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    rtc_coalesced_timer_update(s);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/* handle periodic timer */
 | 
						|
static void periodic_timer_update(RTCState *s, int64_t current_time)
 | 
						|
{
 | 
						|
    int period_code, period;
 | 
						|
    int64_t cur_clock, next_irq_clock;
 | 
						|
 | 
						|
    period_code = s->cmos_data[RTC_REG_A] & 0x0f;
 | 
						|
    if (period_code != 0
 | 
						|
        && ((s->cmos_data[RTC_REG_B] & REG_B_PIE)
 | 
						|
            || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) {
 | 
						|
        if (period_code <= 2)
 | 
						|
            period_code += 7;
 | 
						|
        /* period in 32 Khz cycles */
 | 
						|
        period = 1 << (period_code - 1);
 | 
						|
#ifdef TARGET_I386
 | 
						|
        if (period != s->period) {
 | 
						|
            s->irq_coalesced = (s->irq_coalesced * s->period) / period;
 | 
						|
            DPRINTF_C("cmos: coalesced irqs scaled to %d\n", s->irq_coalesced);
 | 
						|
        }
 | 
						|
        s->period = period;
 | 
						|
#endif
 | 
						|
        /* compute 32 khz clock */
 | 
						|
        cur_clock = muldiv64(current_time, RTC_CLOCK_RATE, get_ticks_per_sec());
 | 
						|
        next_irq_clock = (cur_clock & ~(period - 1)) + period;
 | 
						|
        s->next_periodic_time =
 | 
						|
            muldiv64(next_irq_clock, get_ticks_per_sec(), RTC_CLOCK_RATE) + 1;
 | 
						|
        qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
 | 
						|
    } else {
 | 
						|
#ifdef TARGET_I386
 | 
						|
        s->irq_coalesced = 0;
 | 
						|
#endif
 | 
						|
        qemu_del_timer(s->periodic_timer);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void rtc_periodic_timer(void *opaque)
 | 
						|
{
 | 
						|
    RTCState *s = opaque;
 | 
						|
 | 
						|
    periodic_timer_update(s, s->next_periodic_time);
 | 
						|
    s->cmos_data[RTC_REG_C] |= REG_C_PF;
 | 
						|
    if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
 | 
						|
        s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
 | 
						|
#ifdef TARGET_I386
 | 
						|
        if (s->lost_tick_policy == LOST_TICK_SLEW) {
 | 
						|
            if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
 | 
						|
                s->irq_reinject_on_ack_count = 0;		
 | 
						|
            apic_reset_irq_delivered();
 | 
						|
            qemu_irq_raise(s->irq);
 | 
						|
            if (!apic_get_irq_delivered()) {
 | 
						|
                s->irq_coalesced++;
 | 
						|
                rtc_coalesced_timer_update(s);
 | 
						|
                DPRINTF_C("cmos: coalesced irqs increased to %d\n",
 | 
						|
                          s->irq_coalesced);
 | 
						|
            }
 | 
						|
        } else
 | 
						|
#endif
 | 
						|
        qemu_irq_raise(s->irq);
 | 
						|
    }
 | 
						|
    if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) {
 | 
						|
        /* Not square wave at all but we don't want 2048Hz interrupts!
 | 
						|
           Must be seen as a pulse.  */
 | 
						|
        qemu_irq_raise(s->sqw_irq);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* handle update-ended timer */
 | 
						|
static void check_update_timer(RTCState *s)
 | 
						|
{
 | 
						|
    uint64_t next_update_time;
 | 
						|
    uint64_t guest_nsec;
 | 
						|
    int next_alarm_sec;
 | 
						|
 | 
						|
    /* From the data sheet: "Holding the dividers in reset prevents
 | 
						|
     * interrupts from operating, while setting the SET bit allows"
 | 
						|
     * them to occur.  However, it will prevent an alarm interrupt
 | 
						|
     * from occurring, because the time of day is not updated.
