SHA256
1
0
forked from pool/fplll

Accepting request 750567 from science

- Update to release 5.3.0

OBS-URL: https://build.opensuse.org/request/show/750567
OBS-URL: https://build.opensuse.org/package/show/openSUSE:Factory/fplll?expand=0&rev=4
This commit is contained in:
Dominique Leuenberger 2019-11-25 10:25:08 +00:00 committed by Git OBS Bridge
commit 3e36abb2a1
4 changed files with 14 additions and 9 deletions

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:e38e3f8f14d5dbf46aab66d6c12f5973d4b12b72832161ed1491e8e925de4816
size 1220025

3
fplll-5.3.0.tar.gz Normal file
View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:67a579842f5dabf9b3968b0c12af1ee808c5bfb7bc611fe4c2bba9ca00af1067
size 1283185

View File

@ -1,3 +1,9 @@
-------------------------------------------------------------------
Sun Nov 24 12:50:31 UTC 2019 - Jan Engelhardt <jengelh@inai.de>
- Update to release 5.3.0
* No changelog was provided
-------------------------------------------------------------------
Sat Oct 20 11:46:28 UTC 2018 - Jan Engelhardt <jengelh@inai.de>

View File

@ -1,7 +1,7 @@
#
# spec file for package fplll
#
# Copyright (c) 2018 SUSE LINUX GmbH, Nuernberg, Germany.
# Copyright (c) 2019 SUSE LLC
#
# All modifications and additions to the file contributed by third parties
# remain the property of their copyright owners, unless otherwise agreed
@ -17,21 +17,20 @@
Name: fplll
%define lname libfplll5
Version: 5.2.1
%define lname libfplll6
Version: 5.3.0
Release: 0
Summary: Lenstra-Lovász Lattice Basis Reduction Algorithm Library
License: LGPL-2.1-or-later
Group: Productivity/Scientific/Math
Url: https://github.com/dstehle/fplll
URL: https://github.com/dstehle/fplll
#Git-Clone: https://github.com/fplll/fplll
Source: https://github.com/fplll/fplll/releases/download/%version/fplll-%version.tar.gz
BuildRequires: gcc-c++
BuildRequires: gmp-devel
BuildRequires: mpfr-devel
BuildRequires: pkgconfig
BuildRoot: %{_tmppath}/%{name}-%{version}-build
BuildRequires: pkg-config
%description
fplll contains several algorithms on lattices that rely on