glib/glib/tests/sequence.c

1403 lines
37 KiB
C
Raw Normal View History

#include <stdio.h>
#include <glib.h>
#include <stdlib.h>
/* Keep this in sync with gsequence.c !!! */
typedef struct _GSequenceNode GSequenceNode;
struct _GSequence
{
GSequenceNode * end_node;
GDestroyNotify data_destroy_notify;
gboolean access_prohibited;
GSequence * real_sequence;
};
struct _GSequenceNode
{
gsequence: make treap priorities more random to avoid worst-case scenarios Previously, priority was not randomly generated and was instead derived from `GSequenceNode*` pointer value. As a result, when a `GSequence` was freed and another was created, the nodes were returned to memory allocator in such order that allocating them again caused various performance problems in treap. To my understanding, the problem develops like this : 1) Initially, memory allocator makes some nodes 2) For each node, priority is derived from pointer alone. Due to the hash function, initially the priorities are reasonably randomly distributed. 3) `GSequence` moves inserted nodes around to satisfy treap property. The priority for node must be >= than priorities of its children 4) When `GSequence` is freed, it frees nodes in a new order. It finds root node and then recursively frees left/right children. Due to (3), hashes of freed nodes become partially ordered. Note that this doesn't depend on choice of hash function. 5) Memory allocator will typically add freed chunks to free list. This means that it will reallocate nodes in same or inverse order. 6) This results in order of hashes being more and more non-random. 7) This order happens to be increasingly anti-optimal. That is, `GSequence` needs more `node_rotate` to maintain treap. This also causes the tree to become more and more unbalanced. The problem becomes worse with each iteration. The solution is to use additional noise to maintain reasonable randomness. This prevents "poisoning" the memory allocator. On top of that, this patch somehow decreases average tree's height, which is good because it speeds up various operations. I can't quite explain why the height decreases with new code, probably the properties of old hash function didn't quite match the needs of treap? My averaged results for tree height with different sequence lengths: Items | before| after | --------+-------+---------------+ 2 | 2,69 | 2,67 -00,74% | 4 | 3,71 | 3,80 +02,43% | 8 | 5,30 | 5,34 +00,75% | 16 | 7,45 | 7,22 -03,09% | 32 | 10,05 | 9,38 -06,67% | 64 | 12,97 | 11,72 -09,64% | 128 | 16,01 | 14,20 -11,31% | 256 | 19,11 | 16,77 -12,24% | 512 | 22,03 | 19,39 -11,98% | 1024 | 25,29 | 22,03 -12,89% | 2048 | 28,43 | 24,82 -12,70% | 4096 | 31,11 | 27,52 -11,54% | 8192 | 34,31 | 30,30 -11,69% | 16384 | 37,40 | 32,81 -12,27% | 32768 | 40,40 | 35,84 -11,29% | 65536 | 43,00 | 38,24 -11,07% | 131072 | 45,50 | 40,83 -10,26% | 262144 | 48,40 | 43,00 -11,16% | 524288 | 52,40 | 46,80 -10,69% | The memory cost of the patch is zero on 64-bit, because the new field uses the alignment hole between two other fields. Note: priorities can sometimes have collisions. This is fine, because treap allows equal priorities, but these will gradually decrease performance. The hash function that was used previously has just one collision on 0xbfff7fff in 32-bit space, but such pointer will not occur because `g_slice_alloc()` always aligns to sizeof(void*). However, in 64-bit space the old hash function had collisions anyway, because it only uses lower 32 bits of pointer. Closes #2468
2021-08-24 00:06:55 +03:00
gint n_nodes;
guint32 priority;
GSequenceNode * parent;
GSequenceNode * left;
GSequenceNode * right;
gpointer data;
};
static guint
get_priority (GSequenceNode *node)
{
gsequence: make treap priorities more random to avoid worst-case scenarios Previously, priority was not randomly generated and was instead derived from `GSequenceNode*` pointer value. As a result, when a `GSequence` was freed and another was created, the nodes were returned to memory allocator in such order that allocating them again caused various performance problems in treap. To my understanding, the problem develops like this : 1) Initially, memory allocator makes some nodes 2) For each node, priority is derived from pointer alone. Due to the hash function, initially the priorities are reasonably randomly distributed. 3) `GSequence` moves inserted nodes around to satisfy treap property. The priority for node must be >= than priorities of its children 4) When `GSequence` is freed, it frees nodes in a new order. It finds root node and then recursively frees left/right children. Due to (3), hashes of freed nodes become partially ordered. Note that this doesn't depend on choice of hash function. 5) Memory allocator will typically add freed chunks to free list. This means that it will reallocate nodes in same or inverse order. 6) This results in order of hashes being more and more non-random. 