 | 
						|
     */
 | 
						|
    if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) {
 | 
						|
        qemu_del_timer(s->update_timer);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    if ((s->cmos_data[RTC_REG_C] & REG_C_UF) &&
 | 
						|
        (s->cmos_data[RTC_REG_B] & REG_B_SET)) {
 | 
						|
        qemu_del_timer(s->update_timer);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    if ((s->cmos_data[RTC_REG_C] & REG_C_UF) &&
 | 
						|
        (s->cmos_data[RTC_REG_C] & REG_C_AF)) {
 | 
						|
        qemu_del_timer(s->update_timer);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    guest_nsec = get_guest_rtc_ns(s) % NSEC_PER_SEC;
 | 
						|
    /* if UF is clear, reprogram to next second */
 | 
						|
    next_update_time = qemu_get_clock_ns(rtc_clock)
 | 
						|
        + NSEC_PER_SEC - guest_nsec;
 | 
						|
 | 
						|
    /* Compute time of next alarm.  One second is already accounted
 | 
						|
     * for in next_update_time.
 | 
						|
     */
 | 
						|
    next_alarm_sec = get_next_alarm(s);
 | 
						|
    s->next_alarm_time = next_update_time + (next_alarm_sec - 1) * NSEC_PER_SEC;
 | 
						|
 | 
						|
    if (s->cmos_data[RTC_REG_C] & REG_C_UF) {
 | 
						|
        /* UF is set, but AF is clear.  Program the timer to target
 | 
						|
         * the alarm time.  */
 | 
						|
        next_update_time = s->next_alarm_time;
 | 
						|
    }
 | 
						|
    if (next_update_time != qemu_timer_expire_time_ns(s->update_timer)) {
 | 
						|
        qemu_mod_timer(s->update_timer, next_update_time);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline uint8_t convert_hour(RTCState *s, uint8_t hour)
 | 
						|
{
 | 
						|
    if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
 | 
						|
        hour %= 12;
 | 
						|
        if (s->cmos_data[RTC_HOURS] & 0x80) {
 | 
						|
            hour += 12;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return hour;
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t get_next_alarm(RTCState *s)
 | 
						|
{
 | 
						|
    int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
 | 
						|
    int32_t hour, min, sec;
 | 
						|
 | 
						|
    rtc_update_time(s);
 | 
						|
 | 
						|
    alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
 | 
						|
    alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
 | 
						|
    alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
 | 
						|
    alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
 | 
						|
 | 
						|
    cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
 | 
						|
    cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
 | 
						|
    cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
 | 
						|
    cur_hour = convert_hour(s, cur_hour);
 | 
						|
 | 
						|
    if (alarm_hour == -1) {
 | 
						|
        alarm_hour = cur_hour;
 | 
						|
        if (alarm_min == -1) {
 | 
						|
            alarm_min = cur_min;
 | 
						|
            if (alarm_sec == -1) {
 | 
						|
                alarm_sec = cur_sec + 1;
 | 
						|
            } else if (cur_sec > alarm_sec) {
 | 
						|
                alarm_min++;
 | 
						|
            }
 | 
						|
        } else if (cur_min == alarm_min) {
 | 
						|
            if (alarm_sec == -1) {
 | 
						|
                alarm_sec = cur_sec + 1;
 | 
						|
            } else {
 | 
						|
                if (cur_sec > alarm_sec) {
 | 
						|
                    alarm_hour++;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if (alarm_sec == SEC_PER_MIN) {
 | 
						|
                /* wrap to next hour, minutes is not in don't care mode */
 | 
						|
                alarm_sec = 0;
 | 
						|
                alarm_hour++;
 | 
						|
            }
 | 
						|
        } else if (cur_min > alarm_min) {
 | 
						|
            alarm_hour++;
 | 
						|
        }
 | 
						|
    } else if (cur_hour == alarm_hour) {
 | 
						|
        if (alarm_min == -1) {
 | 
						|
            alarm_min = cur_min;
 | 
						|
            if (alarm_sec == -1) {
 | 
						|
                alarm_sec = cur_sec + 1;
 | 
						|
            } else if (cur_sec > alarm_sec) {
 | 
						|
                alarm_min++;
 | 
						|
            }
 | 
						|
 | 
						|
            if (alarm_sec == SEC_PER_MIN) {
 | 
						|
                alarm_sec = 0;
 | 
						|
                alarm_min++;
 | 
						|
