glib/girepository/gitypeinfo.c

644 lines
20 KiB
C
Raw Normal View History

2012-02-03 19:42:56 +01:00
/* -*- mode: C; c-file-style: "gnu"; indent-tabs-mode: nil; -*-
* GObject introspection: Type implementation
*
* Copyright (C) 2005 Matthias Clasen
* Copyright (C) 2008,2009 Red Hat, Inc.
*
* SPDX-License-Identifier: LGPL-2.1-or-later
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#include "config.h"
#include <glib.h>
#include <girepository/girepository.h>
#include "gibaseinfo-private.h"
#include "girepository-private.h"
#include "gitypelib-internal.h"
#include "gitypeinfo.h"
/**
* GITypeInfo:
*
* `GITypeInfo` represents a type, including information about direction and
* transfer.
*
* You can retrieve a type info from an argument (see
* [class@GIRepository.ArgInfo]), a functions return value (see
* [class@GIRepository.FunctionInfo]), a field (see
* [class@GIRepository.FieldInfo]), a property (see
* [class@GIRepository.PropertyInfo]), a constant (see
* [class@GIRepository.ConstantInfo]) or for a union discriminator (see
* [class@GIRepository.UnionInfo]).
*
* A type can either be a of a basic type which is a standard C primitive
* type or an interface type. For interface types you need to call
* [method@GIRepository.TypeInfo.get_interface] to get a reference to the base
* info for that interface.
*
* Since: 2.80
*/
/**
* gi_type_info_is_pointer:
* @info: a #GITypeInfo
*
* Obtain if the type is passed as a reference.
*
* Note that the types of `GI_DIRECTION_OUT` and `GI_DIRECTION_INOUT` parameters
* will only be pointers if the underlying type being transferred is a pointer
* (i.e. only if the type of the C functions formal parameter is a pointer to a
* pointer).
*
* Returns: `TRUE` if it is a pointer
* Since: 2.80
*/
gboolean
gi_type_info_is_pointer (GITypeInfo *info)
{
GIRealInfo *rinfo = (GIRealInfo *)info;
SimpleTypeBlob *type;
g_return_val_if_fail (info != NULL, FALSE);
g_return_val_if_fail (GI_IS_TYPE_INFO (info), FALSE);
type = (SimpleTypeBlob *)&rinfo->typelib->data[rinfo->offset];
if (type->flags.reserved == 0 && type->flags.reserved2 == 0)
return type->flags.pointer;
else
{
InterfaceTypeBlob *iface = (InterfaceTypeBlob *)&rinfo->typelib->data[rinfo->offset];
return iface->pointer;
}
}
/**
* gi_type_info_get_tag:
* @info: a #GITypeInfo
*
* Obtain the type tag for the type.
*
* See [type@GIRepository.TypeTag] for a list of type tags.
*
* Returns: the type tag
* Since: 2.80
*/
GITypeTag
gi_type_info_get_tag (GITypeInfo *info)
{
GIRealInfo *rinfo = (GIRealInfo *)info;
SimpleTypeBlob *type;
g_return_val_if_fail (info != NULL, GI_TYPE_TAG_BOOLEAN);
g_return_val_if_fail (GI_IS_TYPE_INFO (info), GI_TYPE_TAG_BOOLEAN);
type = (SimpleTypeBlob *)&rinfo->typelib->data[rinfo->offset];
if (rinfo->type_is_embedded)
return GI_TYPE_TAG_INTERFACE;
else if (type->flags.reserved == 0 && type->flags.reserved2 == 0)
return type->flags.tag;
else
{
InterfaceTypeBlob *iface = (InterfaceTypeBlob *)&rinfo->typelib->data[rinfo->offset];
return iface->tag;
}
}
/**
* gi_type_info_get_param_type:
* @info: a #GITypeInfo
* @n: index of the parameter
*
* Obtain the parameter type @n, or `NULL` if the type is not an array.
