From 6bddd79fb78c992a43588033536dbe32991f334de54b7b72f69d0ae20a313c4e Mon Sep 17 00:00:00 2001 From: Jan Engelhardt Date: Mon, 31 Oct 2022 20:54:28 +0000 Subject: [PATCH 1/2] Accepting request 1031558 from home:amanzini:branches:science - Update to release 2.15.0 * https://pari.math.u-bordeaux.fr/archives/pari-announce-22/msg00001.html OBS-URL: https://build.opensuse.org/request/show/1031558 OBS-URL: https://build.opensuse.org/package/show/science/pari?expand=0&rev=61 --- pari-2.13.4.tar.gz | 3 - pari-2.13.4.tar.gz.asc | 16 ---- pari-2.15.0.tar.gz | 3 + pari-2.15.0.tar.gz.asc | 16 ++++ pari.changes | 199 +++++++++++++++++++++++++++++++++++++++++ pari.spec | 4 +- 6 files changed, 220 insertions(+), 21 deletions(-) delete mode 100644 pari-2.13.4.tar.gz delete mode 100644 pari-2.13.4.tar.gz.asc create mode 100644 pari-2.15.0.tar.gz create mode 100644 pari-2.15.0.tar.gz.asc diff --git a/pari-2.13.4.tar.gz b/pari-2.13.4.tar.gz deleted file mode 100644 index a77f39f..0000000 --- a/pari-2.13.4.tar.gz +++ /dev/null @@ -1,3 +0,0 @@ -version https://git-lfs.github.com/spec/v1 -oid sha256:bcde9eceae1592814381c1697cdb7063567b6504201b1be47bb58920f3bce185 -size 4772735 diff --git a/pari-2.13.4.tar.gz.asc b/pari-2.13.4.tar.gz.asc deleted file mode 100644 index 02e187f..0000000 --- a/pari-2.13.4.tar.gz.asc +++ /dev/null @@ -1,16 +0,0 @@ ------BEGIN PGP SIGNATURE----- - -iQIzBAABCgAdFiEEQgKOpASi6dgKxFMUjw58K0Ui44cFAmI9mcsACgkQjw58K0Ui -44f+fxAAh5+XVI0GojmtnueB+nTA6VsChzOI9UBOUMXlWfI/phd/m61WoMlaDag/ -UTvDLZjxLh7FlLVEYwLu6Y9D4QRfj9T1UAg0dvnVa1Y0e3tG9fIrBPvJDYBgQxOE -IqH34zA5u/FvQH/NO4vUDt1OiXoTvVxdIMyWaZw72qRTfY9CLY7SvEj4Dsj6NGUX -9PtCWktDZVhAy6isO3jS9kpep4Upa5c63IFwWi1vyyNY9Y3Zn0yJfy06u1/iZCyd -MbQ/fmwNvFr4gY9AjsRbOFxiqpUWCNACrZdTKbrsRCDoPokxYhQ8SzQRiq5dyUlt -u0lyR2eW1Ue7JnLGX9xv/t3g6UtrOqciTB8rKVVOPifTeU8GWwe1FQ3ko+GfrT8s -Gn9/l/8it2BXTmyYC0HXGgsdMDuZXi27zopUOWEz1g5uO7vpDBaMU7WI9q2EOXWY -x6oNrWHgC/m2pwWOrW8UdT4Df2V4cskikWtYaEl06P2DtTUFSxDTY9pZwpQHg/OL -dflpzHW46r8cQnPgY9dz8BIKu+zsCySgQZyxMkt49/TsAP1FLyIVHj/LHJteKgAR -+KFb1cpksQXG8EVuNC7zs1FNbCOMZfDx/oFiaIUtYoRok9EJmre1nRwGiXnMrdjx -mO+ezbdoQWafpuznK3pDc9bR2VzyeXA9qe0ZQsG1HUWERTXw5Xs= -=iuIO ------END PGP SIGNATURE----- diff --git a/pari-2.15.0.tar.gz b/pari-2.15.0.tar.gz new file mode 100644 index 0000000..52d3d91 --- /dev/null +++ b/pari-2.15.0.tar.gz @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e474851e0d16d4e4f9a0d9612c746a2ae7c9a1ec185d04c440b1c74a85755685 +size 5172089 diff --git a/pari-2.15.0.tar.gz.asc b/pari-2.15.0.tar.gz.asc new file mode 100644 index 0000000..95956af --- /dev/null +++ b/pari-2.15.0.tar.gz.asc @@ -0,0 +1,16 @@ +-----BEGIN PGP SIGNATURE----- + +iQIzBAABCgAdFiEEQgKOpASi6dgKxFMUjw58K0Ui44cFAmMoa5QACgkQjw58K0Ui +44d89A//bWKzFcexBZ9L/tApl9rbw/N/jIa3fu+9xQTKDSSHVGp3fHhxy54ECQJO +tsvOxE9QapNYiuNFOY/73xuC5fryTDMIhyPab+2DG2pZe6wHR3EkMnb2VVbMFcCY +PPOh1TzxSXbsTW37LzsR++C7gH4N6/EdOb3kHi+UfF3ZgHeFvYKpo5dR+gwVD7Hj +RP3nOvNY+bSnmi7aMZt6LhQZvvKHV3Rb50h0TgJ5bwzv6BfLrYaTecWEOp4knQfb +1j/BpfIgjOelojrJXPTjw/7ykNBt3ThO+G+5/mYJxn8Zuvh/URePaw2b2CB75RdV +x/ghKKsPZQOOgpqYJ4cpd1UcoShQnkzECvvQvQSpowPkDAODSn3FsnLkyHK8KPyc +IDAbMEcoEzdjGC9fEn0VjAWMwGgZjIWgGffJL4Z/GrpC2M9xBXIaEyAU9cWdfYz/ +7KPMrZ13Nk10Stj6TTDGKZZ7aTHDYTVs4Dc4UUBlozF8cdQMm8v3MEvtz7L0q3bD +Yujb6jdoc85AJ6CYwNeWvJAGMg/xdJzHSyyXWpDIk55QN19m7Rbv8nCdFHme70hm +PVq0qqHpJ+EthKEXVuEYpzMyuFVGtjhLg2zOscsNTVv0a4zIUqIxdPuAjPaFBYL2 +vGd4R9dfI7KgHexK6YIfjcvGv5u+i0HCH6bnq8kCKPVNaVQbd/4= +=9/KS +-----END PGP SIGNATURE----- diff --git a/pari.changes b/pari.changes index 1fed7b6..0105af7 100644 --- a/pari.changes +++ b/pari.changes @@ -1,3 +1,202 @@ +------------------------------------------------------------------- +Thu