SHA256
1
0
forked from pool/pari

Accepting request 1031558 from home:amanzini:branches:science

- Update to release 2.15.0

  * https://pari.math.u-bordeaux.fr/archives/pari-announce-22/msg00001.html

OBS-URL: https://build.opensuse.org/request/show/1031558
OBS-URL: https://build.opensuse.org/package/show/science/pari?expand=0&rev=61
This commit is contained in:
Jan Engelhardt 2022-10-31 20:54:28 +00:00 committed by Git OBS Bridge
parent 9aef50f23b
commit 6bddd79fb7
6 changed files with 220 additions and 21 deletions

View File

@ -1,3 +0,0 @@
version https://git-lfs.github.com/spec/v1
oid sha256:bcde9eceae1592814381c1697cdb7063567b6504201b1be47bb58920f3bce185
size 4772735

View File

@ -1,16 +0,0 @@
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEQgKOpASi6dgKxFMUjw58K0Ui44cFAmI9mcsACgkQjw58K0Ui
44f+fxAAh5+XVI0GojmtnueB+nTA6VsChzOI9UBOUMXlWfI/phd/m61WoMlaDag/
UTvDLZjxLh7FlLVEYwLu6Y9D4QRfj9T1UAg0dvnVa1Y0e3tG9fIrBPvJDYBgQxOE
IqH34zA5u/FvQH/NO4vUDt1OiXoTvVxdIMyWaZw72qRTfY9CLY7SvEj4Dsj6NGUX
9PtCWktDZVhAy6isO3jS9kpep4Upa5c63IFwWi1vyyNY9Y3Zn0yJfy06u1/iZCyd
MbQ/fmwNvFr4gY9AjsRbOFxiqpUWCNACrZdTKbrsRCDoPokxYhQ8SzQRiq5dyUlt
u0lyR2eW1Ue7JnLGX9xv/t3g6UtrOqciTB8rKVVOPifTeU8GWwe1FQ3ko+GfrT8s
Gn9/l/8it2BXTmyYC0HXGgsdMDuZXi27zopUOWEz1g5uO7vpDBaMU7WI9q2EOXWY
x6oNrWHgC/m2pwWOrW8UdT4Df2V4cskikWtYaEl06P2DtTUFSxDTY9pZwpQHg/OL
dflpzHW46r8cQnPgY9dz8BIKu+zsCySgQZyxMkt49/TsAP1FLyIVHj/LHJteKgAR
+KFb1cpksQXG8EVuNC7zs1FNbCOMZfDx/oFiaIUtYoRok9EJmre1nRwGiXnMrdjx
mO+ezbdoQWafpuznK3pDc9bR2VzyeXA9qe0ZQsG1HUWERTXw5Xs=
=iuIO
-----END PGP SIGNATURE-----

3
pari-2.15.0.tar.gz Normal file
View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:e474851e0d16d4e4f9a0d9612c746a2ae7c9a1ec185d04c440b1c74a85755685
size 5172089