7) This order happens to be increasingly anti-optimal. That is, `GSequence` needs more `node_rotate` to maintain treap. This also causes the tree to become more and more unbalanced. The problem becomes worse with each iteration. The solution is to use additional noise to maintain reasonable randomness. This prevents "poisoning" the memory allocator. On top of that, this patch somehow decreases average tree's height, which is good because it speeds up various operations. I can't quite explain why the height decreases with new code, probably the properties of old hash function didn't quite match the needs of treap? My averaged results for tree height with different sequence lengths: Items | before| after | --------+-------+---------------+ 2 | 2,69 | 2,67 -00,74% | 4 | 3,71 | 3,80 +02,43% | 8 | 5,30 | 5,34 +00,75% | 16 | 7,45 | 7,22 -03,09% | 32 | 10,05 | 9,38 -06,67% | 64 | 12,97 | 11,72 -09,64% | 128 | 16,01 | 14,20 -11,31% | 256 | 19,11 | 16,77 -12,24% | 512 | 22,03 | 19,39 -11,98% | 1024 | 25,29 | 22,03 -12,89% | 2048 | 28,43 | 24,82 -12,70% | 4096 | 31,11 | 27,52 -11,54% | 8192 | 34,31 | 30,30 -11,69% | 16384 | 37,40 | 32,81 -12,27% | 32768 | 40,40 | 35,84 -11,29% | 65536 | 43,00 | 38,24 -11,07% | 131072 | 45,50 | 40,83 -10,26% | 262144 | 48,40 | 43,00 -11,16% | 524288 | 52,40 | 46,80 -10,69% | The memory cost of the patch is zero on 64-bit, because the new field uses the alignment hole between two other fields. Note: priorities can sometimes have collisions. This is fine, because treap allows equal priorities, but these will gradually decrease performance. The hash function that was used previously has just one collision on 0xbfff7fff in 32-bit space, but such pointer will not occur because `g_slice_alloc()` always aligns to sizeof(void*). However, in 64-bit space the old hash function had collisions anyway, because it only uses lower 32 bits of pointer. Closes #2468
2021-08-24 00:06:55 +03:00
guint key = node->priority;
gsequence: make treap priorities more random to avoid worst-case scenarios Previously, priority was not randomly generated and was instead derived from `GSequenceNode*` pointer value. As a result, when a `GSequence` was freed and another was created, the nodes were returned to memory allocator in such order that allocating them again caused various performance problems in treap. To my understanding, the problem develops like this : 1) Initially, memory allocator makes some nodes 2) For each node, priority is derived from pointer alone. Due to the hash function, initially the priorities are reasonably randomly distributed. 3) `GSequence` moves inserted nodes around to satisfy treap property. The priority for node must be >= than priorities of its children 4) When `GSequence` is freed, it frees nodes in a new order. It finds root node and then recursively frees left/right children. Due to (3), hashes of freed nodes become partially ordered. Note that this doesn't depend on choice of hash function. 5) Memory allocator will typically add freed chunks to free list. This means that it will reallocate nodes in same or inverse order. 6) This results in order of hashes being more and more non-random. 7) This order happens to be increasingly anti-optimal. That is, `GSequence` needs more `node_rotate` to maintain treap. This also causes the tree to become more and more unbalanced. The problem becomes worse with each iteration. The solution is to use additional noise to maintain reasonable randomness. This prevents "poisoning" the memory allocator. On top of that, this patch somehow decreases average tree's height, which is good because it speeds up various operations. I can't quite explain why the height decreases with new code, probably the properties of old hash function didn't quite match the needs of treap? My averaged results for tree height with different sequence lengths: Items | before| after | --------+-------+---------------+ 2 | 2,69 | 2,67 -00,74% | 4 | 3,71 | 3,80 +02,43% | 8 | 5,30 | 5,34 +00,75% | 16 | 7,45 | 7,22 -03,09% | 32 | 10,05 | 9,38 -06,67% | 64 | 12,97 | 11,72 -09,64% | 128 | 16,01 | 14,20 -11,31% | 256 | 19,11 | 16,77 -12,24% | 512 | 22,03 | 19,39 -11,98% | 1024 | 25,29 | 22,03 -12,89% | 2048 | 28,43 | 24,82 -12,70% | 4096 | 31,11 | 27,52 -11,54% | 8192 | 34,31 | 30,30 -11,69% | 16384 | 37,40 | 32,81 -12,27% | 32768 | 40,40 | 35,84 -11,29% | 65536 | 43,00 | 38,24 -11,07% | 131072 | 45,50 | 40,83 -10,26% | 262144 | 48,40 | 43,00 -11,16% | 524288 | 52,40 | 46,80 -10,69% | The memory cost of the patch is zero on 64-bit, because the new field uses the alignment hole between two other fields. Note: priorities can sometimes have collisions. This is fine, because treap allows equal priorities, but these will gradually decrease performance. The hash function that was used previously has just one collision on 0xbfff7fff in 32-bit space, but such pointer will not occur because `g_slice_alloc()` always aligns to sizeof(void*). However, in 64-bit space the old hash function had collisions anyway, because it only uses lower 32 bits of pointer. Closes #2468
2021-08-24 00:06:55 +03:00
/* We rely on 0 being less than all other priorities */
return key? key : 1;
}
static void
check_node (GSequenceNode *node)
{
if (node)
{
g_assert (node->parent != node);
if (node->parent)
g_assert (node->parent->left == node || node->parent->right == node);
g_assert (node->n_nodes == 1 + (node->left ? node->left->n_nodes : 0) + (node->right ? node->right->n_nodes : 0));
if (node->left)
g_assert (get_priority (node) >= get_priority (node->left));
if (node->right)
g_assert (get_priority (node) >= get_priority (node->right));
check_node (node->left);
check_node (node->right);
}
}
static void
g_sequence_check (GSequence *seq)
{
GSequenceNode *node = seq->end_node;
while (node->parent)
node = node->parent;
check_node (node);
while (node->right)
node = node->right;
g_assert (seq->end_node == node);
g_assert (node->data == seq);
}
enum {
NEW, FREE, GET_LENGTH, FOREACH, FOREACH_RANGE, SORT, SORT_ITER,
/* Getting iters */
GET_BEGIN_ITER, GET_END_ITER, GET_ITER_AT_POS, APPEND, PREPEND,
INSERT_BEFORE, MOVE, SWAP, INSERT_SORTED, INSERT_SORTED_ITER, SORT_CHANGED,
