diff --git a/fplll-5.2.1.tar.gz b/fplll-5.2.1.tar.gz deleted file mode 100644 index a4f1cd9..0000000 --- a/fplll-5.2.1.tar.gz +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:e38e3f8f14d5dbf46aab66d6c12f5973d4b12b72832161ed1491e8e925de4816 -size 1220025 diff --git a/fplll-5.3.0.tar.gz b/fplll-5.3.0.tar.gz new file mode 100644 index 0000000..5a1016a --- /dev/null +++ b/fplll-5.3.0.tar.gz @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:67a579842f5dabf9b3968b0c12af1ee808c5bfb7bc611fe4c2bba9ca00af1067 +size 1283185 diff --git a/fplll.changes b/fplll.changes index 16c4b65..4ffa31a 100644 --- a/fplll.changes +++ b/fplll.changes @@ -1,3 +1,9 @@ +------------------------------------------------------------------- +Sun Nov 24 12:50:31 UTC 2019 - Jan Engelhardt + +- Update to release 5.3.0 + * No changelog was provided + ------------------------------------------------------------------- Sat Oct 20 11:46:28 UTC 2018 - Jan Engelhardt diff --git a/fplll.spec b/fplll.spec index 383a59a..3e75d40 100644 --- a/fplll.spec +++ b/fplll.spec @@ -1,7 +1,7 @@ # # spec file for package fplll # -# Copyright (c) 2018 SUSE LINUX GmbH, Nuernberg, Germany. +# Copyright (c) 2019 SUSE LLC # # All modifications and additions to the file contributed by third parties # remain the property of their copyright owners, unless otherwise agreed @@ -17,21 +17,20 @@ Name: fplll -%define lname libfplll5 -Version: 5.2.1 +%define lname libfplll6 +Version: 5.3.0 Release: 0 Summary: Lenstra-Lovász Lattice Basis Reduction Algorithm Library License: LGPL-2.1-or-later Group: Productivity/Scientific/Math -Url: https://github.com/dstehle/fplll +URL: https://github.com/dstehle/fplll #Git-Clone: https://github.com/fplll/fplll Source: https://github.com/fplll/fplll/releases/download/%version/fplll-%version.tar.gz BuildRequires: gcc-c++ BuildRequires: gmp-devel BuildRequires: mpfr-devel -BuildRequires: pkgconfig -BuildRoot: %{_tmppath}/%{name}-%{version}-build +BuildRequires: pkg-config %description fplll contains several algorithms on lattices that rely on