            }
 | 
						|
            /* wrap to next day, hour is not in don't care mode */
 | 
						|
            alarm_min %= MIN_PER_HOUR;
 | 
						|
        } else if (cur_min == alarm_min) {
 | 
						|
            if (alarm_sec == -1) {
 | 
						|
                alarm_sec = cur_sec + 1;
 | 
						|
            }
 | 
						|
            /* wrap to next day, hours+minutes not in don't care mode */
 | 
						|
            alarm_sec %= SEC_PER_MIN;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* values that are still don't care fire at the next min/sec */
 | 
						|
    if (alarm_min == -1) {
 | 
						|
        alarm_min = 0;
 | 
						|
    }
 | 
						|
    if (alarm_sec == -1) {
 | 
						|
        alarm_sec = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* keep values in range */
 | 
						|
    if (alarm_sec == SEC_PER_MIN) {
 | 
						|
        alarm_sec = 0;
 | 
						|
        alarm_min++;
 | 
						|
    }
 | 
						|
    if (alarm_min == MIN_PER_HOUR) {
 | 
						|
        alarm_min = 0;
 | 
						|
        alarm_hour++;
 | 
						|
    }
 | 
						|
    alarm_hour %= HOUR_PER_DAY;
 | 
						|
 | 
						|
    hour = alarm_hour - cur_hour;
 | 
						|
    min = hour * MIN_PER_HOUR + alarm_min - cur_min;
 | 
						|
    sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
 | 
						|
    return sec <= 0 ? sec + SEC_PER_DAY : sec;
 | 
						|
}
 | 
						|
 | 
						|
static void rtc_update_timer(void *opaque)
 | 
						|
{
 | 
						|
    RTCState *s = opaque;
 | 
						|
    int32_t irqs = REG_C_UF;
 | 
						|
    int32_t new_irqs;
 | 
						|
 | 
						|
    assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60);
 | 
						|
 | 
						|
    /* UIP might have been latched, update time and clear it.  */
 | 
						|
    rtc_update_time(s);
 | 
						|
    s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
 | 
						|
 | 
						|
    if (qemu_get_clock_ns(rtc_clock) >= s->next_alarm_time) {
 | 
						|
        irqs |= REG_C_AF;
 | 
						|
        if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
 | 
						|
            qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
 | 
						|
    s->cmos_data[RTC_REG_C] |= irqs;
 | 
						|
    if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
 | 
						|
        s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
 | 
						|
        qemu_irq_raise(s->irq);
 | 
						|
    }
 | 
						|
    check_update_timer(s);
 | 
						|
}
 | 
						|
 | 
						|
static void cmos_ioport_write(void *opaque, hwaddr addr,
 | 
						|
                              uint64_t data, unsigned size)
 | 
						|
{
 | 
						|
    RTCState *s = opaque;
 | 
						|
 | 
						|
    if ((addr & 1) == 0) {
 | 
						|
        s->cmos_index = data & 0x7f;
 | 
						|
    } else {
 | 
						|
        CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02x\n",
 | 
						|
                     s->cmos_index, data);
 | 
						|
        switch(s->cmos_index) {
 | 
						|
        case RTC_SECONDS_ALARM:
 | 
						|
        case RTC_MINUTES_ALARM:
 | 
						|
        case RTC_HOURS_ALARM:
 | 
						|
            s->cmos_data[s->cmos_index] = data;
 | 
						|
            check_update_timer(s);
 | 
						|
            break;
 | 
						|
	case RTC_IBM_PS2_CENTURY_BYTE:
 | 
						|
            s->cmos_index = RTC_CENTURY;
 | 
						|
            /* fall through */
 | 
						|
        case RTC_CENTURY:
 | 
						|
        case RTC_SECONDS:
 | 
						|
        case RTC_MINUTES:
 | 
						|
        case RTC_HOURS:
 | 
						|
        case RTC_DAY_OF_WEEK:
 | 
						|
        case RTC_DAY_OF_MONTH:
 | 
						|
        case RTC_MONTH:
 | 
						|
        case RTC_YEAR:
 | 
						|
            s->cmos_data[s->cmos_index] = data;
 | 
						|
            /* if in set mode, do not update the time */
 | 
						|
            if (rtc_running(s)) {
 | 
						|
                rtc_set_time(s);
 | 
						|
                check_update_timer(s);
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case RTC_REG_A:
 | 
						|
            if ((data & 0x60) == 0x60) {
 | 
						|
                if (rtc_running(s)) {
 | 
						|
                    rtc_update_time(s);
 | 
						|
                }
 | 
						|
                /* What happens to UIP when divider reset is enabled is
 | 
						|
                 * unclear from the datasheet.  Shouldn't matter much
 | 
						|
                 * though.