SORT_CHANGED_ITER, REMOVE, REMOVE_RANGE, MOVE_RANGE, SEARCH, SEARCH_ITER,
LOOKUP, LOOKUP_ITER,
/* dereferencing */
GET, SET,
/* operations on GSequenceIter * */
ITER_IS_BEGIN, ITER_IS_END, ITER_NEXT, ITER_PREV, ITER_GET_POSITION,
ITER_MOVE, ITER_GET_SEQUENCE,
/* search */
ITER_COMPARE, RANGE_GET_MIDPOINT,
N_OPS
};
typedef struct SequenceInfo
{
GQueue * queue;
GSequence * sequence;
Fix several signedness warnings in glib/tests/sequence.c glib/tests/sequence.c: In function ‘check_integrity’: glib/tests/sequence.c:139:27: error: comparison of integer expressions of different signedness: ‘int’ and ‘guint’ {aka ‘unsigned int’} 139 | g_assert (info->n_items == g_queue_get_length (info->queue)); | ^~ glib/gmacros.h:941:25: note: in definition of macro ‘G_LIKELY’ 941 | #define G_LIKELY(expr) (expr) | ^~~~ glib/tests/sequence.c:139:3: note: in expansion of macro ‘g_assert’ 139 | g_assert (info->n_items == g_queue_get_length (info->queue)); | ^~~~~~~~ glib/tests/sequence.c:157:27: error: comparison of integer expressions of different signedness: ‘int’ and ‘guint’ {aka ‘unsigned int’} 157 | g_assert (info->n_items == g_queue_get_length (info->queue)); | ^~ glib/gmacros.h:941:25: note: in definition of macro ‘G_LIKELY’ 941 | #define G_LIKELY(expr) (expr) | ^~~~ glib/tests/sequence.c:157:3: note: in expansion of macro ‘g_assert’ 157 | g_assert (info->n_items == g_queue_get_length (info->queue)); | ^~~~~~~~ glib/tests/sequence.c: In function ‘run_random_tests’: glib/tests/sequence.c:554:55: error: comparison of integer expressions of different signedness: ‘guint’ {aka ‘unsigned int’} and ‘gint’ {aka ‘int’} 554 | g_assert (g_queue_get_length (seq->queue) == g_sequence_get_length (seq->sequence)); | ^~ glib/gmacros.h:941:25: note: in definition of macro ‘G_LIKELY’ 941 | #define G_LIKELY(expr) (expr) | ^~~~ glib/tests/sequence.c:554:13: note: in expansion of macro ‘g_assert’ 554 | g_assert (g_queue_get_length (seq->queue) == g_sequence_get_length (seq->sequence)); | ^~~~~~~~ glib/tests/sequence.c: In function ‘main’: glib/tests/sequence.c:1404:17: error: comparison of integer expressions of different signedness: ‘gint’ {aka ‘int’} and ‘long unsigned int’ 1404 | for (i = 0; i < G_N_ELEMENTS (seeds); ++i) | ^
2020-11-14 13:40:19 +01:00
guint n_items;
} SequenceInfo;
typedef struct
{
SequenceInfo *seq;
int number;
} Item;
void g_sequence_check (GSequence *sequence);
static Item *
fix_pointer (gconstpointer data)
{
return (Item *)((char *)data - 1);
}
static Item *
get_item (GSequenceIter *iter)
{
return fix_pointer (g_sequence_get (iter));
}
static void
check_integrity (SequenceInfo *info)
{
GList *list;
GSequenceIter *iter;
int i;
g_sequence_check (info->sequence);
#if 0
if (g_sequence_get_length (info->sequence) != info->n_items)
g_printerr ("%d %d\n",
g_sequence_get_length (info->sequence), info->n_items);
#endif
g_assert (info->n_items == g_queue_get_length (info->queue));
Fix several signedness warnings in glib/tests/sequence.c glib/tests/sequence.c: In function ‘check_integrity’: glib/tests/sequence.c:139:27: error: comparison of integer expressions of different signedness: ‘int’ and ‘guint’ {aka ‘unsigned int’} 139 | g_assert (info->n_items == g_queue_get_length (info->queue)); | ^~ glib/gmacros.h:941:25: note: in definition of macro ‘G_LIKELY’ 941 | #define G_LIKELY(expr) (expr) | ^~~~ glib/tests/sequence.c:139:3: note: in expansion of macro ‘g_assert’ 139 | g_assert (info->n_items == g_queue_get_length (info->queue)); | ^~~~~~~~ glib/tests/sequence.c:157:27: error: comparison of integer expressions of different signedness: ‘int’ and ‘guint’ {aka ‘unsigned int’} 157 | g_assert (info->n_items == g_queue_get_length (info->queue)); | ^~ glib/gmacros.h:941:25: note: in definition of macro ‘G_LIKELY’ 941 | #define G_LIKELY(expr) (expr) | ^~~~ glib/tests/sequence.c:157:3: note: in expansion of macro ‘g_assert’ 157 | g_assert (info->n_items == g_queue_get_length (info->queue)); | ^~~~~~~~ glib/tests/sequence.c: In function ‘run_random_tests’: glib/tests/sequence.c:554:55: error: comparison of integer expressions of different signedness: ‘guint’ {aka ‘unsigned int’} and ‘gint’ {aka ‘int’} 554 | g_assert (g_queue_get_length (seq->queue) == g_sequence_get_length (seq->sequence)); | ^~ glib/gmacros.h:941:25: note: in definition of macro ‘G_LIKELY’ 941 | #define G_LIKELY(expr) (expr) | ^~~~ glib/tests/sequence.c:554:13: note: in expansion of macro ‘g_assert’ 554 | g_assert (g_queue_get_length (seq->queue) == g_sequence_get_length (seq->sequence)); | ^~~~~~~~ glib/tests/sequence.c: In function ‘main’: glib/tests/sequence.c:1404:17: error: comparison of integer expressions of different signedness: ‘gint’ {aka ‘int’} and ‘long unsigned int’ 1404 | for (i = 0; i < G_N_ELEMENTS (seeds); ++i) | ^
2020-11-14 13:40:19 +01:00
g_assert ((guint) g_sequence_get_length (info->sequence) == info->n_items);
iter = g_sequence_get_begin_iter (info->sequence);
list = info->queue->head;
i = 0;
while (iter != g_sequence_get_end_iter (info->sequence))
{
Item *item;
g_assert (list->data == iter);
item = get_item (list->data);
g_assert (item->seq == info);
iter = g_sequence_iter_next (iter);
list = list->next;
i++;
}
g_assert (info->n_items == g_queue_get_length (info->queue));