*
* Returns: (transfer full) (nullable): the param type info, or `NULL` if the
* type is not an array
* Since: 2.80
*/
GITypeInfo *
gi_type_info_get_param_type (GITypeInfo *info,
unsigned int n)
{
GIRealInfo *rinfo = (GIRealInfo *)info;
SimpleTypeBlob *type;
g_return_val_if_fail (info != NULL, NULL);
g_return_val_if_fail (GI_IS_TYPE_INFO (info), NULL);
type = (SimpleTypeBlob *)&rinfo->typelib->data[rinfo->offset];
if (!(type->flags.reserved == 0 && type->flags.reserved2 == 0))
{
ParamTypeBlob *param = (ParamTypeBlob *)&rinfo->typelib->data[rinfo->offset];
switch (param->tag)
{
case GI_TYPE_TAG_ARRAY:
case GI_TYPE_TAG_GLIST:
case GI_TYPE_TAG_GSLIST:
case GI_TYPE_TAG_GHASH:
return gi_type_info_new ((GIBaseInfo*)info, rinfo->typelib,
rinfo->offset + sizeof (ParamTypeBlob)
+ sizeof (SimpleTypeBlob) * n);
break;
default:
break;
}
}
return NULL;
}
/**
* gi_type_info_get_interface:
* @info: a #GITypeInfo
*
* For types which have `GI_TYPE_TAG_INTERFACE` such as [class@GObject.Object]s
* and boxed values, this function returns full information about the referenced
* type.
*
* You can then inspect the type of the returned [class@GIRepository.BaseInfo]
* to further query whether it is a concrete [class@GObject.Object], an
* interface, a structure, etc., using
* [method@GIRepository.BaseInfo.get_info_type].
*
* Returns: (transfer full) (nullable): The [class@GIRepository.BaseInfo], or
* `NULL`. Free it with gi_base_info_unref() when done.
* Since: 2.80
*/
GIBaseInfo *
gi_type_info_get_interface (GITypeInfo *info)
{
GIRealInfo *rinfo = (GIRealInfo *)info;
g_return_val_if_fail (info != NULL, NULL);
g_return_val_if_fail (GI_IS_TYPE_INFO (info), NULL);
/* For embedded types, the given offset is a pointer to the actual blob,
* after the end of the field. In that case we know it's a "subclass" of
* CommonBlob, so use that to determine the info type.
*/
if (rinfo->type_is_embedded)
{
CommonBlob *common = (CommonBlob *)&rinfo->typelib->data[rinfo->offset];
GIInfoType info_type;
switch (common->blob_type)
{
case BLOB_TYPE_CALLBACK:
info_type = GI_INFO_TYPE_CALLBACK;
break;
default:
g_assert_not_reached ();
return NULL;
}
return (GIBaseInfo *) gi_base_info_new (info_type, (GIBaseInfo*)info, rinfo->typelib,
rinfo->offset);
}
else
{
SimpleTypeBlob *type = (SimpleTypeBlob *)&rinfo->typelib->data[rinfo->offset];
if (!(type->flags.reserved == 0 && type->flags.reserved2 == 0))
{
InterfaceTypeBlob *blob = (InterfaceTypeBlob *)&rinfo->typelib->data[rinfo->offset];
if (blob->tag == GI_TYPE_TAG_INTERFACE)
return gi_info_from_entry (rinfo->repository, rinfo->typelib, blob->interface);
}
}
return NULL;
}
/**
* gi_type_info_get_array_length_index:
* @info: a #GITypeInfo
* @out_length_index: (out) (optional): return location for the length argument
*
* Obtain the position of the argument which gives the array length of the type.
*
* The type tag must be a `GI_TYPE_TAG_ARRAY` with a length argument, or `FALSE`
* will be returned.
*
* Returns: `TRUE` if the type is an array and has a length argument
* Since: 2.80
*/
gboolean
gi_type_info_get_array_length_index (GITypeInfo *info,
unsigned int *out_length_index)
{
GIRealInfo *rinfo = (GIRealInfo *)info;
SimpleTypeBlob *type;
g_return_val_if_fail (info != NULL, FALSE);
g_return_val_if_fail (GI_IS_TYPE_INFO (info), FALSE);
type = (SimpleTypeBlob *)&rinfo->typelib->data[rinfo->offset];
if (!(type->flags.reserved == 0 && type->flags.reserved2 == 0))
{
ArrayTypeBlob *blob = (ArrayTypeBlob *)&rinfo->typelib->data[rinfo->offset];
if (blob->tag == GI_TYPE_TAG_ARRAY)
{
if (blob->has_length)
{
if (out_length_index != NULL)
*out_length_index = blob->dimensions.length;
return TRUE;
}
}
}
if (out_length_index != NULL)
*out_length_index = 0;
return FALSE;
}
/**
* gi_type_info_get_array_fixed_size:
* @info: a #GITypeInfo
* @out_size: (out) (optional): return location for the array size
*
* Obtain the fixed array size of the type, in number of elements (not bytes).
