2000-11-21 00:59:32 +01:00
|
|
|
/* GLIB - Library of useful routines for C programming
|
2005-01-13 19:04:18 +01:00
|
|
|
* Copyright (C) 1991, 1992, 1996, 1997,1999,2004 Free Software Foundation, Inc.
|
2000-11-21 00:59:32 +01:00
|
|
|
* Copyright (C) 2000 Eazel, Inc.
|
|
|
|
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
|
|
|
|
*
|
|
|
|
* This library is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
|
|
* License as published by the Free Software Foundation; either
|
|
|
|
* version 2 of the License, or (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This library is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* Lesser General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
|
|
* License along with this library; if not, write to the
|
|
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
|
|
* Boston, MA 02111-1307, USA.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This file was originally part of the GNU C Library, and was modified to allow
|
|
|
|
* user data to be passed in to the sorting function.
|
|
|
|
*
|
|
|
|
* Written by Douglas C. Schmidt (schmidt@ics.uci.edu).
|
|
|
|
* Modified by Maciej Stachowiak (mjs@eazel.com)
|
|
|
|
*
|
|
|
|
* Modified by the GLib Team and others 1997-2000. See the AUTHORS
|
|
|
|
* file for a list of people on the GLib Team. See the ChangeLog
|
2001-04-16 22:05:25 +02:00
|
|
|
* files for a list of changes. These files are distributed with GLib
|
|
|
|
* at ftp://ftp.gtk.org/pub/gtk/.
|
|
|
|
*/
|
2000-11-21 00:59:32 +01:00
|
|
|
|
2002-12-04 02:27:44 +01:00
|
|
|
#include "config.h"
|
|
|
|
|
2005-01-13 19:04:18 +01:00
|
|
|
#include <limits.h>
|
|
|
|
#include <stdlib.h>
|
2000-11-21 00:59:32 +01:00
|
|
|
#include <string.h>
|
|
|
|
|
2010-09-04 05:03:14 +02:00
|
|
|
#include "gqsort.h"
|
|
|
|
|
|
|
|
#include "gtestutils.h"
|
2000-11-21 00:59:32 +01:00
|
|
|
|
|
|
|
/* Byte-wise swap two items of size SIZE. */
|
|
|
|
#define SWAP(a, b, size) \
|
|
|
|
do \
|
|
|
|
{ \
|
|
|
|
register size_t __size = (size); \
|
|
|
|
register char *__a = (a), *__b = (b); \
|
|
|
|
do \
|
|
|
|
{ \
|
|
|
|
char __tmp = *__a; \
|
|
|
|
*__a++ = *__b; \
|
|
|
|
*__b++ = __tmp; \
|
|
|
|
} while (--__size > 0); \
|
|
|
|
} while (0)
|
|
|
|
|
|
|
|
/* Discontinue quicksort algorithm when partition gets below this size.
|
|
|
|
This particular magic number was chosen to work best on a Sun 4/260. */
|
|
|
|
#define MAX_THRESH 4
|
|
|
|
|
|
|
|
/* Stack node declarations used to store unfulfilled partition obligations. */
|
|
|
|
typedef struct
|
2005-01-13 19:04:18 +01:00
|
|
|
{
|
|
|
|
char *lo;
|
|
|
|
char *hi;
|
|
|
|
} stack_node;
|
2000-11-21 00:59:32 +01:00
|
|
|
|
|
|
|
/* The next 4 #defines implement a very fast in-line stack abstraction. */
|
2005-01-13 19:04:18 +01:00
|
|
|
/* The stack needs log (total_elements) entries (we could even subtract
|
|
|
|
log(MAX_THRESH)). Since total_elements has type size_t, we get as
|
|
|
|
upper bound for log (total_elements):
|
|
|
|
bits per byte (CHAR_BIT) * sizeof(size_t). */
|
|
|
|
#define STACK_SIZE (CHAR_BIT * sizeof(size_t))
|
2000-11-21 00:59:32 +01:00
|
|
|
#define PUSH(low, high) ((void) ((top->lo = (low)), (top->hi = (high)), ++top))
|
|
|
|
#define POP(low, high) ((void) (--top, (low = top->lo), (high = top->hi)))
|
|
|
|
#define STACK_NOT_EMPTY (stack < top)
|
|
|
|
|
|
|
|
|
|
|
|
/* Order size using quicksort. This implementation incorporates
|
2005-01-13 19:04:18 +01:00
|
|
|
four optimizations discussed in Sedgewick:
|
|
|
|
|
|
|
|
1. Non-recursive, using an explicit stack of pointer that store the
|
|
|
|
next array partition to sort. To save time, this maximum amount
|
|
|
|
of space required to store an array of SIZE_MAX is allocated on the
|
|
|
|
stack. Assuming a 32-bit (64 bit) integer for size_t, this needs
|
|
|
|
only 32 * sizeof(stack_node) == 256 bytes (for 64 bit: 1024 bytes).