Fix several signedness warnings in glib/tests/sequence.c glib/tests/sequence.c: In function ‘check_integrity’: glib/tests/sequence.c:139:27: error: comparison of integer expressions of different signedness: ‘int’ and ‘guint’ {aka ‘unsigned int’} 139 | g_assert (info->n_items == g_queue_get_length (info->queue)); | ^~ glib/gmacros.h:941:25: note: in definition of macro ‘G_LIKELY’ 941 | #define G_LIKELY(expr) (expr) | ^~~~ glib/tests/sequence.c:139:3: note: in expansion of macro ‘g_assert’ 139 | g_assert (info->n_items == g_queue_get_length (info->queue)); | ^~~~~~~~ glib/tests/sequence.c:157:27: error: comparison of integer expressions of different signedness: ‘int’ and ‘guint’ {aka ‘unsigned int’} 157 | g_assert (info->n_items == g_queue_get_length (info->queue)); | ^~ glib/gmacros.h:941:25: note: in definition of macro ‘G_LIKELY’ 941 | #define G_LIKELY(expr) (expr) | ^~~~ glib/tests/sequence.c:157:3: note: in expansion of macro ‘g_assert’ 157 | g_assert (info->n_items == g_queue_get_length (info->queue)); | ^~~~~~~~ glib/tests/sequence.c: In function ‘run_random_tests’: glib/tests/sequence.c:554:55: error: comparison of integer expressions of different signedness: ‘guint’ {aka ‘unsigned int’} and ‘gint’ {aka ‘int’} 554 | g_assert (g_queue_get_length (seq->queue) == g_sequence_get_length (seq->sequence)); | ^~ glib/gmacros.h:941:25: note: in definition of macro ‘G_LIKELY’ 941 | #define G_LIKELY(expr) (expr) | ^~~~ glib/tests/sequence.c:554:13: note: in expansion of macro ‘g_assert’ 554 | g_assert (g_queue_get_length (seq->queue) == g_sequence_get_length (seq->sequence)); | ^~~~~~~~ glib/tests/sequence.c: In function ‘main’: glib/tests/sequence.c:1404:17: error: comparison of integer expressions of different signedness: ‘gint’ {aka ‘int’} and ‘long unsigned int’ 1404 | for (i = 0; i < G_N_ELEMENTS (seeds); ++i) | ^
2020-11-14 13:40:19 +01:00
g_assert ((guint) g_sequence_get_length (info->sequence) == info->n_items);
}
static gpointer
new_item (SequenceInfo *seq)
{
Item *item = g_new (Item, 1);
seq->n_items++;
item->seq = seq;
item->number = g_random_int ();
/* There have been bugs in the past where the GSequence would
* dereference the user pointers. This will make sure such
* behavior causes crashes
*/
return ((char *)item + 1);
}
static void
free_item (gpointer data)
{
Item *item = fix_pointer (data);
item->seq->n_items--;
g_free (item);
}
static void
seq_foreach (gpointer data,
gpointer user_data)
{
Item *item = fix_pointer (data);
GList **link = user_data;
GSequenceIter *iter;
g_assert (*link != NULL);
iter = (*link)->data;
g_assert (get_item (iter) == item);
item->number = g_random_int();
*link = (*link)->next;
}
static gint
simple_items_cmp (gconstpointer a,
gconstpointer b,
gpointer data)
{
const Item *item_a = fix_pointer (a);
const Item *item_b = fix_pointer (b);
if (item_a->number > item_b->number)
return +1;
else if (item_a->number < item_b->number)
return -1;
else
return 0;
}
static gint
simple_iters_cmp (gconstpointer a,
gconstpointer b,
gpointer data)
{
GSequence *seq = data;
GSequenceIter *iter_a = (GSequenceIter *)a;
GSequenceIter *iter_b = (GSequenceIter *)b;
gpointer item_a = g_sequence_get (iter_a);
gpointer item_b = g_sequence_get (iter_b);
if (seq)
{
g_assert (g_sequence_iter_get_sequence (iter_a) == seq);
g_assert (g_sequence_iter_get_sequence (iter_b) == seq);
}
return simple_items_cmp (item_a, item_b, data);
}
static gint
compare_items (gconstpointer a,
gconstpointer b,
gpointer data)
{
const Item *item_a = fix_pointer (a);
const Item *item_b = fix_pointer (b);
if (item_a->number < item_b->number)
{
return -1;
}
else if (item_a->number == item_b->number)
{
/* Force an arbitrary order on the items
* We have to do this, since g_queue_insert_sorted() and
* g_sequence_insert_sorted() do not agree on the exact
* position the item is inserted if the new item is
* equal to an existing one.
*/
if (item_a < item_b)
return -1;
else if (item_a == item_b)
return 0;
else
return 1;
}
else
{
return 1;
}
}
static void
check_sorted (SequenceInfo *info)
{
GList *list;
int last;
GSequenceIter *last_iter;
check_integrity (info);
last = G_MININT;
last_iter = NULL;
for (list = info->queue->head; list != NULL; list = list->next)
{
GSequenceIter *iter = list->data;
Item *item = get_item (iter);
g_assert (item->number >= last);
/* Check that the ordering is the same as that of the queue,
* ie. that the sort is stable
*/
if (last_iter)
g_assert (iter == g_sequence_iter_next (last_iter));
last = item->number;
last_iter = iter;
}
}
static gint
compare_iters (gconstpointer a,
gconstpointer b,
gpointer data)
{
GSequence *seq = data;
GSequenceIter *iter_a = (GSequenceIter *)a;
GSequenceIter *iter_b = (GSequenceIter *)b;
/* compare_items() will fix up the pointers */
Item *item_a = g_sequence_get (iter_a);
Item *item_b = g_sequence_get (iter_b);
if (seq)
{
g_assert (g_sequence_iter_get_sequence (iter_a) == seq);
g_assert (g_sequence_iter_get_sequence (iter_b) == seq);
}
return compare_items (item_a, item_b, data);
}
/* A version of g_queue_link_index() that treats NULL as just
* beyond the queue
*/
static int
queue_link_index (SequenceInfo *seq, GList *link)
{
if (link)
return g_queue_link_index (seq->queue, link);
else
return g_queue_get_length (seq->queue);
}
static void
get_random_range (SequenceInfo *seq,
GSequenceIter **begin_iter,
GSequenceIter **end_iter,
GList **begin_link,
GList **end_link)
{
int length = g_queue_get_length (seq->queue);
int b = g_random_int_range (0, length + 1);
int e = g_random_int_range (b, length + 1);
g_assert (length == g_sequence_get_length (seq->sequence));
if (begin_iter)
*begin_iter = g_sequence_get_iter_at_pos (seq->sequence, b);
if (end_iter)
*end_iter = g_sequence_get_iter_at_pos (seq->sequence, e);
if (begin_link)
*begin_link = g_queue_peek_nth_link (seq->queue, b);
if (end_link)