Oct 27 13:41:40 UTC 2022 - Andrea Manzini + +- Update to release 2.15.0 + + [The GP language] + - Notion of DebugLevel "domains" that allow to finely control diagnostics. + See setdebug()[,1] to obtain a list of domains. You can still print out + everything using \g 10, but you can also be more specific and use + \g qflll 10 + which sets the debug level to 10 only for the "qflll" domain, + i.e. everything related to the LLL algorithm (there are 60 domains so far). + The alternate syntax setdebug("qflll", 10) is available. + - The syntax setdebug(dom, val) and default(def, val) are now recognized in + the GPRC file + - Recall that random(10) returns an integer in [0,9]; now random(-10) draws + a random integer in the symetrized interval [-9,9]. More generally, + recall that random(10 * x^3) returns a polynomial of degree <= 3 and + coefficients in [0, 9]; now random(-10 * x3) draws coefficients in [-9,9]. + - Recall that valuation(x, t) computes the t-valuation of x; the t argument + is now optional for types affording a natural valuation: t_PADIC, t_POL + and t_SER: + ? valuation(sin(x)) + %1 = 1 + ? valuation(175 + O(5^5)) + %2 = 2 + + [Linear Algebra] + - qflll() now implements most LLL modes in fplll (fast, dpe and heuristic), + allowing large speedups. Directly and in the many functions that use the + LLL algorithm. + - new GP function snfrank(), a utility function returning q-ranks from + Smith Normal Forms + + [Elementary Number Theory] + - New GP function: harmonic(), to compute generalized harmonic numbers + - Rework Euler numbers, analogously to Benoulli's: eulervec() is now + faster and caches computed values, and a new GP function eulerreal() + computes floating point approximations. + - dirpowerssum() now allows to twist by a completely multiplicative function + ? dirpowerssum(N, s, n->kronecker(-23,n)) \\ sum_{n <= N} chi(n)n^{-s} + - New GP function factormodcyclo(n, p) to quickly factor the n-th + cyclotomic polynomial over Fp + + [Elliptic Curves] + - New module to compute the Mordell-Weil group of rational elliptic curves: + ell2cover ellrank ellrankinit ellsaturation + See the tutorial (slides and video) at + http://pari.math.u-bordeaux.fr/Events/PARI2022/index.html#ELL + * ellrank() implements 2-descent together with Cassels's pairing + restrictions yielding rational points and an interval for the rank. If the + Tate-Shafarevic group has no 4 torsion and we spend enough time looking for + rational points (on the curve and auxiliary quartics), we obtain the + Mordell-Weil rank and generators V for a subgroup of finite index in E(Q). + * ellrankinit() precomputes ellrank() data for all quadratic twists of E. + * function ellsaturation(E,V,B) updates the generators V and guarantees + than any prime dividing the index must be > B. + * ell2cover() returns everywhere locally soluble 2-covers of E + (rational quartics on which we try to find a rational point). + - New GP function elltrace() summing the Galois conjugates of a point on E + - New input format for elliptic curves: ellinit([j]) as a shortcut for + ellfromj(j). + + [Curves of Higher Genus] + - genus2red(): the given integral model is now a pair [P,Q] such that + y^2+Q*y = P is minimal everywhere (was minimal over Z[1/2]). + - new GP functions to handle models of hyperelliptic curves + hyperelldisc hyperellisoncurve hyperellminimalmodel + hyperellminimaldisc hyperellred + + [L-functions] + - New module for hypergeometric motives, see ??hgm. GP functions + hgmalpha hgmbydegree hgmcyclo hgminit + hgmtwist hgmcoef hgmeulerfactor hgmissymmetrical + lfunhgm hgmcoefs hgmgamma hgmparams + See the tutorial (slides and