 | 
						|
                 */
 | 
						|
                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
 | 
						|
            } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) &&
 | 
						|
                    (data & 0x70)  <= 0x20) {
 | 
						|
                /* when the divider reset is removed, the first update cycle
 | 
						|
                 * begins one-half second later*/
 | 
						|
                if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
 | 
						|
                    s->offset = 500000000;
 | 
						|
                    rtc_set_time(s);
 | 
						|
                }
 | 
						|
                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
 | 
						|
            }
 | 
						|
            /* UIP bit is read only */
 | 
						|
            s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
 | 
						|
                (s->cmos_data[RTC_REG_A] & REG_A_UIP);
 | 
						|
            periodic_timer_update(s, qemu_get_clock_ns(rtc_clock));
 | 
						|
            check_update_timer(s);
 | 
						|
            break;
 | 
						|
        case RTC_REG_B:
 | 
						|
            if (data & REG_B_SET) {
 | 
						|
                /* update cmos to when the rtc was stopping */
 | 
						|
                if (rtc_running(s)) {
 | 
						|
                    rtc_update_time(s);
 | 
						|
                }
 | 
						|
                /* set mode: reset UIP mode */
 | 
						|
                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
 | 
						|
                data &= ~REG_B_UIE;
 | 
						|
            } else {
 | 
						|
                /* if disabling set mode, update the time */
 | 
						|
                if ((s->cmos_data[RTC_REG_B] & REG_B_SET) &&
 | 
						|
                    (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) {
 | 
						|
                    s->offset = get_guest_rtc_ns(s) % NSEC_PER_SEC;
 | 
						|
                    rtc_set_time(s);
 | 
						|
                }
 | 
						|
            }
 | 
						|
            /* if an interrupt flag is already set when the interrupt
 | 
						|
             * becomes enabled, raise an interrupt immediately.  */
 | 
						|
            if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) {
 | 
						|
                s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
 | 
						|
                qemu_irq_raise(s->irq);
 | 
						|
            } else {
 | 
						|
                s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF;
 | 
						|
                qemu_irq_lower(s->irq);
 | 
						|
            }
 | 
						|
            s->cmos_data[RTC_REG_B] = data;
 | 
						|
            periodic_timer_update(s, qemu_get_clock_ns(rtc_clock));
 | 
						|
            check_update_timer(s);
 | 
						|
            break;
 | 
						|
        case RTC_REG_C:
 | 
						|
        case RTC_REG_D:
 | 
						|
            /* cannot write to them */
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            s->cmos_data[s->cmos_index] = data;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline int rtc_to_bcd(RTCState *s, int a)
 | 
						|
{
 | 
						|
    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
 | 
						|
        return a;
 | 
						|
    } else {
 | 
						|
        return ((a / 10) << 4) | (a % 10);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline int rtc_from_bcd(RTCState *s, int a)
 | 
						|
{
 | 
						|
    if ((a & 0xc0) == 0xc0) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
 | 
						|
        return a;
 | 
						|
    } else {
 | 
						|
        return ((a >> 4) * 10) + (a & 0x0f);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void rtc_get_time(RTCState *s, struct tm *tm)
 | 
						|
{
 | 
						|
    tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
 | 
						|
    tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
 | 
						|
    tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
 | 
						|
    if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
 | 
						|
        tm->tm_hour %= 12;
 | 