*end_link = g_queue_peek_nth_link (seq->queue, e);
if (begin_iter && begin_link)
{
g_assert (
queue_link_index (seq, *begin_link) ==
g_sequence_iter_get_position (*begin_iter));
}
if (end_iter && end_link)
{
g_assert (
queue_link_index (seq, *end_link) ==
g_sequence_iter_get_position (*end_iter));
}
}
static gint
get_random_position (SequenceInfo *seq)
{
int length = g_queue_get_length (seq->queue);
g_assert (length == g_sequence_get_length (seq->sequence));
return g_random_int_range (-2, length + 5);
}
static GSequenceIter *
get_random_iter (SequenceInfo *seq,
GList **link)
{
GSequenceIter *iter;
int pos = get_random_position (seq);
if (link)
*link = g_queue_peek_nth_link (seq->queue, pos);
iter = g_sequence_get_iter_at_pos (seq->sequence, pos);
if (link)
g_assert (queue_link_index (seq, *link) == g_sequence_iter_get_position (iter));
return iter;
}
static void
dump_info (SequenceInfo *seq)
{
#if 0
GSequenceIter *iter;
GList *list;
iter = g_sequence_get_begin_iter (seq->sequence);
list = seq->queue->head;
while (iter != g_sequence_get_end_iter (seq->sequence))
{
Item *item = get_item (iter);
g_printerr ("%p %p %d\n", list->data, iter, item->number);
iter = g_sequence_iter_next (iter);
list = list->next;
}
#endif
}
static void
run_random_tests (gconstpointer d)
{
guint32 seed = GPOINTER_TO_UINT (d);
#define N_ITERATIONS 60000
#define N_SEQUENCES 8
#define N_TIMES 24
SequenceInfo sequences[N_SEQUENCES];
int k;
#if 0
g_printerr (" seed: %u\n", seed);
#endif
g_random_set_seed (seed);
for (k = 0; k < N_SEQUENCES; ++k)
{
sequences[k].queue = g_queue_new ();
sequences[k].sequence = g_sequence_new (free_item);
sequences[k].n_items = 0;
}
#define RANDOM_SEQUENCE() &(sequences[g_random_int_range (0, N_SEQUENCES)])
for (k = 0; k < N_ITERATIONS; ++k)
{
int i;
SequenceInfo *seq = RANDOM_SEQUENCE();
int op = g_random_int_range (0, N_OPS);
#if 0
g_printerr ("%d on %p\n", op, seq);
#endif
switch (op)
{
case NEW:
case FREE:
{
g_queue_free (seq->queue);
g_sequence_free (seq->sequence);
g_assert (seq->n_items == 0);
seq->queue = g_queue_new ();
seq->sequence = g_sequence_new (free_item);
check_integrity (seq);
}
break;
case GET_LENGTH:
{
int slen = g_sequence_get_length (seq->sequence);
int qlen = g_queue_get_length (seq->queue);
g_assert (slen == qlen);
}
break;
case FOREACH:
{
GList *link = seq->queue->head;
g_sequence_foreach (seq->sequence, seq_foreach, &link);
g_assert (link == NULL);
}
break;
case FOREACH_RANGE:
{
GSequenceIter *begin_iter, *end_iter;
GList *begin_link, *end_link;
get_random_range (seq, &begin_iter, &end_iter, &begin_link, &end_link);
check_integrity (seq);
g_sequence_foreach_range (begin_iter, end_iter, seq_foreach, &begin_link);
g_assert (begin_link == end_link);
}
break;
case SORT:
{
dump_info (seq);
g_sequence_sort (seq->sequence, compare_items, NULL);
g_queue_sort (seq->queue, compare_iters, NULL);
check_sorted (seq);
dump_info (seq);
}
break;
case SORT_ITER:
{
check_integrity (seq);
g_sequence_sort_iter (seq->sequence,
(GSequenceIterCompareFunc)compare_iters, seq->sequence);
g_queue_sort (seq->queue, compare_iters, NULL);
check_sorted (seq);
}
break;
/* Getting iters */
case GET_END_ITER:
case GET_BEGIN_ITER:
{
GSequenceIter *begin_iter;
GSequenceIter *end_iter;
GSequenceIter *penultimate_iter;
begin_iter = g_sequence_get_begin_iter (seq->sequence);
check_integrity (seq);
end_iter = g_sequence_get_end_iter (seq->sequence);
check_integrity (seq);
penultimate_iter = g_sequence_iter_prev (end_iter);
check_integrity (seq);
if (g_sequence_get_length (seq->sequence) > 0)
{
g_assert (seq->queue->head);
g_assert (seq->queue->head->data == begin_iter);
g_assert (seq->queue->tail);
g_assert (seq->queue->tail->data == penultimate_iter);
}
else
{
g_assert (penultimate_iter == end_iter);
g_assert (begin_iter == end_iter);
g_assert (penultimate_iter == begin_iter);
g_assert (seq->queue->head == NULL);
g_assert (seq->queue->tail == NULL);
}
}
break;
case GET_ITER_AT_POS:
{
Fix several signedness warnings in glib/tests/sequence.c glib/tests/sequence.c: In function ‘check_integrity’: glib/tests/sequence.c:139:27: error: comparison of integer expressions of different signedness: ‘int’ and ‘guint’ {aka ‘unsigned int’} 139 | g_assert (info->n_items == g_queue_get_length (info->queue)); | ^~ glib/gmacros.h:941:25: note: in definition of macro ‘G_LIKELY’ 941 | #define G_LIKELY(expr) (expr) | ^~~~ glib/tests/sequence.c:139:3: note: in expansion of macro ‘g_assert’ 139 | g_assert (info->n_items == g_queue_get_length (info->queue)); | ^~~~~~~~ glib/tests/sequence.c:157:27: error: comparison of integer expressions of different signedness: ‘int’ and ‘guint’ {aka ‘unsigned int’} 157 | g_assert (info->n_items == g_queue_get_length (info->queue)); | ^~ glib/gmacros.h:941:25: note: in definition of macro ‘G_LIKELY’ 941 | #define G_LIKELY(expr) (expr) | ^~~~ glib/tests/sequence.c:157:3: note: in expansion of macro ‘g_assert’ 157 | g_assert (info->n_items == g_queue_get_length (info->queue)); | ^~~~~~~~ glib/tests/sequence.c: In function ‘run_random_tests’: glib/tests/sequence.c:554:55: error: comparison of integer expressions of different signedness: ‘guint’ {aka ‘unsigned int’} and ‘gint’ {aka ‘int’} 554 | g_assert (g_queue_get_length (seq->queue) == g_sequence_get_length (seq->sequence)); | ^~ glib/gmacros.h:941:25: note: in definition of macro ‘G_LIKELY’ 941 | #define G_LIKELY(expr) (expr) | ^~~~ glib/tests/sequence.c:554:13: note: in expansion of macro ‘g_assert’ 554 | g_assert (g_queue_get_length (seq->queue) == g_sequence_get_length (seq->sequence)); | ^~~~~~~~ glib/tests/sequence.c: In function ‘main’: glib/tests/sequence.c:1404:17: error: comparison of integer expressions of different signedness: ‘gint’ {aka ‘int’} and ‘long unsigned int’ 1404 | for (i = 0; i < G_N_ELEMENTS (seeds); ++i) | ^