|
|
|
|
Pretty cheap, actually.
|
|
|
|
|
|
|
|
2. Chose the pivot element using a median-of-three decision tree.
|
|
|
|
This reduces the probability of selecting a bad pivot value and
|
|
|
|
eliminates certain extraneous comparisons.
|
|
|
|
|
|
|
|
3. Only quicksorts TOTAL_ELEMS / MAX_THRESH partitions, leaving
|
|
|
|
insertion sort to order the MAX_THRESH items within each partition.
|
|
|
|
This is a big win, since insertion sort is faster for small, mostly
|
|
|
|
sorted array segments.
|
|
|
|
|
|
|
|
4. The larger of the two sub-partitions is always pushed onto the
|
|
|
|
stack first, with the algorithm then concentrating on the
|
|
|
|
smaller partition. This *guarantees* no more than log (total_elems)
|
|
|
|
stack size is needed (actually O(1) in this case)! */
|
2000-11-21 00:59:32 +01:00
|
|
|
|
2001-04-16 22:05:25 +02:00
|
|
|
/**
|
|
|
|
* g_qsort_with_data:
|
|
|
|
* @pbase: start of array to sort
|
|
|
|
* @total_elems: elements in the array
|
|
|
|
* @size: size of each element
|
|
|
|
* @compare_func: function to compare elements
|
|
|
|
* @user_data: data to pass to @compare_func
|
|
|
|
*
|
|
|
|
* This is just like the standard C qsort() function, but
|
|
|
|
* the comparison routine accepts a user data argument.
|
|
|
|
*
|
|
|
|
**/
|
2000-11-21 00:59:32 +01:00
|
|
|
void
|
|
|
|
g_qsort_with_data (gconstpointer pbase,
|
|
|
|
gint total_elems,
|
Use gchar, gint, gsize instead of char, int, size_t in the interface for
2003-07-29 Matthias Clasen <maclas@gmx.de>
* glib/gqsort.[hc] (g_qsort_with_data):
* glib/gconvert.[hc] (g_filename_to_uri, g_filename_from_uri):
* glib/gfileutils.[hc] (g_mkstemp, g_file_open_tmp): Use gchar, gint, gsize instead of char, int, size_t
in the interface for consistency. (#118567)
2003-07-29 20:59:23 +02:00
|
|
|
gsize size,
|
changed prototype of g_boxed_type_register_static() to contain an optional
Wed Mar 7 09:36:33 2001 Tim Janik <timj@gtk.org>
* gboxed.[hc]: changed prototype of g_boxed_type_register_static()
to contain an optional init function and a hint at whether the
boxed structure uses ref counting internally.
added g_value_set_boxed_take_ownership().
made G_TYPE_BOXED an abstract value type.
* genums.[hc]: made G_TYPE_ENUM and G_TYPE_FLAGS abstract value
types.
* glib-genmarshal.c: argument type changes, preparation for third-party
arg specification.
* gobject.[hc]: cleaned up get/set property code.
added g_strdup_value_contents() to improve warnings.
* gparam.[hc]: added g_param_value_convert(), taking over responsibility
of the old g_value_convert(). added G_PARAM_LAX_VALIDATION flag so
validation alterations may be valid a part of the property setting
process.
* gparamspecs.[hc]: made value comparisons stable (for sort applications).
added GParamSpecValueArray, a param spec for value arrays and
GParamSpecClosure. nuked the value exchange functions and
GParamSpecCCallback.
* gtype.[hc]: catch unintialized usages of the type system with
g_return_val_if_uninitialized(). introduced G_TYPE_FLAG_VALUE_ABSTRACT
to flag types that introduce a value table, but can't be used for
g_value_init(). cleaned up reserved type ids.