						|
        if (s->cmos_data[RTC_HOURS] & 0x80) {
 | 
						|
            tm->tm_hour += 12;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
 | 
						|
    tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
 | 
						|
    tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
 | 
						|
    tm->tm_year =
 | 
						|
        rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year +
 | 
						|
        rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900;
 | 
						|
}
 | 
						|
 | 
						|
static void rtc_set_time(RTCState *s)
 | 
						|
{
 | 
						|
    struct tm tm;
 | 
						|
 | 
						|
    rtc_get_time(s, &tm);
 | 
						|
    s->base_rtc = mktimegm(&tm);
 | 
						|
    s->last_update = qemu_get_clock_ns(rtc_clock);
 | 
						|
 | 
						|
    rtc_change_mon_event(&tm);
 | 
						|
}
 | 
						|
 | 
						|
static void rtc_set_cmos(RTCState *s, const struct tm *tm)
 | 
						|
{
 | 
						|
    int year;
 | 
						|
 | 
						|
    s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
 | 
						|
    s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
 | 
						|
    if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
 | 
						|
        /* 24 hour format */
 | 
						|
        s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
 | 
						|
    } else {
 | 
						|
        /* 12 hour format */
 | 
						|
        int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
 | 
						|
        s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
 | 
						|
        if (tm->tm_hour >= 12)
 | 
						|
            s->cmos_data[RTC_HOURS] |= 0x80;
 | 
						|
    }
 | 
						|
    s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
 | 
						|
    s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
 | 
						|
    s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
 | 
						|
    year = tm->tm_year + 1900 - s->base_year;
 | 
						|
    s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100);
 | 
						|
    s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100);
 | 
						|
}
 | 
						|
 | 
						|
static void rtc_update_time(RTCState *s)
 | 
						|
{
 | 
						|
    struct tm ret;
 | 
						|
    time_t guest_sec;
 | 
						|
    int64_t guest_nsec;
 | 
						|
 | 
						|
    guest_nsec = get_guest_rtc_ns(s);
 | 
						|
    guest_sec = guest_nsec / NSEC_PER_SEC;
 | 
						|
    gmtime_r(&guest_sec, &ret);
 | 
						|
 | 
						|
    /* Is SET flag of Register B disabled? */
 | 
						|
    if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) {
 | 
						|
        rtc_set_cmos(s, &ret);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int update_in_progress(RTCState *s)
 | 
						|
{
 | 
						|
    int64_t guest_nsec;
 | 
						|
 | 
						|
    if (!rtc_running(s)) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    if (qemu_timer_pending(s->update_timer)) {
 | 
						|
        int64_t next_update_time = qemu_timer_expire_time_ns(s->update_timer);
 | 
						|
        /* Latch UIP until the timer expires.  */
 | 
						|
        if (qemu_get_clock_ns(rtc_clock) >= (next_update_time - UIP_HOLD_LENGTH)) {
 | 
						|
            s->cmos_data[RTC_REG_A] |= REG_A_UIP;
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    guest_nsec = get_guest_rtc_ns(s);
 | 
						|
    /* UIP bit will be set at last 244us of every second. */
 | 
						|
    if ((guest_nsec % NSEC_PER_SEC) >= (NSEC_PER_SEC - UIP_HOLD_LENGTH)) {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t cmos_ioport_read(void *opaque, hwaddr addr,
 | 
						|
                                 unsigned size)
 | 
						|
{
 | 
						|
    RTCState *s = opaque;
 | 
						|
    int ret;
 | 
						|
    if ((addr & 1) == 0) {
 | 
						|
        return 0xff;
 | 
						|
    } else {
 | 
						|
        switch(s->cmos_index) {
 | 
						|
	case RTC_IBM_PS2_CENTURY_BYTE:
 | 
						|
            s->cmos_index = RTC_CENTURY;
 | 
						|
            /* fall through */
 | 
						|
        case RTC_CENTURY:
 | 
						|
        case RTC_SECONDS:
 | 
						|
        case RTC_MINUTES:
 | 