2020-11-14 13:40:19 +01:00
g_assert (g_queue_get_length (seq->queue) == (guint) g_sequence_get_length (seq->sequence));
for (i = 0; i < 10; ++i)
{
int pos = get_random_position (seq);
GSequenceIter *iter = g_sequence_get_iter_at_pos (seq->sequence, pos);
GList *link = g_queue_peek_nth_link (seq->queue, pos);
check_integrity (seq);
if (pos >= g_sequence_get_length (seq->sequence) || pos < 0)
{
g_assert (iter == g_sequence_get_end_iter (seq->sequence));
g_assert (link == NULL);
}
else
{
g_assert (link);
g_assert (link->data == iter);
}
}
}
break;
case APPEND:
{
for (i = 0; i < 10; ++i)
{
GSequenceIter *iter = g_sequence_append (seq->sequence, new_item (seq));
g_queue_push_tail (seq->queue, iter);
}
}
break;
case PREPEND:
{
for (i = 0; i < 10; ++i)
{
GSequenceIter *iter = g_sequence_prepend (seq->sequence, new_item (seq));
g_queue_push_head (seq->queue, iter);
}
}
break;
case INSERT_BEFORE:
{
for (i = 0; i < 10; ++i)
{
GList *link;
GSequenceIter *iter = get_random_iter (seq, &link);
GSequenceIter *new_iter;
check_integrity (seq);
new_iter = g_sequence_insert_before (iter, new_item (seq));
g_queue_insert_before (seq->queue, link, new_iter);
}
}
break;
case MOVE:
{
GList *link1, *link2;
SequenceInfo *seq1 = RANDOM_SEQUENCE();
SequenceInfo *seq2 = RANDOM_SEQUENCE();
GSequenceIter *iter1 = get_random_iter (seq1, &link1);
GSequenceIter *iter2 = get_random_iter (seq2, &link2);
if (!g_sequence_iter_is_end (iter1))
{
g_sequence_move (iter1, iter2);
if (!link2)
g_assert (g_sequence_iter_is_end (iter2));
g_queue_insert_before (seq2->queue, link2, link1->data);
g_queue_delete_link (seq1->queue, link1);
get_item (iter1)->seq = seq2;
seq1->n_items--;
seq2->n_items++;
}
check_integrity (seq);
iter1 = get_random_iter (seq, NULL);
/* Moving an iter to itself should have no effect */
if (!g_sequence_iter_is_end (iter1))
g_sequence_move (iter1, iter1);
}
break;
case SWAP:
{
GList *link1, *link2;
SequenceInfo *seq1 = RANDOM_SEQUENCE();
SequenceInfo *seq2 = RANDOM_SEQUENCE();
GSequenceIter *iter1 = get_random_iter (seq1, &link1);
GSequenceIter *iter2 = get_random_iter (seq2, &link2);
if (!g_sequence_iter_is_end (iter1) &&
!g_sequence_iter_is_end (iter2))
{
gpointer tmp;
g_sequence_swap (iter1, iter2);
get_item (iter1)->seq = seq2;
get_item (iter2)->seq = seq1;
tmp = link1->data;
link1->data = link2->data;
link2->data = tmp;
}
}
break;
case INSERT_SORTED:
{
dump_info (seq);
g_sequence_sort (seq->sequence, compare_items, NULL);
g_queue_sort (seq->queue, compare_iters, NULL);
check_sorted (seq);
for (i = 0; i < N_TIMES; ++i)
{
GSequenceIter *iter =
g_sequence_insert_sorted (seq->sequence, new_item(seq), compare_items, NULL);
g_queue_insert_sorted (seq->queue, iter, compare_iters, NULL);
}
check_sorted (seq);
dump_info (seq);
}
break;
case INSERT_SORTED_ITER:
{
dump_info (seq);
g_sequence_sort (seq->sequence, compare_items, NULL);
g_queue_sort (seq->queue, compare_iters, NULL);
check_sorted (seq);
for (i = 0; i < N_TIMES; ++i)
{
GSequenceIter *iter;
iter = g_sequence_insert_sorted_iter (seq->sequence,
new_item (seq),
(GSequenceIterCompareFunc)compare_iters,
seq->sequence);
g_queue_insert_sorted (seq->queue, iter, compare_iters, NULL);
}
check_sorted (seq);
dump_info (seq);
}
break;
case SORT_CHANGED:
{
g_sequence_sort (seq->sequence, compare_items, NULL);
g_queue_sort (seq->queue, compare_iters, NULL);
check_sorted (seq);
for (i = 0; i < N_TIMES; ++i)
{
GList *link;
GSequenceIter *iter = get_random_iter (seq, &link);
if (!g_sequence_iter_is_end (iter))
{
g_sequence_set (iter, new_item (seq));
g_sequence_sort_changed (iter, compare_items, NULL);
g_queue_delete_link (seq->queue, link);
g_queue_insert_sorted (seq->queue, iter, compare_iters, NULL);
}
check_sorted (seq);
}
}
break;
case SORT_CHANGED_ITER:
{
g_sequence_sort (seq->sequence, compare_items, NULL);
g_queue_sort (seq->queue, compare_iters, NULL);
check_sorted (seq);
for (i = 0; i < N_TIMES; ++i)
{
GList *link;
GSequenceIter *iter = get_random_iter (seq, &link);
if (!g_sequence_iter_is_end (iter))
{
g_sequence_set (iter, new_item (seq));
g_sequence_sort_changed_iter (iter,
(GSequenceIterCompareFunc)compare_iters, seq->sequence);
g_queue_delete_link (seq->queue, link);
g_queue_insert_sorted (seq->queue, iter, compare_iters, NULL);
}
check_sorted (seq);
}
}
break;
case REMOVE:
{
for (i = 0; i < N_TIMES; ++i)
{
GList *link;
GSequenceIter *iter = get_random_iter (seq, &link);
if (!g_sequence_iter_is_end (iter))
{
g_sequence_remove (iter);
g_queue_delete_link (seq->queue, link);
}
}
}
break;
case REMOVE_RANGE:
{
GSequenceIter *begin_iter, *end_iter;
GList *begin_link, *end_link;
GList *list;
get_random_range (seq, &begin_iter, &end_iter, &begin_link, &end_link);
g_sequence_remove_range (begin_iter, end_iter);
list = begin_link;
while (list != end_link)
{
GList *next = list->next;
g_queue_delete_link (seq->queue, list);
list = next;
}
}
break;
case MOVE_RANGE:
{
SequenceInfo *src = RANDOM_SEQUENCE();
SequenceInfo *dst = RANDOM_SEQUENCE();
GSequenceIter *begin_iter, *end_iter;
GList *begin_link, *end_link;
GSequenceIter *dst_iter;
GList *dst_link;
GList *list;
g_assert (src->queue);
g_assert (dst->queue);
get_random_range (src, &begin_iter, &end_iter, &begin_link, &end_link);
dst_iter = get_random_iter (dst, &dst_link);
g_sequence_move_range (dst_iter, begin_iter, end_iter);
