glib/tests/refcount/properties2.c

200 lines
4.0 KiB
C
Raw Normal View History

Make refcounting threadsafe by using atomic operations. (#166020, Wim 2005-07-15 Matthias Clasen <mclasen@redhat.com> Make refcounting threadsafe by using atomic operations. (#166020, Wim Taymans) * gobject.c: Use a recursive lock to protect the notify queue. (g_object_unref): Get rid of g_object_last_unref and do the last unref handling in g_object_unref. (g_object_ref, g_object_unref): Use atomic operations. * gsignal.c (struct _HandlerMatch): Use a full integer for the ref_count field. (handler_ref, handler_unref_R): Use atomic operations. * gparam.c (g_param_spec_ref, g_param_spec_unref): Use atomic operations instead of a lock to make the refcounting threadsafe. * gclosure.c (g_closure_ref, g_closure_unref): Use atomic operations. This is more complicated here, since the refcount is stored in a bitfield, so we also have to access all other bitfield members atomically. * gsignal.c (handlers_find): Read the meta_marshal flag of the closure atomically. * tests/Makefile.am (SUBDIRS): Add tests/refcount * configure.in: Add tests/refcount * tests/refcount/properties.c: Test property changes from multiple threads. * tests/refcount/signals.c: Test signal emission from multiple threads. * tests/refcount/objects.c: Test refcounting from multiple threads. * tests/refcount/objects2.c: * tests/refcount/properties2.c: Tests to measure the overhead of threadsafe refcounting. * glib/giochannel.c (g_io_channel_ref, g_io_channel_unref): Use atomic operations to make refcounting threadsafe. (#166020, Wim Taymans)
2005-07-15 18:51:10 +02:00
#include <unistd.h>
#include <glib.h>
#include <glib-object.h>
#define G_TYPE_TEST (g_test_get_type ())
#define G_TEST(test) (G_TYPE_CHECK_INSTANCE_CAST ((test), G_TYPE_TEST, GTest))
#define G_IS_TEST(test) (G_TYPE_CHECK_INSTANCE_TYPE ((test), G_TYPE_TEST))
#define G_TEST_CLASS(tclass) (G_TYPE_CHECK_CLASS_CAST ((tclass), G_TYPE_TEST, GTestClass))
#define G_IS_TEST_CLASS(tclass) (G_TYPE_CHECK_CLASS_TYPE ((tclass), G_TYPE_TEST))
#define G_TEST_GET_CLASS(test) (G_TYPE_INSTANCE_GET_CLASS ((test), G_TYPE_TEST, GTestClass))
enum {
PROP_0,
PROP_DUMMY
};
typedef struct _GTest GTest;
typedef struct _GTestClass GTestClass;
struct _GTest
{
GObject object;
gint dummy;
};
struct _GTestClass
{
GObjectClass parent_class;
};
static GType g_test_get_type (void);
static void g_test_class_init (GTestClass * klass);
static void g_test_init (GTest * test);
static void g_test_dispose (GObject * object);
static void g_test_get_property (GObject *object,
guint prop_id,
GValue *value,
GParamSpec *pspec);
static void g_test_set_property (GObject *object,
guint prop_id,
const GValue *value,
GParamSpec *pspec);
static GObjectClass *parent_class = NULL;
static GType
g_test_get_type (void)
{
static GType test_type = 0;
if (!test_type) {
static const GTypeInfo test_info = {
sizeof (GTestClass),
NULL,
NULL,
(GClassInitFunc) g_test_class_init,
NULL,
NULL,
sizeof (GTest),
0,
(GInstanceInitFunc) g_test_init,
NULL
};
test_type = g_type_register_static (G_TYPE_OBJECT, "GTest",
&test_info, 0);
}
return test_type;
}
static void
g_test_class_init (GTestClass * klass)
{
GObjectClass *gobject_class;
gobject_class = (GObjectClass *) klass;
parent_class = g_type_class_ref (G_TYPE_OBJECT);
gobject_class->dispose = g_test_dispose;
gobject_class->get_property = g_test_get_property;
gobject_class->set_property = g_test_set_property;
g_object_class_install_property (gobject_class,
PROP_DUMMY,
g_param_spec_int ("dummy",
NULL,
NULL,
0, G_MAXINT, 0,
G_PARAM_READWRITE));
}
static void
g_test_init (GTest * test)
{
g_print ("init %p\n", test);
}
static void
g_test_dispose (GObject * object)
{
GTest *test;
test = G_TEST (object);
g_print ("dispose %p!\n", object);
G_OBJECT_CLASS (parent_class)->dispose (object);
}
static void
g_test_get_property (GObject *object,
guint prop_id,
GValue *value,
GParamSpec *pspec)
{
GTest *test;
test = G_TEST (object);
switch (prop_id)
{
case PROP_DUMMY:
g_value_set_int (value, test->dummy);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}
static void
g_test_set_property (GObject *object,
guint prop_id,
const GValue *value,
GParamSpec *pspec)
{
GTest *test;
test = G_TEST (object);
switch (prop_id)
{
case PROP_DUMMY:
test->dummy = g_value_get_int (value);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}
static gint count = 0;
static void
dummy_notify (GObject *object,
GParamSpec *pspec)
{
count++;
if (count % 10000 == 0)
g_print (".");