* gvalue.[hc]: code cleanups and saner checking.
nuked the value exchange API. implemented value transformations, we
can't really "convert" values, rather transforms are an anylogy to
C casts, real conversions need a param spec for validation, which is
why g_param_value_convert() does real conversions now.
* gvaluearray.[hc]: new files that implement a GValueArray, a struct
that can hold inhomogeneous arrays of value (to that extend that it
also allowes undefined values, i.e. G_VALUE_TYPE(value)==0).
this is exposed to the type system as a boxed type.
* gvaluetransform.c: new file implementing most of the former value
exchange functions as single-sided transformations.
* gvaluetypes.[hc]: nuked G_TYPE_CCALLBACK, added
g_value_set_string_take_ownership().
* *.h: s/G_IS_VALUE_/G_VALUE_HOLDS_/.
* *.[hc]: many fixes and cleanups.
* many warning improvements.
Tue Feb 27 18:35:15 2001 Tim Janik <timj@gtk.org>
* gobject.c (g_object_get_valist): urg, pass G_VALUE_NOCOPY_CONTENTS
into G_VALUE_LCOPY(), this needs proper documenting.
* gparam.c: fixed G_PARAM_USER_MASK.
* gtype.c (type_data_make_W):
(type_data_last_unref_Wm): fixed invalid memory freeing.
* gobject.c (g_object_last_unref): destroy signal handlers associated
with object, right before finalization.
* gsignal.c (g_signal_parse_name): catch destroyed nodes or signals
that don't actually support details.
* gobject.[hc]: got rid of property trailers. nuked GObject
properties "data" and the "signal" variants.
(g_object_connect): new convenience function to do multiple
signal connections at once.
(g_object_disconnect): likewise, for disconnections.
* gparam.[hc] (g_param_spec_pool_lookup): took out trailer support.
* gvalue.[hc]: marked g_value_fits_pointer() and g_value_peek_pointer()
as private (the latter got renamed from g_value_get_as_pointer()).
Wed Mar 7 09:32:06 2001 Tim Janik <timj@gtk.org>
* glib-object.h: add gvaluearray.h.
* gstring.[hc]: fixup naming of g_string_sprint*.
* gtypes.h: fixed GCompareDataFunc naming.
Wed Mar 7 09:33:27 2001 Tim Janik <timj@gtk.org>
* gobject/Makefile.am: shuffled rules to avoid excessive
rebuilds.
* gobject/gobject-sections.txt: updates.
* gobject/tmpl/*: bunch of updates, added another patch
from Eric Lemings <eric.b.lemings@lmco.com>.
2001-03-07 15:46:45 +01:00
|
|
|
GCompareDataFunc compare_func,
|
2000-11-21 00:59:32 +01:00
|
|
|
gpointer user_data)
|
|
|
|
{
|
|
|
|
register char *base_ptr = (char *) pbase;
|
|
|
|
|
|
|
|
const size_t max_thresh = MAX_THRESH * size;
|
|
|
|
|
2002-05-07 17:32:08 +02:00
|
|
|
g_return_if_fail (total_elems >= 0);
|
|
|
|
g_return_if_fail (pbase != NULL || total_elems == 0);
|
2000-11-21 00:59:32 +01:00
|
|
|
g_return_if_fail (compare_func != NULL);
|
|
|
|
|
2002-05-07 17:32:08 +02:00
|
|
|
if (total_elems == 0)
|
2005-01-13 19:04:18 +01:00
|
|
|
/* Avoid lossage with unsigned arithmetic below. */
|
2002-05-07 17:32:08 +02:00
|
|
|
return;
|
|
|
|
|
2000-11-21 00:59:32 +01:00
|
|
|
if (total_elems > MAX_THRESH)
|