video) at + http://pari.math.u-bordeaux.fr/Events/PARI2022/index.html#HGM + - New GP function lfunparams() to return the [N, k, Gamma factors] attached + to a motivic L-function. + - New GP function lfuneuler() to return the local Euler factor at a prime p + + [Modular Forms] + - Faster implementation of mfinit() and mfbasis() in weight 1 + - Add optional argument to ramanujantau() to compute the newform of level 1 + and given small weight; parallelize implementation. + + [Quadratic Fields] + - qfbcomp() now implements general composition of integral binary quadratic + forms (of different discriminants); f * g and f^n are shorthand for + composition and powerings of forms, including (real) extended forms with a + Shanks distance component. + - New GP function qfbcornacchia, solving x^2 + Dy^2 = n in integers + in essentially linear time. + - New GP functions quadunitindex() (index of the unit group of a quadratic + order in the units for the maximal order), quadunitnorm() (norm of the + fundamental unit). Used to improve qfbclassno for non fundamental + positive discriminants. + + [General Number Fields] + - nfinit(), nfdisc(), nfbasis() now use lazy factorization: partially + factor the polynomial discriminant, hoping the unfactored part will be a + square coprime to the field discriminant, and that we will be able to + prove it via a variant of Buchmann-Lenstra's algorithm. + - New bit in nfinit flag to prevent LLL on nf.zk, which is a major speedup + when the field degree is large and only basic field or ideal arithmetic + is needed. + - New GP functions nfeltissquare() and nfeltispower() to quickly check whether + an algebraic number is a k-th power (and obtain a k-th root when it is). + - New GP function galoissplittinginit(T) to compute the Galois group of the + splitting field of T. This can be used in all Galois theory functions, + e.g., galoissubgroups(), galoisidentify(), etc. + - New GP function nflist to list number fields with given small Galois + group by increasing discriminant. Some groups (such as A5 and A5(6)) + require the new 'nflistdata' package. The same function gives a regular + extension of Q(t) with the requested Galois group for all transitive + subgroups of S_n, n <= 15. + - New GP function nfresolvent() computes classical Galois resolvents + attached to fields of small degree + - Recal that ideallist(nf, B) returns integral ideals of norm bounded + by B > 0. The new ideallist(nf, negative B) returns integral ideals + of norm |B| (in factored form). + + [Class Field Theory] + - New GP function bnrcompositum() to construct the compositum of two + abelian extensions given by a class field theoretic description. + - New module to deal with class groups of abelian fields and their Iwasawa + invariants: + subcyclohminus subcycloiwasawa subcyclopclgp + See the tutorial (slides and video) at + http://pari.math.u-bordeaux.fr/Events/PARI2022/index.html#CYCLO + - New module to generate and compute with Hecke characters: + gchareval gcharalgebraic gcharconductor + gcharduallog gcharidentify gcharinit gcharisalgebraic + gcharlocal gcharlog gcharnewprec + See ??"Hecke Grossencharacters" as well as the tutorial at + http://pari.math.u-bordeaux.fr/Events/PARI2022/index.html#HECKE + + [Transcendental functions] + - New GP function lerchphi(), lerchzeta() for the Lerch Phi and zeta function. + - New GP functions bessljzero(), besselyzero(), for J and Y Bessel functions + - Lambert W functions are now all supported, one can specify a branch as an + optional argument: lambertw(y, -1) corresponds to W_{-1}, defined for + -exp(-1) <= y < 0. Complex arguments are allowed (as well as power