if (dst_link == begin_link || (src == dst && dst_link == end_link))
{
check_integrity (src);
check_integrity (dst);
break;
}
if (queue_link_index (src, begin_link) >=
queue_link_index (src, end_link))
{
break;
}
if (src == dst &&
queue_link_index (src, dst_link) >= queue_link_index (src, begin_link) &&
queue_link_index (src, dst_link) <= queue_link_index (src, end_link))
{
break;
}
list = begin_link;
while (list != end_link)
{
GList *next = list->next;
Item *item = get_item (list->data);
g_assert (dst->queue);
g_queue_insert_before (dst->queue, dst_link, list->data);
g_queue_delete_link (src->queue, list);
g_assert (item->seq == src);
src->n_items--;
dst->n_items++;
item->seq = dst;
list = next;
}
}
break;
case SEARCH:
{
Item *item;
GSequenceIter *search_iter;
GSequenceIter *insert_iter;
g_sequence_sort (seq->sequence, compare_items, NULL);
g_queue_sort (seq->queue, compare_iters, NULL);
check_sorted (seq);
item = new_item (seq);
search_iter = g_sequence_search (seq->sequence, item, compare_items, NULL);
insert_iter = g_sequence_insert_sorted (seq->sequence, item, compare_items, NULL);
g_assert (search_iter == g_sequence_iter_next (insert_iter));
g_queue_insert_sorted (seq->queue, insert_iter, compare_iters, NULL);
}
break;
case SEARCH_ITER:
{
Item *item;
GSequenceIter *search_iter;
GSequenceIter *insert_iter;
g_sequence_sort (seq->sequence, compare_items, NULL);
g_queue_sort (seq->queue, compare_iters, NULL);
check_sorted (seq);
item = new_item (seq);
search_iter = g_sequence_search_iter (seq->sequence,
item,
(GSequenceIterCompareFunc)compare_iters, seq->sequence);
insert_iter = g_sequence_insert_sorted (seq->sequence, item, compare_items, NULL);
g_assert (search_iter == g_sequence_iter_next (insert_iter));
g_queue_insert_sorted (seq->queue, insert_iter, compare_iters, NULL);
}
break;
case LOOKUP:
{
Item *item;
GSequenceIter *lookup_iter;
GSequenceIter *insert_iter;
g_sequence_sort (seq->sequence, compare_items, NULL);
g_queue_sort (seq->queue, compare_iters, NULL);
check_sorted (seq);
item = new_item (seq);
insert_iter = g_sequence_insert_sorted (seq->sequence, item, compare_items, NULL);
g_queue_insert_sorted (seq->queue, insert_iter, compare_iters, NULL);
lookup_iter = g_sequence_lookup (seq->sequence, item, simple_items_cmp, NULL);
g_assert (simple_iters_cmp (insert_iter, lookup_iter, NULL) == 0);
}
break;
case LOOKUP_ITER:
{
Item *item;
GSequenceIter *lookup_iter;
GSequenceIter *insert_iter;
g_sequence_sort (seq->sequence, compare_items, NULL);
g_queue_sort (seq->queue, compare_iters, NULL);
check_sorted (seq);
item = new_item (seq);
insert_iter = g_sequence_insert_sorted (seq->sequence, item, compare_items, NULL);
g_queue_insert_sorted (seq->queue, insert_iter, compare_iters, NULL);
lookup_iter = g_sequence_lookup_iter (seq->sequence, item,
(GSequenceIterCompareFunc) simple_iters_cmp, NULL);
g_assert (simple_iters_cmp (insert_iter, lookup_iter, NULL) == 0);
}
break;
/* dereferencing */
case GET:
case SET:
{
GSequenceIter *iter;
GList *link;
iter = get_random_iter (seq, &link);
if (!g_sequence_iter_is_end (iter))
{
Item *item;
check_integrity (seq);
/* Test basic functionality */
item = new_item (seq);
g_sequence_set (iter, item);
g_assert (g_sequence_get (iter) == item);
/* Make sure that existing items are freed */
for (i = 0; i < N_TIMES; ++i)
g_sequence_set (iter, new_item (seq));
check_integrity (seq);
g_sequence_set (iter, new_item (seq));
}
}
break;
/* operations on GSequenceIter * */
case ITER_IS_BEGIN:
{
GSequenceIter *iter;
iter = g_sequence_get_iter_at_pos (seq->sequence, 0);
g_assert (g_sequence_iter_is_begin (iter));
check_integrity (seq);
if (g_sequence_get_length (seq->sequence) > 0)
{
g_assert (!g_sequence_iter_is_begin (g_sequence_get_end_iter (seq->sequence)));
}
else
{
g_assert (g_sequence_iter_is_begin (g_sequence_get_end_iter (seq->sequence)));
}
g_assert (g_sequence_iter_is_begin (g_sequence_get_begin_iter (seq->sequence)));
}
break;
case ITER_IS_END:
{
GSequenceIter *iter;
int len = g_sequence_get_length (seq->sequence);
iter = g_sequence_get_iter_at_pos (seq->sequence, len);
g_assert (g_sequence_iter_is_end (iter));
if (len > 0)
{
g_assert (!g_sequence_iter_is_end (g_sequence_get_begin_iter (seq->sequence)));
}
else
{
g_assert (g_sequence_iter_is_end (g_sequence_get_begin_iter (seq->sequence)));
}
g_assert (g_sequence_iter_is_end (g_sequence_get_end_iter (seq->sequence)));
}
break;
case ITER_NEXT:
{
GSequenceIter *iter1, *iter2, *iter3, *end;
iter1 = g_sequence_append (seq->sequence, new_item (seq));
iter2 = g_sequence_append (seq->sequence, new_item (seq));
iter3 = g_sequence_append (seq->sequence, new_item (seq));
end = g_sequence_get_end_iter (seq->sequence);
g_assert (g_sequence_iter_next (iter1) == iter2);
g_assert (g_sequence_iter_next (iter2) == iter3);
g_assert (g_sequence_iter_next (iter3) == end);
g_assert (g_sequence_iter_next (end) == end);
g_queue_push_tail (seq->queue, iter1);
g_queue_push_tail (seq->queue, iter2);
g_queue_push_tail (seq->queue, iter3);
}
break;
case ITER_PREV:
{
GSequenceIter *iter1, *iter2, *iter3, *begin;
iter1 = g_sequence_prepend (seq->sequence, new_item (seq));
iter2 = g_sequence_prepend (seq->sequence, new_item (seq));
iter3 = g_sequence_prepend (seq->sequence, new_item (seq));
begin = g_sequence_get_begin_iter (seq->sequence);
g_assert (g_sequence_iter_prev (iter1) == iter2);
g_assert (g_sequence_iter_prev (iter2) == iter3);
g_assert (iter3 == begin);
g_assert (g_sequence_iter_prev (iter3) == begin);
g_assert (g_sequence_iter_prev (begin) == begin);