|
|
|
{
|
|
|
|
char *lo = base_ptr;
|
|
|
|
char *hi = &lo[size * (total_elems - 1)];
|
|
|
|
stack_node stack[STACK_SIZE];
|
2005-01-13 19:04:18 +01:00
|
|
|
stack_node *top = stack;
|
2000-11-21 00:59:32 +01:00
|
|
|
|
2005-01-13 19:04:18 +01:00
|
|
|
PUSH (NULL, NULL);
|
2000-11-21 00:59:32 +01:00
|
|
|
|
2005-01-13 19:04:18 +01:00
|
|
|
while (STACK_NOT_EMPTY)
|
|
|
|
{
|
|
|
|
char *left_ptr;
|
|
|
|
char *right_ptr;
|
2000-11-21 00:59:32 +01:00
|
|
|
|
|
|
|
/* Select median value from among LO, MID, and HI. Rearrange
|
2005-01-13 19:04:18 +01:00
|
|
|
LO and HI so the three values are sorted. This lowers the
|
|
|
|
probability of picking a pathological pivot value and
|
|
|
|
skips a comparison for both the LEFT_PTR and RIGHT_PTR in
|
|
|
|
the while loops. */
|
2000-11-21 00:59:32 +01:00
|
|
|
|
|
|
|
char *mid = lo + size * ((hi - lo) / size >> 1);
|
|
|
|
|
|
|
|
if ((*compare_func) ((void *) mid, (void *) lo, user_data) < 0)
|
|
|
|
SWAP (mid, lo, size);
|
|
|
|
if ((*compare_func) ((void *) hi, (void *) mid, user_data) < 0)
|
|
|
|
SWAP (mid, hi, size);
|
|
|
|
else
|
|
|
|
goto jump_over;
|
|
|
|
if ((*compare_func) ((void *) mid, (void *) lo, user_data) < 0)
|
|
|
|
SWAP (mid, lo, size);
|
|
|
|
jump_over:;
|
|
|
|
|
2005-01-13 19:04:18 +01:00
|
|
|
left_ptr = lo + size;
|
2000-11-21 00:59:32 +01:00
|
|
|
right_ptr = hi - size;
|
|
|
|
|
|
|
|
/* Here's the famous ``collapse the walls'' section of quicksort.
|
2005-01-13 19:04:18 +01:00
|
|
|
Gotta like those tight inner loops! They are the main reason
|
|
|
|
that this algorithm runs much faster than others. */
|
2000-11-21 00:59:32 +01:00
|
|
|
do
|
|
|
|
{
|
2005-01-13 19:04:18 +01:00
|
|
|
while ((*compare_func) ((void *) left_ptr, (void *) mid, user_data) < 0)
|
2000-11-21 00:59:32 +01:00
|
|
|
left_ptr += size;
|
|
|
|
|
2005-01-13 19:04:18 +01:00
|
|
|
while ((*compare_func) ((void *) mid, (void *) right_ptr, user_data) < 0)
|
2000-11-21 00:59:32 +01:00
|
|
|
right_ptr -= size;
|
|
|
|
|
|
|
|
if (left_ptr < right_ptr)
|
|
|
|
{
|
|
|
|
SWAP (left_ptr, right_ptr, size);
|
2005-01-13 19:04:18 +01:00
|
|
|
if (mid == left_ptr)
|
|
|
|
mid = right_ptr;
|
|
|
|
else if (mid == right_ptr)
|
|
|
|
mid = left_ptr;
|
2000-11-21 00:59:32 +01:00
|
|
|
left_ptr += size;
|
|
|
|
right_ptr -= size;
|
|
|
|
}
|
|
|
|
else if (left_ptr == right_ptr)
|
|
|
|
{
|
|
|
|
left_ptr += size;
|
|
|
|
right_ptr -= size;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
while (left_ptr <= right_ptr);
|
|
|
|
|
2005-01-13 19:04:18 +01:00
|
|
|
/* Set up pointers for next iteration. First determine whether
|
|
|
|
left and right partitions are below the threshold size. If so,
|
|
|
|
ignore one or both. Otherwise, push the larger partition's
|
|
|
|
bounds on the stack and continue sorting the smaller one. */
|
2000-11-21 00:59:32 +01:00
|
|
|
|
2005-01-13 19:04:18 +01:00
|
|
|
if ((size_t) (right_ptr - lo) <= max_thresh)
|
|
|
|
{
|
|
|
|
if ((size_t) (hi - left_ptr) <= max_thresh)
|