16
pari-2.15.0.tar.gz.asc Normal file
View File

@ -0,0 +1,16 @@
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEQgKOpASi6dgKxFMUjw58K0Ui44cFAmMoa5QACgkQjw58K0Ui
44d89A//bWKzFcexBZ9L/tApl9rbw/N/jIa3fu+9xQTKDSSHVGp3fHhxy54ECQJO
tsvOxE9QapNYiuNFOY/73xuC5fryTDMIhyPab+2DG2pZe6wHR3EkMnb2VVbMFcCY
PPOh1TzxSXbsTW37LzsR++C7gH4N6/EdOb3kHi+UfF3ZgHeFvYKpo5dR+gwVD7Hj
RP3nOvNY+bSnmi7aMZt6LhQZvvKHV3Rb50h0TgJ5bwzv6BfLrYaTecWEOp4knQfb
1j/BpfIgjOelojrJXPTjw/7ykNBt3ThO+G+5/mYJxn8Zuvh/URePaw2b2CB75RdV
x/ghKKsPZQOOgpqYJ4cpd1UcoShQnkzECvvQvQSpowPkDAODSn3FsnLkyHK8KPyc
IDAbMEcoEzdjGC9fEn0VjAWMwGgZjIWgGffJL4Z/GrpC2M9xBXIaEyAU9cWdfYz/
7KPMrZ13Nk10Stj6TTDGKZZ7aTHDYTVs4Dc4UUBlozF8cdQMm8v3MEvtz7L0q3bD
Yujb6jdoc85AJ6CYwNeWvJAGMg/xdJzHSyyXWpDIk55QN19m7Rbv8nCdFHme70hm
PVq0qqHpJ+EthKEXVuEYpzMyuFVGtjhLg2zOscsNTVv0a4zIUqIxdPuAjPaFBYL2
vGd4R9dfI7KgHexK6YIfjcvGv5u+i0HCH6bnq8kCKPVNaVQbd/4=
=9/KS
-----END PGP SIGNATURE-----