*
* The type tag must be a `GI_TYPE_TAG_ARRAY` with a fixed size, or `FALSE` will
* be returned.
*
* Returns: `TRUE` if the type is an array and has a fixed size
* Since: 2.80
*/
gboolean
gi_type_info_get_array_fixed_size (GITypeInfo *info,
size_t *out_size)
{
GIRealInfo *rinfo = (GIRealInfo *)info;
SimpleTypeBlob *type;
g_return_val_if_fail (info != NULL, FALSE);
g_return_val_if_fail (GI_IS_TYPE_INFO (info), FALSE);
type = (SimpleTypeBlob *)&rinfo->typelib->data[rinfo->offset];
if (!(type->flags.reserved == 0 && type->flags.reserved2 == 0))
{
ArrayTypeBlob *blob = (ArrayTypeBlob *)&rinfo->typelib->data[rinfo->offset];
if (blob->tag == GI_TYPE_TAG_ARRAY)
{
if (blob->has_size)
{
if (out_size != NULL)
*out_size = blob->dimensions.size;
return TRUE;
}
}
}
if (out_size != NULL)
*out_size = 0;
return FALSE;
}
/**
* gi_type_info_is_zero_terminated:
* @info: a #GITypeInfo
*
* Obtain if the last element of the array is `NULL`.
*
* The type tag must be a `GI_TYPE_TAG_ARRAY` or `FALSE` will be returned.
*
* Returns: `TRUE` if zero terminated
* Since: 2.80
*/
gboolean
gi_type_info_is_zero_terminated (GITypeInfo *info)
{
GIRealInfo *rinfo = (GIRealInfo *)info;
SimpleTypeBlob *type;
g_return_val_if_fail (info != NULL, FALSE);
g_return_val_if_fail (GI_IS_TYPE_INFO (info), FALSE);
type = (SimpleTypeBlob *)&rinfo->typelib->data[rinfo->offset];
if (!(type->flags.reserved == 0 && type->flags.reserved2 == 0))
{
ArrayTypeBlob *blob = (ArrayTypeBlob *)&rinfo->typelib->data[rinfo->offset];
if (blob->tag == GI_TYPE_TAG_ARRAY)
return blob->zero_terminated;
}
return FALSE;
}
/**
* gi_type_info_get_array_type:
* @info: a #GITypeInfo
*
* Obtain the array type for this type.
*
* See [enum@GIRepository.ArrayType] for a list of possible values.
*
* It is an error to call this on an @info which is not an array type. Use
* [method@GIRepository.TypeInfo.get_tag] to check.
*
* Returns: the array type
* Since: 2.80
*/
GIArrayType
gi_type_info_get_array_type (GITypeInfo *info)
{
GIRealInfo *rinfo = (GIRealInfo *)info;
SimpleTypeBlob *type;
g_return_val_if_fail (info != NULL, -1);
g_return_val_if_fail (GI_IS_TYPE_INFO (info), -1);
type = (SimpleTypeBlob *)&rinfo->typelib->data[rinfo->offset];
if (!(type->flags.reserved == 0 && type->flags.reserved2 == 0))
{
ArrayTypeBlob *blob = (ArrayTypeBlob *)&rinfo->typelib->data[rinfo->offset];
g_return_val_if_fail (blob->tag == GI_TYPE_TAG_ARRAY, -1);
return blob->array_type;
}
/* Not an array type */
g_assert_not_reached ();
}
/**
* gi_type_info_get_storage_type:
* @info: a #GITypeInfo
*
* Obtain the type tag corresponding to the underlying storage type in C for
* the type.
*
* See [type@GIRepository.TypeTag] for a list of type tags.
*
* Returns: the type tag
* Since: 2.80
*/
GITypeTag
gi_type_info_get_storage_type (GITypeInfo *info)
{
GITypeTag type_tag = gi_type_info_get_tag (info);
if (type_tag == GI_TYPE_TAG_INTERFACE)
{
GIBaseInfo *interface = gi_type_info_get_interface (info);
GIInfoType info_type = gi_base_info_get_info_type (interface);
if (info_type == GI_INFO_TYPE_ENUM || info_type == GI_INFO_TYPE_FLAGS)
type_tag = gi_enum_info_get_storage_type ((GIEnumInfo *) interface);
gi_base_info_unref (interface);
}
return type_tag;
}
/**
* gi_type_tag_argument_from_hash_pointer:
* @storage_type: a [type@GIRepository.TypeTag] obtained from
* [method@GIRepository.TypeInfo.get_storage_type]
* @hash_pointer: a pointer, such as a [struct@GLib.HashTable] data pointer
* @arg: (out caller-allocates) (not nullable): a [type@GIRepository.Argument]
* to fill in
*
* Convert a data pointer from a GLib data structure to a
* [type@GIRepository.Argument].