series + and p-adics) + - Speedup for a number of transcendental functions at rational + arguments, in particular atanh(), gamma() and lngamma(). + - Allow sqrtint(), sqrtnint() and logint() for positive real number arguments + - We now allow hypergeom(N, D, t_SER) + + [Numerical summation and integration] + - New GP function sumnumsidi() for Sidi summation. + - New GP function intnumosc() to integrate quasi-periodic functions of + half-period H on a real half-line: + ? \p200 + ? H = Pi; intnumosc(x = 0, sinc(x), H) - Pi/2 + time = 1,241 ms. + %2 = 0.E-211 + A number of summation algorithms are used (Lagrange, Sidi, Sumalt, Sumpos). + See ??9 for a comparison of available integration or summation algorithms + - Allow endpoints in solve() to by +oo or -oo + + [Miscellaneous] + - poliscyclo(): replace Bradford-Davenport's Graeffe method by their + invphi algorithm (much faster) + - New GP function polsubcyclofast: fast variant of polsubcyclo() in small + degree, returning ad hoc generators (instead of Gaussian periods) + - New GP function poltomonic(T): fast monic integral generating polynomial + for Q[x] / (T) + - New GP function qfminimize to minimize a rational quadratic form. + - New GP function setdelta() for symmetric difference. + - New GP function serdiffdep() to find linear relations with polynomial + coefficients of bounded degree between derivatives of a power series: + ? y = sum(i=0, 50, binomial(3*i,i)*t^i) + O(t^51); + ? serdiffdep(y, 4, 3) \\ order <= 4 and degrees <= 3 + %2 = [(27*t^2 - 4*t)*x^2 + (54*t - 2)*x + 6, 0] + ? (27*t^2 - 4*t)*y'' + (54*t - 2)*y' + 6*y + %3 = O(T^50) + + COMPATIBILITY ISSUES BETWEEN 2.13.* and 2.15.* + ============================================ + + 0) Obsoleted functions and interfaces: + - default(debugfiles,) is now obsolete, use setdebug("io",) + - Unify real and imaginary binary quadratic forms: there are no longer + t_QFI and t_QFR for real an imaginary forms, only generic t_QFB. + One can still create a form using q = Qfb(a,b,c) [ or Qfb(v) if v=[a,b,c] ], + and a pair [q, d] denotes an extended (real) form including a Shanks + distance component 'd' (which used to be part of 'q', but no longer). + + 1) Output changes: + - system(cmd) now returns the shell return value + - elltwist now returns an ellinit, and accepts the same input formats + as ellinit ([a1,a2,a3,a4,a6], [a4,a6], Cremona label) + - genus2red 3rd component is now a pair [P,Q] such that y^2+Q*y=P is + minimal everywhere. + + 2) Input changes: + - qfbredsl2(q, S): change format of S: was [D,isD], is now isD + ------------------------------------------------------------------- Wed Apr 13 18:58:43 UTC 2022 - Anton Shvetz diff --git a/pari.spec b/pari.spec index 84464ff..beb92a2 100644 --- a/pari.spec +++ b/pari.spec @@ -25,10 +25,10 @@ power series, algebraic numbers, and transcendental functions.\ # See # http://pari.math.u-bordeaux.fr/archives/pari-dev-1211/msg00006.html # for details on the SO versioning. -%global sover 7 +%global sover 8 %global lname libpari-gmp-tls%sover Name: pari -Version: 2.13.4 +Version: 2.15.0 Release: 0 Summary: Computer Algebra System for computations in Number Theory License: GPL-2.0-only From 2c9af109451f834c508fb9025356b9bebeb2e7df0efa34efed0052986d420182 Mon Sep 17 00:00:00 2001 From: Jan Engelhardt Date: Mon, 31 Oct 2022 21:28:31 +0000 Subject: [PATCH 2/2] curate changelog OBS-URL: https://build.opensuse.org/package/show/science/pari?expand=0&rev=62 --- pari.changes | 215 +++++---------------------------------------------- 1 file changed, 21 insertions(+), 194 deletions(-) diff --git a/pari.changes b/pari.changes index 0105af7..af72b5a 100644 --- a/pari.changes +++ b/pari.changes @@ -2,200 +2,27 @@ Thu Oct 27 13:41:40 UTC 2022 - Andrea Manzini - Update to release 2.15.0 - - [The GP language] - - Notion of DebugLevel "domains" that allow to finely control diagnostics. - See setdebug()[,1] to obtain a list of domains. You can still print out - everything using \g 10, but you can also be more specific and use - \g qflll 10 - which sets the debug level to 10 only for the "qflll" domain, - i.e. everything related to the LLL algorithm (there are 60 domains so far). - The alternate syntax setdebug("qflll", 10) is available. - - The syntax setdebug(dom, val) and default(def, val) are now recognized in - the GPRC file - - Recall that random(10) returns an integer in [0,9]; now random(-10) draws - a random integer in the symetrized interval [-9,9]. More generally, - recall that random(10 * x^3) returns a polynomial of degree <= 3 and - coefficients in [0, 9]; now random(-10 * x3) draws coefficients in [-9,9]. - - Recall that valuation(x, t) computes the t-valuation of x; the t argument - is now optional for types affording a natural valuation: t_PADIC, t_POL - and t_SER: - ? valuation(sin(x)) - %1 = 1 - ? valuation(175 + O(5^5)) - %2 = 2 - - [Linear Algebra] - - qflll() now implements most LLL modes in fplll (fast, dpe and heuristic), - allowing large speedups. Directly and in the many functions that use the - LLL algorithm. - - new GP function snfrank(), a utility function returning q-ranks from - Smith Normal Forms - - [Elementary Number Theory] - - New GP function: harmonic(), to compute generalized harmonic numbers - - Rework Euler numbers, analogously to Benoulli's: eulervec() is now - faster and caches computed values, and a new GP function eulerreal() - computes floating point approximations. - - dirpowerssum() now allows to twist by a completely multiplicative function - ? dirpowerssum(N, s, n->kronecker(-23,n)) \\ sum_{n <= N} chi(n)n^{-s} - - New GP function factormodcyclo(n, p) to quickly factor the n-th - cyclotomic polynomial over Fp - - [Elliptic Curves] - - New module to compute the Mordell-Weil group of rational elliptic curves: - ell2cover ellrank ellrankinit ellsaturation - See the tutorial (slides and video) at - http://pari.math.u-bordeaux.fr/Events/PARI2022/index.html#ELL - * ellrank() implements 2-descent together with Cassels's pairing - restrictions yielding rational points and an interval for the rank. If the - Tate-Shafarevic group has no 4 torsion and we spend enough time looking for - rational points (on the curve and auxiliary quartics), we obtain the - Mordell-Weil rank and generators V for a subgroup of finite index in E(Q). - * ellrankinit() precomputes ellrank() data for all quadratic twists of E. - * function ellsaturation(E,V,B) updates the generators V and guarantees - than any prime dividing the index must be > B. - * ell2cover() returns everywhere locally soluble 2-covers of E - (rational quartics on which we try to find a rational point). - - New GP function elltrace() summing the Galois conjugates of a point on E - - New input format for elliptic curves: ellinit([j]) as a shortcut for - ellfromj(j). - - [Curves of Higher Genus] - - genus2red(): the given integral model is now a pair [P,Q] such that - y^2+Q*y = P is minimal everywhere (was minimal over Z[1/2]). - - new GP functions to handle models of hyperelliptic curves - hyperelldisc hyperellisoncurve hyperellminimalmodel - hyperellminimaldisc hyperellred - - [L-functions] - - New module for hypergeometric motives, see ??hgm. GP functions - hgmalpha hgmbydegree hgmcyclo hgminit - hgmtwist hgmcoef hgmeulerfactor hgmissymmetrical - lfunhgm hgmcoefs hgmgamma hgmparams - See the tutorial (slides and video) at - http://pari.math.u-bordeaux.fr/Events/PARI2022/index.html#HGM - - New GP function lfunparams() to return the [N, k, Gamma factors] attached - to a motivic L-function. - - New GP function lfuneuler() to return the local Euler factor at a prime p - - [Modular Forms] - - Faster implementation of mfinit() and mfbasis() in weight 1 - - Add optional argument to ramanujantau() to compute the newform of level 1 - and given small weight; parallelize implementation. - - [Quadratic Fields] - - qfbcomp() now implements general composition of integral binary quadratic - forms (of different discriminants); f * g and f^n are shorthand for - composition and powerings of forms, including (real) extended forms with a - Shanks distance component. - - New GP function qfbcornacchia, solving x^2 + Dy^2 = n in integers - in essentially linear time. - - New GP functions quadunitindex() (index of the unit group of a quadratic - order in the units for the maximal order), quadunitnorm() (norm of the - fundamental unit). Used to improve qfbclassno for non fundamental - positive discriminants. - - [General Number Fields] - - nfinit(), nfdisc(), nfbasis() now use lazy factorization: partially - factor the polynomial discriminant, hoping the unfactored part will be a - square coprime to the field discriminant, and that we will be able to - prove it via a variant of Buchmann-Lenstra's algorithm. - - New bit in nfinit flag to prevent LLL on nf.zk, which is a major speedup - when the field degree is large and only basic field or ideal arithmetic - is needed. - - New GP functions nfeltissquare() and nfeltispower() to quickly check whether - an algebraic number is a k-th power (and obtain a k-th root when it is). - - New GP function galoissplittinginit(T) to compute the Galois group of the - splitting field of T. This can be used in all Galois theory functions, - e.g., galoissubgroups(), galoisidentify(), etc. - - New GP function nflist to list number fields with given small Galois - group by increasing discriminant. Some groups (such as A5 and A5(6)) - require the new 'nflistdata' package. The same function gives a regular - extension of Q(t) with the requested Galois group for all transitive - subgroups of S_n, n <= 15. - - New GP function nfresolvent() computes classical Galois resolvents - attached to fields of small degree - - Recal that ideallist(nf, B) returns integral ideals of norm bounded - by B > 0. The new ideallist(nf, negative B) returns integral ideals - of norm |B| (in factored form). - - [Class Field Theory] - - New GP function bnrcompositum() to construct the compositum of two - abelian extensions given by a class field theoretic description. - - New module to deal with class groups of abelian fields and their Iwasawa - invariants: - subcyclohminus subcycloiwasawa subcyclopclgp - See the tutorial (slides and video) at - http://pari.math.u-bordeaux.fr/Events/PARI2022/index.html#CYCLO - - New module to generate and compute with Hecke characters: - gchareval gcharalgebraic gcharconductor - gcharduallog gcharidentify gcharinit gcharisalgebraic - gcharlocal gcharlog gcharnewprec - See ??"Hecke Grossencharacters" as well as the tutorial at - http://pari.math.u-bordeaux.fr/Events/PARI2022/index.html#HECKE - - [Transcendental functions] - - New GP function lerchphi(), lerchzeta() for the Lerch Phi and zeta function. - - New GP functions bessljzero(), besselyzero(), for J and Y Bessel functions - - Lambert W functions are now all supported, one can specify a branch as an - optional argument: lambertw(y, -1) corresponds to W_{-1}, defined for - -exp(-1) <= y < 0. Complex arguments