View File

@ -1,3 +1,202 @@
-------------------------------------------------------------------
Thu Oct 27 13:41:40 UTC 2022 - Andrea Manzini <andrea.manzini@suse.com>
- Update to release 2.15.0
[The GP language]
- Notion of DebugLevel "domains" that allow to finely control diagnostics.
See setdebug()[,1] to obtain a list of domains. You can still print out
everything using \g 10, but you can also be more specific and use
\g qflll 10
which sets the debug level to 10 only for the "qflll" domain,
i.e. everything related to the LLL algorithm (there are 60 domains so far).
The alternate syntax setdebug("qflll", 10) is available.
- The syntax setdebug(dom, val) and default(def, val) are now recognized in
the GPRC file
- Recall that random(10) returns an integer in [0,9]; now random(-10) draws
a random integer in the symetrized interval [-9,9]. More generally,
recall that random(10 * x^3) returns a polynomial of degree <= 3 and
coefficients in [0, 9]; now random(-10 * x3) draws coefficients in [-9,9].
- Recall that valuation(x, t) computes the t-valuation of x; the t argument
is now optional for types affording a natural valuation: t_PADIC, t_POL
and t_SER:
? valuation(sin(x))
%1 = 1
? valuation(175 + O(5^5))
%2 = 2
[Linear Algebra]
- qflll() now implements most LLL modes in fplll (fast, dpe and heuristic),
allowing large speedups. Directly and in the many functions that use the
LLL algorithm.
- new GP function snfrank(), a utility function returning q-ranks from
Smith Normal Forms
[Elementary Number Theory]
- New GP function: harmonic(), to compute generalized harmonic numbers
- Rework Euler numbers, analogously to Benoulli's: eulervec() is now
faster and caches computed values, and a new GP function eulerreal()
computes floating point approximations.
- dirpowerssum() now allows to twist by a completely multiplicative function
? dirpowerssum(N, s, n->kronecker(-23,n)) \\ sum_{n <= N} chi(n)n^{-s}
- New GP function factormodcyclo(n, p) to quickly factor the n-th
cyclotomic polynomial over Fp
[Elliptic Curves]
- New module to compute the Mordell-Weil group of rational elliptic curves:
ell2cover ellrank ellrankinit ellsaturation
See the tutorial (slides and video) at
http://pari.math.u-bordeaux.fr/Events/PARI2022/index.html#ELL
* ellrank() implements 2-descent together with Cassels's pairing
restrictions yielding rational points and an interval for the rank. If the
Tate-Shafarevic group has no 4 torsion and we spend enough time looking for
rational points (on the curve and auxiliary quartics), we obtain the
Mordell-Weil rank and generators V for a subgroup of finite index in E(Q).
* ellrankinit() precomputes ellrank() data for all quadratic twists of E.
* function ellsaturation(E,V,B) updates the generators V and guarantees
than any prime dividing the index must be > B.
* ell2cover() returns everywhere locally soluble 2-covers of E
(rational quartics on which we try to find a rational point).
- New GP function elltrace() summing the Galois conjugates of a point on E
- New input format for elliptic curves: ellinit([j]) as a shortcut for
ellfromj(j).
[Curves of Higher Genus]
- genus2red(): the given integral model is now a pair [P,Q] such that
y^2+Q*y = P is minimal everywhere (was minimal over Z[1/2]).
- new GP functions to handle models of hyperelliptic curves
hyperelldisc hyperellisoncurve hyperellminimalmodel
hyperellminimaldisc hyperellred
[L-functions]
- New module for hypergeometric motives, see ??hgm. GP functions
hgmalpha hgmbydegree hgmcyclo hgminit
hgmtwist hgmcoef hgmeulerfactor hgmissymmetrical
lfunhgm hgmcoefs hgmgamma hgmparams
See the tutorial (slides and video) at
http://pari.math.u-bordeaux.fr/Events/PARI2022/index.html#HGM
- New GP function lfunparams() to return the [N, k, Gamma factors] attached
to a motivic L-function.
- New GP function lfuneuler() to return the local Euler factor at a prime p
[Modular Forms]
- Faster implementation of mfinit() and mfbasis() in weight 1
- Add optional argument to ramanujantau() to compute the newform of level 1
and given small weight; parallelize implementation.
[Quadratic Fields]
- qfbcomp() now implements general composition of integral binary quadratic
forms (of different discriminants); f * g and f^n are shorthand for
composition and powerings of forms, including (real) extended forms with a
Shanks distance component.
- New GP function qfbcornacchia, solving x^2 + Dy^2 = n in integers
in essentially linear time.
- New GP functions quadunitindex() (index of the unit group of a quadratic
order in the units for the maximal order), quadunitnorm() (norm of the
fundamental unit). Used to improve qfbclassno for non fundamental
positive discriminants.
[General Number Fields]
- nfinit(), nfdisc(), nfbasis() now use lazy factorization: partially
factor the polynomial discriminant, hoping the unfactored part will be a
square coprime to the field discriminant, and that we will be able to
prove it via a variant of Buchmann-Lenstra's algorithm.
- New bit in nfinit flag to prevent LLL on nf.zk, which is a major speedup