*
* GLib data structures, such as [type@GLib.List], [type@GLib.SList], and
* [type@GLib.HashTable], all store data pointers.
*
* In the case where the list or hash table is storing single types rather than
* structs, these data pointers may have values stuffed into them via macros
* such as `GPOINTER_TO_INT`.
*
* Use this function to ensure that all values are correctly extracted from
* stuffed pointers, regardless of the machines architecture or endianness.
*
* This function fills in the appropriate field of @arg with the value extracted
* from @hash_pointer, depending on @storage_type.
*
* Since: 2.80
*/
void
gi_type_tag_argument_from_hash_pointer (GITypeTag storage_type,
void *hash_pointer,
GIArgument *arg)
{
switch (storage_type)
{
case GI_TYPE_TAG_BOOLEAN:
arg->v_boolean = !!GPOINTER_TO_INT (hash_pointer);
break;
case GI_TYPE_TAG_INT8:
arg->v_int8 = (int8_t) GPOINTER_TO_INT (hash_pointer);
break;
case GI_TYPE_TAG_UINT8:
arg->v_uint8 = (uint8_t) GPOINTER_TO_UINT (hash_pointer);
break;
case GI_TYPE_TAG_INT16:
arg->v_int16 = (int16_t) GPOINTER_TO_INT (hash_pointer);
break;
case GI_TYPE_TAG_UINT16:
arg->v_uint16 = (uint16_t) GPOINTER_TO_UINT (hash_pointer);
break;
case GI_TYPE_TAG_INT32:
arg->v_int32 = (int32_t) GPOINTER_TO_INT (hash_pointer);
break;
case GI_TYPE_TAG_UINT32:
case GI_TYPE_TAG_UNICHAR:
arg->v_uint32 = (uint32_t) GPOINTER_TO_UINT (hash_pointer);
break;
case GI_TYPE_TAG_GTYPE:
arg->v_size = GPOINTER_TO_SIZE (hash_pointer);
break;
case GI_TYPE_TAG_UTF8:
case GI_TYPE_TAG_FILENAME:
case GI_TYPE_TAG_INTERFACE:
case GI_TYPE_TAG_ARRAY:
case GI_TYPE_TAG_GLIST:
case GI_TYPE_TAG_GSLIST:
case GI_TYPE_TAG_GHASH:
case GI_TYPE_TAG_ERROR:
arg->v_pointer = hash_pointer;
break;
case GI_TYPE_TAG_INT64:
case GI_TYPE_TAG_UINT64:
case GI_TYPE_TAG_FLOAT:
case GI_TYPE_TAG_DOUBLE:
default:
g_critical ("Unsupported storage type for pointer-stuffing: %s",
gi_type_tag_to_string (storage_type));
arg->v_pointer = hash_pointer;
}
}
/**
* gi_type_info_argument_from_hash_pointer:
* @info: a #GITypeInfo
* @hash_pointer: a pointer, such as a [struct@GLib.HashTable] data pointer
* @arg: (out caller-allocates): a [type@GIRepository.Argument] to fill in
*
* Convert a data pointer from a GLib data structure to a
* [type@GIRepository.Argument].
*
* GLib data structures, such as [type@GLib.List], [type@GLib.SList], and
* [type@GLib.HashTable], all store data pointers.
*
* In the case where the list or hash table is storing single types rather than
* structs, these data pointers may have values stuffed into them via macros
* such as `GPOINTER_TO_INT`.
*
* Use this function to ensure that all values are correctly extracted from
* stuffed pointers, regardless of the machines architecture or endianness.
*
* This function fills in the appropriate field of @arg with the value extracted
* from @hash_pointer, depending on the storage type of @info.