are allowed (as well as power series - and p-adics) - - Speedup for a number of transcendental functions at rational - arguments, in particular atanh(), gamma() and lngamma(). - - Allow sqrtint(), sqrtnint() and logint() for positive real number arguments - - We now allow hypergeom(N, D, t_SER) - - [Numerical summation and integration] - - New GP function sumnumsidi() for Sidi summation. - - New GP function intnumosc() to integrate quasi-periodic functions of - half-period H on a real half-line: - ? \p200 - ? H = Pi; intnumosc(x = 0, sinc(x), H) - Pi/2 - time = 1,241 ms. - %2 = 0.E-211 - A number of summation algorithms are used (Lagrange, Sidi, Sumalt, Sumpos). - See ??9 for a comparison of available integration or summation algorithms - - Allow endpoints in solve() to by +oo or -oo - - [Miscellaneous] - - poliscyclo(): replace Bradford-Davenport's Graeffe method by their - invphi algorithm (much faster) - - New GP function polsubcyclofast: fast variant of polsubcyclo() in small - degree, returning ad hoc generators (instead of Gaussian periods) - - New GP function poltomonic(T): fast monic integral generating polynomial - for Q[x] / (T) - - New GP function qfminimize to minimize a rational quadratic form. - - New GP function setdelta() for symmetric difference. - - New GP function serdiffdep() to find linear relations with polynomial - coefficients of bounded degree between derivatives of a power series: - ? y = sum(i=0, 50, binomial(3*i,i)*t^i) + O(t^51); - ? serdiffdep(y, 4, 3) \\ order <= 4 and degrees <= 3 - %2 = [(27*t^2 - 4*t)*x^2 + (54*t - 2)*x + 6, 0] - ? (27*t^2 - 4*t)*y'' + (54*t - 2)*y' + 6*y - %3 = O(T^50) - - COMPATIBILITY ISSUES BETWEEN 2.13.* and 2.15.* - ============================================ - - 0) Obsoleted functions and interfaces: - - default(debugfiles,) is now obsolete, use setdebug("io",) - - Unify real and imaginary binary quadratic forms: there are no longer - t_QFI and t_QFR for real an imaginary forms, only generic t_QFB. - One can still create a form using q = Qfb(a,b,c) [ or Qfb(v) if v=[a,b,c] ], - and a pair [q, d] denotes an extended (real) form including a Shanks - distance component 'd' (which used to be part of 'q', but no longer). - - 1) Output changes: - - system(cmd) now returns the shell return value - - elltwist now returns an ellinit, and accepts the same input formats - as ellinit ([a1,a2,a3,a4,a6], [a4,a6], Cremona label) - - genus2red 3rd component is now a pair [P,Q] such that y^2+Q*y=P is - minimal everywhere. - - 2) Input changes: - - qfbredsl2(q, S): change format of S: was [D,isD], is now isD + * The GP language: + * Notion of DebugLevel "domains" that allow to finely control + diagnostics. + * The syntax setdebug(dom, val) and default(def, val) are now + recognized in the GPRC file. + * Linear Algebra: + * qflll() now implements most LLL modes in fplll (fast, dpe and + heuristic), allowing large speedups. Directly and in the many + functions that use the LLL algorithm. + * New GP function snfrank(), a utility function returning + q-ranks from Smith Normal Forms + * Elementary Number Theory: + * New GP function: harmonic(), to compute generalized harmonic + numbers + * Reworked Euler numbers, analogously to Benoulli's: eulervec() + is now faster and caches computed values, and a new GP + function eulerreal() computes floating point approximations. + * Elliptic Curves: New module to compute the Mordell-Weil group + of rational elliptic curves + * See https://pari.math.u-bordeaux.fr/pub/pari/unix/pari-2.15.0.changelog + for details. ------------------------------------------------------------------- Wed Apr 13 18:58:43 UTC 2022 - Anton Shvetz