when the field degree is large and only basic field or ideal arithmetic
is needed.
- New GP functions nfeltissquare() and nfeltispower() to quickly check whether
an algebraic number is a k-th power (and obtain a k-th root when it is).
- New GP function galoissplittinginit(T) to compute the Galois group of the
splitting field of T. This can be used in all Galois theory functions,
e.g., galoissubgroups(), galoisidentify(), etc.
- New GP function nflist to list number fields with given small Galois
group by increasing discriminant. Some groups (such as A5 and A5(6))
require the new 'nflistdata' package. The same function gives a regular
extension of Q(t) with the requested Galois group for all transitive
subgroups of S_n, n <= 15.
- New GP function nfresolvent() computes classical Galois resolvents
attached to fields of small degree
- Recal that ideallist(nf, B) returns integral ideals of norm bounded
by B > 0. The new ideallist(nf, negative B) returns integral ideals
of norm |B| (in factored form).
[Class Field Theory]
- New GP function bnrcompositum() to construct the compositum of two
abelian extensions given by a class field theoretic description.
- New module to deal with class groups of abelian fields and their Iwasawa
invariants:
subcyclohminus subcycloiwasawa subcyclopclgp
See the tutorial (slides and video) at
http://pari.math.u-bordeaux.fr/Events/PARI2022/index.html#CYCLO
- New module to generate and compute with Hecke characters:
gchareval gcharalgebraic gcharconductor
gcharduallog gcharidentify gcharinit gcharisalgebraic
gcharlocal gcharlog gcharnewprec
See ??"Hecke Grossencharacters" as well as the tutorial at
http://pari.math.u-bordeaux.fr/Events/PARI2022/index.html#HECKE
[Transcendental functions]
- New GP function lerchphi(), lerchzeta() for the Lerch Phi and zeta function.
- New GP functions bessljzero(), besselyzero(), for J and Y Bessel functions
- Lambert W functions are now all supported, one can specify a branch as an
optional argument: lambertw(y, -1) corresponds to W_{-1}, defined for
-exp(-1) <= y < 0. Complex arguments are allowed (as well as power series
and p-adics)
- Speedup for a number of transcendental functions at rational
arguments, in particular atanh(), gamma() and lngamma().
- Allow sqrtint(), sqrtnint() and logint() for positive real number arguments
- We now allow hypergeom(N, D, t_SER)
[Numerical summation and integration]
- New GP function sumnumsidi() for Sidi summation.
- New GP function intnumosc() to integrate quasi-periodic functions of
half-period H on a real half-line:
? \p200
? H = Pi; intnumosc(x = 0, sinc(x), H) - Pi/2
time = 1,241 ms.
%2 = 0.E-211
A number of summation algorithms are used (Lagrange, Sidi, Sumalt, Sumpos).
See ??9 for a comparison of available integration or summation algorithms
- Allow endpoints in solve() to by +oo or -oo
[Miscellaneous]
- poliscyclo(): replace Bradford-Davenport's Graeffe method by their
invphi algorithm (much faster)
- New GP function polsubcyclofast: fast variant of polsubcyclo() in small
degree, returning ad hoc generators (instead of Gaussian periods)
- New GP function poltomonic(T): fast monic integral generating polynomial
for Q[x] / (T)
- New GP function qfminimize to minimize a rational quadratic form.
- New GP function setdelta() for symmetric difference.
- New GP function serdiffdep() to find linear relations with polynomial
coefficients of bounded degree between derivatives of a power series:
? y = sum(i=0, 50, binomial(3*i,i)*t^i) + O(t^51);
? serdiffdep(y, 4, 3) \\ order <= 4 and degrees <= 3
%2 = [(27*t^2 - 4*t)*x^2 + (54*t - 2)*x + 6, 0]
? (27*t^2 - 4*t)*y'' + (54*t - 2)*y' + 6*y
%3 = O(T^50)
COMPATIBILITY ISSUES BETWEEN 2.13.* and 2.15.*
============================================
0) Obsoleted functions and interfaces:
- default(debugfiles,) is now obsolete, use setdebug("io",)
- Unify real and imaginary binary quadratic forms: there are no longer
t_QFI and t_QFR for real an imaginary forms, only generic t_QFB.
One can still create a form using q = Qfb(a,b,c) [ or Qfb(v) if v=[a,b,c] ],
and a pair [q, d] denotes an extended (real) form including a Shanks
distance component 'd' (which used to be part of 'q', but no longer).
1) Output changes:
- system(cmd) now returns the shell return value
- elltwist now returns an ellinit, and accepts the same input formats
as ellinit ([a1,a2,a3,a4,a6], [a4,a6], Cremona label)
- genus2red 3rd component is now a pair [P,Q] such that y^2+Q*y=P is
minimal everywhere.
2) Input changes:
- qfbredsl2(q, S): change format of S: was [D,isD], is now isD
-------------------------------------------------------------------
Wed Apr 13 18:58:43 UTC 2022 - Anton Shvetz <shvetz.anton@gmail.com>

View File

@ -25,10 +25,10 @@ power series, algebraic numbers, and transcendental functions.\
# See
# http://pari.math.u-bordeaux.fr/archives/pari-dev-1211/msg00006.html
# for details on the SO versioning.
%global sover 7
%global sover 8
%global lname libpari-gmp-tls%sover
Name: pari
Version: 2.13.4
Version: 2.15.0
Release: 0
Summary: Computer Algebra System for computations in Number Theory
License: GPL-2.0-only