Make refcounting threadsafe by using atomic operations. (#166020, Wim 2005-07-15 Matthias Clasen <mclasen@redhat.com> Make refcounting threadsafe by using atomic operations. (#166020, Wim Taymans) * gobject.c: Use a recursive lock to protect the notify queue. (g_object_unref): Get rid of g_object_last_unref and do the last unref handling in g_object_unref. (g_object_ref, g_object_unref): Use atomic operations. * gsignal.c (struct _HandlerMatch): Use a full integer for the ref_count field. (handler_ref, handler_unref_R): Use atomic operations. * gparam.c (g_param_spec_ref, g_param_spec_unref): Use atomic operations instead of a lock to make the refcounting threadsafe. * gclosure.c (g_closure_ref, g_closure_unref): Use atomic operations. This is more complicated here, since the refcount is stored in a bitfield, so we also have to access all other bitfield members atomically. * gsignal.c (handlers_find): Read the meta_marshal flag of the closure atomically. * tests/Makefile.am (SUBDIRS): Add tests/refcount * configure.in: Add tests/refcount * tests/refcount/properties.c: Test property changes from multiple threads. * tests/refcount/signals.c: Test signal emission from multiple threads. * tests/refcount/objects.c: Test refcounting from multiple threads. * tests/refcount/objects2.c: * tests/refcount/properties2.c: Tests to measure the overhead of threadsafe refcounting. * glib/giochannel.c (g_io_channel_ref, g_io_channel_unref): Use atomic operations to make refcounting threadsafe. (#166020, Wim Taymans)
2005-07-15 18:51:10 +02:00
}
static void
g_test_do_property (GTest * test)
{
gint dummy;
g_object_get (test, "dummy", &dummy, NULL);
g_object_set (test, "dummy", dummy + 1, NULL);
}
int
main (int argc, char **argv)
{
gint i;
GTest *test;
g_thread_init (NULL);
g_print ("START: %s\n", argv[0]);
g_log_set_always_fatal (G_LOG_LEVEL_WARNING | G_LOG_LEVEL_CRITICAL | g_log_set_always_fatal (G_LOG_FATAL_MASK));
Make refcounting threadsafe by using atomic operations. (#166020, Wim 2005-07-15 Matthias Clasen <mclasen@redhat.com> Make refcounting threadsafe by using atomic operations. (#166020, Wim Taymans) * gobject.c: Use a recursive lock to protect the notify queue. (g_object_unref): Get rid of g_object_last_unref and do the last unref handling in g_object_unref. (g_object_ref, g_object_unref): Use atomic operations. * gsignal.c (struct _HandlerMatch): Use a full integer for the ref_count field. (handler_ref, handler_unref_R): Use atomic operations. * gparam.c (g_param_spec_ref, g_param_spec_unref): Use atomic operations instead of a lock to make the refcounting threadsafe. * gclosure.c (g_closure_ref, g_closure_unref): Use atomic operations. This is more complicated here, since the refcount is stored in a bitfield, so we also have to access all other bitfield members atomically. * gsignal.c (handlers_find): Read the meta_marshal flag of the closure atomically. * tests/Makefile.am (SUBDIRS): Add tests/refcount * configure.in: Add tests/refcount * tests/refcount/properties.c: Test property changes from multiple threads. * tests/refcount/signals.c: Test signal emission from multiple threads. * tests/refcount/objects.c: Test refcounting from multiple threads. * tests/refcount/objects2.c: * tests/refcount/properties2.c: Tests to measure the overhead of threadsafe refcounting. * glib/giochannel.c (g_io_channel_ref, g_io_channel_unref): Use atomic operations to make refcounting threadsafe. (#166020, Wim Taymans)
2005-07-15 18:51:10 +02:00
g_type_init ();
Make refcounting threadsafe by using atomic operations. (#166020, Wim 2005-07-15 Matthias Clasen <mclasen@redhat.com> Make refcounting threadsafe by using atomic operations. (#166020, Wim Taymans) * gobject.c: Use a recursive lock to protect the notify queue. (g_object_unref): Get rid of g_object_last_unref and do the last unref handling in g_object_unref. (g_object_ref, g_object_unref): Use atomic operations. * gsignal.c (struct _HandlerMatch): Use a full integer for the ref_count field. (handler_ref, handler_unref_R): Use atomic operations. * gparam.c (g_param_spec_ref, g_param_spec_unref): Use atomic operations instead of a lock to make the refcounting threadsafe. * gclosure.c (g_closure_ref, g_closure_unref): Use atomic operations. This is more complicated here, since the refcount is stored in a bitfield, so we also have to access all other bitfield members atomically. * gsignal.c (handlers_find): Read the meta_marshal flag of the closure atomically. * tests/Makefile.am (SUBDIRS): Add tests/refcount * configure.in: Add tests/refcount * tests/refcount/properties.c: Test property changes from multiple threads. * tests/refcount/signals.c: Test signal emission from multiple threads. * tests/refcount/objects.c: Test refcounting from multiple threads. * tests/refcount/objects2.c: * tests/refcount/properties2.c: Tests to measure the overhead of threadsafe refcounting. * glib/giochannel.c (g_io_channel_ref, g_io_channel_unref): Use atomic operations to make refcounting threadsafe. (#166020, Wim Taymans)
2005-07-15 18:51:10 +02:00
test = g_object_new (G_TYPE_TEST, NULL);
g_signal_connect (test, "notify::dummy", G_CALLBACK (dummy_notify), NULL);
g_assert (count == test->dummy);
for (i=0; i<1000000; i++) {
g_test_do_property (test);
}
g_assert (count == test->dummy);
return 0;
}