						|
        case RTC_HOURS:
 | 
						|
        case RTC_DAY_OF_WEEK:
 | 
						|
        case RTC_DAY_OF_MONTH:
 | 
						|
        case RTC_MONTH:
 | 
						|
        case RTC_YEAR:
 | 
						|
            /* if not in set mode, calibrate cmos before
 | 
						|
             * reading*/
 | 
						|
            if (rtc_running(s)) {
 | 
						|
                rtc_update_time(s);
 | 
						|
            }
 | 
						|
            ret = s->cmos_data[s->cmos_index];
 | 
						|
            break;
 | 
						|
        case RTC_REG_A:
 | 
						|
            if (update_in_progress(s)) {
 | 
						|
                s->cmos_data[s->cmos_index] |= REG_A_UIP;
 | 
						|
            } else {
 | 
						|
                s->cmos_data[s->cmos_index] &= ~REG_A_UIP;
 | 
						|
            }
 | 
						|
            ret = s->cmos_data[s->cmos_index];
 | 
						|
            break;
 | 
						|
        case RTC_REG_C:
 | 
						|
            ret = s->cmos_data[s->cmos_index];
 | 
						|
            qemu_irq_lower(s->irq);
 | 
						|
            s->cmos_data[RTC_REG_C] = 0x00;
 | 
						|
            if (ret & (REG_C_UF | REG_C_AF)) {
 | 
						|
                check_update_timer(s);
 | 
						|
            }
 | 
						|
#ifdef TARGET_I386
 | 
						|
            if(s->irq_coalesced &&
 | 
						|
                    (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
 | 
						|
                    s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
 | 
						|
                s->irq_reinject_on_ack_count++;
 | 
						|
                s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
 | 
						|
                apic_reset_irq_delivered();
 | 
						|
                DPRINTF_C("cmos: injecting on ack\n");
 | 
						|
                qemu_irq_raise(s->irq);
 | 
						|
                if (apic_get_irq_delivered()) {
 | 
						|
                    s->irq_coalesced--;
 | 
						|
                    DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
 | 
						|
                              s->irq_coalesced);
 | 
						|
                }
 | 
						|
            }
 | 
						|
#endif
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            ret = s->cmos_data[s->cmos_index];
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
 | 
						|
                     s->cmos_index, ret);
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void rtc_set_memory(ISADevice *dev, int addr, int val)
 | 
						|
{
 | 
						|
    RTCState *s = DO_UPCAST(RTCState, dev, dev);
 | 
						|
    if (addr >= 0 && addr <= 127)
 | 
						|
        s->cmos_data[addr] = val;
 | 
						|
}
 | 
						|
 | 
						|
static void rtc_set_date_from_host(ISADevice *dev)
 | 
						|
{
 | 
						|
    RTCState *s = DO_UPCAST(RTCState, dev, dev);
 | 
						|
    struct tm tm;
 | 
						|
 | 
						|
    qemu_get_timedate(&tm, 0);
 | 
						|
 | 
						|
    s->base_rtc = mktimegm(&tm);
 | 
						|
    s->last_update = qemu_get_clock_ns(rtc_clock);
 | 
						|
    s->offset = 0;
 | 
						|
 | 
						|
    /* set the CMOS date */
 | 
						|
    rtc_set_cmos(s, &tm);
 | 
						|
}
 | 
						|
 | 
						|
static int rtc_post_load(void *opaque, int version_id)
 | 
						|
{
 | 
						|
    RTCState *s = opaque;
 | 
						|
 | 
						|
    if (version_id <= 2) {
 | 
						|
        rtc_set_time(s);
 | 
						|
        s->offset = 0;
 | 
						|
        check_update_timer(s);
 | 
						|
    }
 | 
						|
 | 
						|
#ifdef TARGET_I386
 | 
						|
    if (version_id >= 2) {
 | 
						|
        if (s->lost_tick_policy == LOST_TICK_SLEW) {
 | 
						|
            rtc_coalesced_timer_update(s);
 | 
						|
        }
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static const VMStateDescription vmstate_rtc = {
 | 
						|
    .name = "mc146818rtc",
 | 
						|
    .version_id = 3,
 | 
						|
    .minimum_version_id = 1,
 | 
						|
    .minimum_version_id_old = 1,
 | 
						|
    .post_load = rtc_post_load,
 | 
						|
    .fields      = (VMStateField []) {
 | 
						|
        VMSTATE_BUFFER(cmos_data, RTCState),
 | 
						|