2000-11-21 00:59:32 +01:00
|
|
|
/* Ignore both small partitions. */
|
2005-01-13 19:04:18 +01:00
|
|
|
POP (lo, hi);
|
|
|
|
else
|
2000-11-21 00:59:32 +01:00
|
|
|
/* Ignore small left partition. */
|
2005-01-13 19:04:18 +01:00
|
|
|
lo = left_ptr;
|
|
|
|
}
|
|
|
|
else if ((size_t) (hi - left_ptr) <= max_thresh)
|
|
|
|
/* Ignore small right partition. */
|
|
|
|
hi = right_ptr;
|
|
|
|
else if ((right_ptr - lo) > (hi - left_ptr))
|
|
|
|
{
|
|
|
|
/* Push larger left partition indices. */
|
|
|
|
PUSH (lo, right_ptr);
|
|
|
|
lo = left_ptr;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
/* Push larger right partition indices. */
|
|
|
|
PUSH (left_ptr, hi);
|
|
|
|
hi = right_ptr;
|
|
|
|
}
|
|
|
|
}
|
2000-11-21 00:59:32 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/* Once the BASE_PTR array is partially sorted by quicksort the rest
|
2005-01-13 19:04:18 +01:00
|
|
|
is completely sorted using insertion sort, since this is efficient
|
|
|
|
for partitions below MAX_THRESH size. BASE_PTR points to the beginning
|
|
|
|
of the array to sort, and END_PTR points at the very last element in
|
|
|
|
the array (*not* one beyond it!). */
|
|
|
|
|
|
|
|
#define min(x, y) ((x) < (y) ? (x) : (y))
|
2000-11-21 00:59:32 +01:00
|
|
|
|
|
|
|
{
|
|
|
|
char *const end_ptr = &base_ptr[size * (total_elems - 1)];
|
|
|
|
char *tmp_ptr = base_ptr;
|
2005-01-13 19:04:18 +01:00
|
|
|
char *thresh = min(end_ptr, base_ptr + max_thresh);
|
2000-11-21 00:59:32 +01:00
|
|
|
register char *run_ptr;
|
|
|
|
|
|
|
|
/* Find smallest element in first threshold and place it at the
|
2005-01-13 19:04:18 +01:00
|
|
|
array's beginning. This is the smallest array element,
|
|
|
|
and the operation speeds up insertion sort's inner loop. */
|
2000-11-21 00:59:32 +01:00
|
|
|
|
2005-01-13 19:04:18 +01:00
|
|
|
for (run_ptr = tmp_ptr + size; run_ptr <= thresh; run_ptr += size)
|
|
|
|
if ((*compare_func) ((void *) run_ptr, (void *) tmp_ptr, user_data) < 0)
|
|
|
|
tmp_ptr = run_ptr;
|
2000-11-21 00:59:32 +01:00
|
|
|
|
|
|
|
if (tmp_ptr != base_ptr)
|
|
|
|
SWAP (tmp_ptr, base_ptr, size);
|
|
|
|
|
|
|
|
/* Insertion sort, running from left-hand-side up to right-hand-side. */
|
|
|
|
|
|
|
|
run_ptr = base_ptr + size;
|
|
|
|
while ((run_ptr += size) <= end_ptr)
|
|
|
|
{
|
|
|
|
tmp_ptr = run_ptr - size;
|
2005-01-13 19:04:18 +01:00
|
|
|
while ((*compare_func) ((void *) run_ptr, (void *) tmp_ptr, user_data) < 0)
|
2000-11-21 00:59:32 +01:00
|
|
|
tmp_ptr -= size;
|
|
|
|
|
|
|
|
tmp_ptr += size;
|
2005-01-13 19:04:18 +01:00
|
|
|
if (tmp_ptr != run_ptr)
|
|
|
|
{
|
|
|
|
char *trav;
|
2000-11-21 00:59:32 +01:00
|
|
|
|
|
|
|
trav = run_ptr + size;
|
|
|
|
while (--trav >= run_ptr)
|
2005-01-13 19:04:18 +01:00
|
|
|
{
|
|
|
|
char c = *trav;
|
|
|
|
char *hi, *lo;
|
|
|
|
|
|
|
|
for (hi = lo = trav; (lo -= size) >= tmp_ptr; hi = lo)
|
|
|
|
*hi = *lo;
|
|
|
|
*hi = c;
|
|
|
|
}
|
|
|
|
}
|
2000-11-21 00:59:32 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|