*
* Since: 2.80
*/
void
gi_type_info_argument_from_hash_pointer (GITypeInfo *info,
void *hash_pointer,
GIArgument *arg)
{
GITypeTag storage_type = gi_type_info_get_storage_type (info);
gi_type_tag_argument_from_hash_pointer (storage_type, hash_pointer,
arg);
}
/**
* gi_type_tag_hash_pointer_from_argument:
* @storage_type: a [type@GIRepository.TypeTag] obtained from
* [method@GIRepository.TypeInfo.get_storage_type]
* @arg: a [type@GIRepository.Argument] with the value to stuff into a pointer
*
* Convert a [type@GIRepository.Argument] to data pointer for use in a GLib
* data structure.
*
* GLib data structures, such as [type@GLib.List], [type@GLib.SList], and
* [type@GLib.HashTable], all store data pointers.
*
* In the case where the list or hash table is storing single types rather than
* structs, these data pointers may have values stuffed into them via macros
* such as `GPOINTER_TO_INT`.
*
* Use this function to ensure that all values are correctly stuffed into
* pointers, regardless of the machines architecture or endianness.
*
* This function returns a pointer stuffed with the appropriate field of @arg,
* depending on @storage_type.
*
* Returns: A stuffed pointer, that can be stored in a [struct@GLib.HashTable],
* for example
* Since: 2.80
*/
void *
gi_type_tag_hash_pointer_from_argument (GITypeTag storage_type,
GIArgument *arg)
{
switch (storage_type)
{
case GI_TYPE_TAG_BOOLEAN:
return GINT_TO_POINTER (arg->v_boolean);
case GI_TYPE_TAG_INT8:
return GINT_TO_POINTER (arg->v_int8);
case GI_TYPE_TAG_UINT8:
return GUINT_TO_POINTER (arg->v_uint8);
case GI_TYPE_TAG_INT16:
return GINT_TO_POINTER (arg->v_int16);
case GI_TYPE_TAG_UINT16:
return GUINT_TO_POINTER (arg->v_uint16);
case GI_TYPE_TAG_INT32:
return GINT_TO_POINTER (arg->v_int32);
case GI_TYPE_TAG_UINT32:
case GI_TYPE_TAG_UNICHAR:
return GUINT_TO_POINTER (arg->v_uint32);
case GI_TYPE_TAG_GTYPE:
return GSIZE_TO_POINTER (arg->v_size);
case GI_TYPE_TAG_UTF8:
case GI_TYPE_TAG_FILENAME:
case GI_TYPE_TAG_INTERFACE:
case GI_TYPE_TAG_ARRAY:
case GI_TYPE_TAG_GLIST:
case GI_TYPE_TAG_GSLIST:
case GI_TYPE_TAG_GHASH:
case GI_TYPE_TAG_ERROR:
return arg->v_pointer;
case GI_TYPE_TAG_INT64:
case GI_TYPE_TAG_UINT64:
case GI_TYPE_TAG_FLOAT:
case GI_TYPE_TAG_DOUBLE:
default:
g_critical ("Unsupported storage type for pointer-stuffing: %s",
gi_type_tag_to_string (storage_type));
return arg->v_pointer;
}
}
/**
* gi_type_info_hash_pointer_from_argument:
* @info: a #GITypeInfo
* @arg: a [struct@GIRepository.Argument] with the value to stuff into a pointer
*
* Convert a [type@GIRepository.Argument] to data pointer for use in a GLib
* data structure.
*
* GLib data structures, such as [type@GLib.List], [type@GLib.SList], and
* [type@GLib.HashTable], all store data pointers.
*
* In the case where the list or hash table is storing single types rather than
* structs, these data pointers may have values stuffed into them via macros
* such as `GPOINTER_TO_INT`.
*
* Use this function to ensure that all values are correctly stuffed into
* pointers, regardless of the machines architecture or endianness.
*
* This function returns a pointer stuffed with the appropriate field of @arg,
* depending on the storage type of @info.
*
* Returns: A stuffed pointer, that can be stored in a [struct@GLib.HashTable],
* for example
* Since: 2.80
*/
void *
gi_type_info_hash_pointer_from_argument (GITypeInfo *info,
GIArgument *arg)
{
GITypeTag storage_type = gi_type_info_get_storage_type (info);
return gi_type_tag_hash_pointer_from_argument (storage_type, arg);
}
void
gi_type_info_class_init (gpointer g_class,
gpointer class_data)
{
GIBaseInfoClass *info_class = g_class;
info_class->info_type = GI_INFO_TYPE_TYPE;
}