        VMSTATE_UINT8(cmos_index, RTCState),
 | 
						|
        VMSTATE_UNUSED(7*4),
 | 
						|
        VMSTATE_TIMER(periodic_timer, RTCState),
 | 
						|
        VMSTATE_INT64(next_periodic_time, RTCState),
 | 
						|
        VMSTATE_UNUSED(3*8),
 | 
						|
        VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
 | 
						|
        VMSTATE_UINT32_V(period, RTCState, 2),
 | 
						|
        VMSTATE_UINT64_V(base_rtc, RTCState, 3),
 | 
						|
        VMSTATE_UINT64_V(last_update, RTCState, 3),
 | 
						|
        VMSTATE_INT64_V(offset, RTCState, 3),
 | 
						|
        VMSTATE_TIMER_V(update_timer, RTCState, 3),
 | 
						|
        VMSTATE_UINT64_V(next_alarm_time, RTCState, 3),
 | 
						|
        VMSTATE_END_OF_LIST()
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
static void rtc_notify_clock_reset(Notifier *notifier, void *data)
 | 
						|
{
 | 
						|
    RTCState *s = container_of(notifier, RTCState, clock_reset_notifier);
 | 
						|
    int64_t now = *(int64_t *)data;
 | 
						|
 | 
						|
    rtc_set_date_from_host(&s->dev);
 | 
						|
    periodic_timer_update(s, now);
 | 
						|
    check_update_timer(s);
 | 
						|
#ifdef TARGET_I386
 | 
						|
    if (s->lost_tick_policy == LOST_TICK_SLEW) {
 | 
						|
        rtc_coalesced_timer_update(s);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
 | 
						|
   BIOS will read it and start S3 resume at POST Entry */
 | 
						|
static void rtc_notify_suspend(Notifier *notifier, void *data)
 | 
						|
{
 | 
						|
    RTCState *s = container_of(notifier, RTCState, suspend_notifier);
 | 
						|
    rtc_set_memory(&s->dev, 0xF, 0xFE);
 | 
						|
}
 | 
						|
 | 
						|
static void rtc_reset(void *opaque)
 | 
						|
{
 | 
						|
    RTCState *s = opaque;
 | 
						|
 | 
						|
    s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
 | 
						|
    s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
 | 
						|
    check_update_timer(s);
 | 
						|
 | 
						|
    qemu_irq_lower(s->irq);
 | 
						|
 | 
						|
#ifdef TARGET_I386
 | 
						|
    if (s->lost_tick_policy == LOST_TICK_SLEW) {
 | 
						|
        s->irq_coalesced = 0;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static const MemoryRegionOps cmos_ops = {
 | 
						|
    .read = cmos_ioport_read,
 | 
						|
    .write = cmos_ioport_write,
 | 
						|
    .impl = {
 | 
						|
        .min_access_size = 1,
 | 
						|
        .max_access_size = 1,
 | 
						|
    },
 | 
						|
    .endianness = DEVICE_LITTLE_ENDIAN,
 | 
						|
};
 | 
						|
 | 
						|
static void rtc_get_date(Object *obj, Visitor *v, void *opaque,
 | 
						|
                         const char *name, Error **errp)
 | 
						|
{
 | 
						|
    ISADevice *isa = ISA_DEVICE(obj);
 | 
						|
    RTCState *s = DO_UPCAST(RTCState, dev, isa);
 | 
						|
    struct tm current_tm;
 | 
						|
 | 
						|
    rtc_update_time(s);
 | 
						|
    rtc_get_time(s, ¤t_tm);
 | 
						|
    visit_start_struct(v, NULL, "struct tm", name, 0, errp);
 | 
						|
    visit_type_int32(v, ¤t_tm.tm_year, "tm_year", errp);
 | 
						|
    visit_type_int32(v, ¤t_tm.tm_mon, "tm_mon", errp);
 | 
						|
    visit_type_int32(v, ¤t_tm.tm_mday, "tm_mday", errp);
 | 
						|
    visit_type_int32(v, ¤t_tm.tm_hour, "tm_hour", errp);
 | 
						|
    visit_type_int32(v, ¤t_tm.tm_min, "tm_min", errp);
 | 
						|
    visit_type_int32(v, ¤t_tm.tm_sec, "tm_sec", errp);
 | 
						|
    visit_end_struct(v, errp);
 | 
						|
}
 | 
						|
 | 
						|
static int rtc_initfn(ISADevice *dev)
 | 
						|
{
 | 
						|
    RTCState *s = DO_UPCAST(RTCState, dev, dev);
 | 
						|
    int base = 0x70;
 | 
						|
 | 
						|
    s->cmos_data[RTC_REG_A] = 0x26;
 | 
						|
    s->cmos_data[RTC_REG_B] = 0x02;
 | 
						|
    s->cmos_data[RTC_REG_C] = 0x00;
 | 
						|
    s->cmos_data[RTC_REG_D] = 0x80;
 | 
						|
 | 
						|
    /* This is for historical reasons.  The default base year qdev property
 | 
						|
     * was set to 2000 for most machine types before the century byte was
 | 
						|
     * implemented.
 | 
						|
     *
 | 
						|
     * This if statement means that the century byte will be always 0
 | 
						|
     * (at least until 2079...) for base_year = 1980, but will be set
 | 
						|
     * correctly for base_year = 2000.
 | 
						|
     */
 | 
						|
    if (s->base_year == 2000) {
 | 
						|
        s->base_year = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    rtc_set_date_from_host(dev);
 | 
						|
 | 
						|
#ifdef TARGET_I386
 | 
						|
    switch (s->lost_tick_policy) {
 | 
						|
    case LOST_TICK_SLEW:
 | 
						|
        s->coalesced_timer =
 | 
						|
            qemu_new_timer_ns(rtc_clock, rtc_coalesced_timer, s);
 | 
						|
        break;
 | 
						|
    case LOST_TICK_DISCARD:
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        return -EINVAL;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    s->periodic_timer = qemu_new_timer_ns(rtc_clock, rtc_periodic_timer, s);
 | 
						|
    s->update_timer = qemu_new_timer_ns(rtc_clock, rtc_update_timer, s);
 | 
						|
    check_update_timer(s);
 | 
						|
 | 
						|
    s->clock_reset_notifier.notify = rtc_notify_clock_reset;
 | 
						|
    qemu_register_clock_reset_notifier(rtc_clock, &s->clock_reset_notifier);
 | 
						|
 | 
						|
    s->suspend_notifier.notify = rtc_notify_suspend;
 | 
						|
    qemu_register_suspend_notifier(&s->suspend_notifier);
 | 
						|
 | 
						|
    memory_region_init_io(&s->io, &cmos_ops, s, "rtc", 2);
 | 
						|
    isa_register_ioport(dev, &s->io, base);
 | 
						|
 | 
						|
    qdev_set_legacy_instance_id(&dev->qdev, base, 3);
 | 
						|
    qemu_register_reset(rtc_reset, s);
 | 
						|
 | 
						|
    object_property_add(OBJECT(s), "date", "struct tm",
 | 
						|
                        rtc_get_date, NULL, NULL, s, NULL);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
ISADevice *rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
 | 
						|
{
 | 
						|
    ISADevice *dev;
 | 
						|
    RTCState *s;
 | 
						|
 | 
						|
    dev = isa_create(bus, "mc146818rtc");
 | 
						|
    s = DO_UPCAST(RTCState, dev, dev);
 | 
						|
    qdev_prop_set_int32(&dev->qdev, "base_year", base_year);
 | 
						|
    qdev_init_nofail(&dev->qdev);
 | 
						|
    if (intercept_irq) {
 | 
						|
        s->irq = intercept_irq;
 | 
						|
    } else {
 | 
						|
        isa_init_irq(dev, &s->irq, RTC_ISA_IRQ);
 | 
						|
    }
 | 
						|
    return dev;
 | 
						|
}
 | 
						|
 | 
						|
static Property mc146818rtc_properties[] = {
 | 
						|
    DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
 | 
						|
    DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
 | 
						|
                               lost_tick_policy, LOST_TICK_DISCARD),
 | 
						|
    DEFINE_PROP_END_OF_LIST(),
 | 
						|
};
 | 
						|
 | 
						|
static void rtc_class_initfn(ObjectClass *klass, void *data)
 | 
						|
{
 | 
						|
    DeviceClass *dc = DEVICE_CLASS(klass);
 | 
						|
    ISADeviceClass *ic = ISA_DEVICE_CLASS(klass);
 | 
						|
    ic->init = rtc_initfn;
 | 
						|
    dc->no_user = 1;
 | 
						|
    dc->vmsd = &vmstate_rtc;
 | 
						|
    dc->props = mc146818rtc_properties;
 | 
						|
}
 | 
						|
 | 
						|
static TypeInfo mc146818rtc_info = {
 | 
						|
    .name          = "mc146818rtc",
 | 
						|
    .parent        = TYPE_ISA_DEVICE,
 | 
						|
    .instance_size = sizeof(RTCState),
 | 
						|
    .class_init    = rtc_class_initfn,
 | 
						|
};
 | 
						|
 | 
						|
static void mc146818rtc_register_types(void)
 | 
						|
{
 | 
						|
    type_register_static(&mc146818rtc_info);
 | 
						|
}
 | 
						|
 | 
						|
type_init(mc146818rtc_register_types)
 |