g_queue_push_head (seq->queue, iter1);
g_queue_push_head (seq->queue, iter2);
g_queue_push_head (seq->queue, iter3);
}
break;
case ITER_GET_POSITION:
{
GList *link;
GSequenceIter *iter = get_random_iter (seq, &link);
g_assert (g_sequence_iter_get_position (iter) ==
queue_link_index (seq, link));
}
break;
case ITER_MOVE:
{
int len = g_sequence_get_length (seq->sequence);
GSequenceIter *iter;
int pos;
iter = get_random_iter (seq, NULL);
pos = g_sequence_iter_get_position (iter);
iter = g_sequence_iter_move (iter, len - pos);
g_assert (g_sequence_iter_is_end (iter));
iter = get_random_iter (seq, NULL);
pos = g_sequence_iter_get_position (iter);
while (pos < len)
{
g_assert (!g_sequence_iter_is_end (iter));
pos++;
iter = g_sequence_iter_move (iter, 1);
}
g_assert (g_sequence_iter_is_end (iter));
}
break;
case ITER_GET_SEQUENCE:
{
GSequenceIter *iter = get_random_iter (seq, NULL);
g_assert (g_sequence_iter_get_sequence (iter) == seq->sequence);
}
break;
/* search */
case ITER_COMPARE:
{
GList *link1, *link2;
GSequenceIter *iter1 = get_random_iter (seq, &link1);
GSequenceIter *iter2 = get_random_iter (seq, &link2);
int cmp = g_sequence_iter_compare (iter1, iter2);
int pos1 = queue_link_index (seq, link1);
int pos2 = queue_link_index (seq, link2);
if (cmp == 0)
{
g_assert (pos1 == pos2);
}
else if (cmp < 0)
{
g_assert (pos1 < pos2);
}
else
{
g_assert (pos1 > pos2);
}
}
break;
case RANGE_GET_MIDPOINT:
{
GSequenceIter *iter1 = get_random_iter (seq, NULL);
GSequenceIter *iter2 = get_random_iter (seq, NULL);
GSequenceIter *iter3;
int cmp;
cmp = g_sequence_iter_compare (iter1, iter2);
if (cmp > 0)
{
GSequenceIter *tmp;
tmp = iter1;
iter1 = iter2;
iter2 = tmp;
}
iter3 = g_sequence_range_get_midpoint (iter1, iter2);
if (cmp == 0)
{
g_assert (iter3 == iter1);
g_assert (iter3 == iter2);
}
g_assert (g_sequence_iter_get_position (iter3) >=
g_sequence_iter_get_position (iter1));
g_assert (g_sequence_iter_get_position (iter2) >=
g_sequence_iter_get_position (iter3));
}
break;
}
check_integrity (seq);
}
for (k = 0; k < N_SEQUENCES; ++k)
{
g_queue_free (sequences[k].queue);
g_sequence_free (sequences[k].sequence);
sequences[k].n_items = 0;
}
}
/* Random seeds known to have failed at one point
*/
static gulong seeds[] =
{
825541564u,
801678400u,
1477639090u,
3369132895u,
1192944867u,
770458294u,
1099575817u,
590523467u,
3583571454u,
579241222u
};
/* Single, stand-alone tests */
static void
test_out_of_range_jump (void)
{
GSequence *seq = g_sequence_new (NULL);
GSequenceIter *iter = g_sequence_get_begin_iter (seq);
g_sequence_iter_move (iter, 5);
g_assert (g_sequence_iter_is_begin (iter));
g_assert (g_sequence_iter_is_end (iter));
g_sequence_free (seq);
}
static void
test_iter_move (void)
{
GSequence *seq = g_sequence_new (NULL);
GSequenceIter *iter;
gint i;
for (i = 0; i < 10; ++i)
g_sequence_append (seq, GINT_TO_POINTER (i));
iter = g_sequence_get_begin_iter (seq);
iter = g_sequence_iter_move (iter, 5);
g_assert_cmpint (GPOINTER_TO_INT (g_sequence_get (iter)), ==, 5);
iter = g_sequence_iter_move (iter, -10);
g_assert (g_sequence_iter_is_begin (iter));
iter = g_sequence_get_end_iter (seq);
iter = g_sequence_iter_move (iter, -5);
g_assert_cmpint (GPOINTER_TO_INT (g_sequence_get (iter)), ==, 5);
iter = g_sequence_iter_move (iter, 10);
g_assert (g_sequence_iter_is_end (iter));
g_sequence_free (seq);
}
static int
compare (gconstpointer a, gconstpointer b, gpointer userdata)
{
int ai, bi;
ai = GPOINTER_TO_INT (a);
bi = GPOINTER_TO_INT (b);
if (ai < bi)
return -1;
else if (ai > bi)
return 1;
else
return 0;
}
static int
compare_iter (GSequenceIter *a,
GSequenceIter *b,
gpointer data)
{
return compare (g_sequence_get (a),
g_sequence_get (b),
data);
}
static void
test_insert_sorted_non_pointer (void)
{
int i;
for (i = 0; i < 10; i++)
{
GSequence *seq = g_sequence_new (NULL);
int j;
for (j = 0; j < 10000; j++)
{
g_sequence_insert_sorted (seq, GINT_TO_POINTER (g_random_int()),
compare, NULL);
g_sequence_insert_sorted_iter (seq, GINT_TO_POINTER (g_random_int()),
compare_iter, NULL);
}
g_sequence_check (seq);
g_sequence_free (seq);
}
}
static void
test_stable_sort (void)
{
int i;
GSequence *seq = g_sequence_new (NULL);
#define N_ITEMS 1000
GSequenceIter *iters[N_ITEMS];
GSequenceIter *iter;
for (i = 0; i < N_ITEMS; ++i)
{
iters[i] = g_sequence_append (seq, GINT_TO_POINTER (3000));
g_sequence_check (seq);
g_assert (g_sequence_iter_get_sequence (iters[i]) == seq);
}
i = 0;
iter = g_sequence_get_begin_iter (seq);
g_assert (g_sequence_iter_get_sequence (iter) == seq);
g_sequence_check (seq);
while (!g_sequence_iter_is_end (iter))
{
g_assert (g_sequence_iter_get_sequence (iters[i]) == seq);
g_assert (iters[i++] == iter);
iter = g_sequence_iter_next (iter);
g_sequence_check (seq);
}
g_sequence_sort (seq, compare, NULL);
i = 0;
iter = g_sequence_get_begin_iter (seq);
while (!g_sequence_iter_is_end (iter))
{
g_assert (g_sequence_iter_get_sequence (iters[i]) == seq);
g_assert (iters[i] == iter);
iter = g_sequence_iter_next (iter);
g_sequence_check (seq);
i++;
}
for (i = N_ITEMS - 1; i >= 0; --i)
{
g_sequence_check (seq);
g_assert (g_sequence_iter_get_sequence (iters[i]) == seq);
g_assert (g_sequence_get_end_iter (seq) != iters[i]);
g_sequence_sort_changed (iters[i], compare, NULL);
}
i = 0;
iter = g_sequence_get_begin_iter (seq);
while (!g_sequence_iter_is_end (iter))
{
g_assert (iters[i++] == iter);
iter = g_sequence_iter_next (iter);
g_sequence_check (seq);
}
g_sequence_free (seq);
}
static void
test_empty (void)
{
GSequence *seq;
int i;
seq = g_sequence_new (NULL);
g_assert_true (g_sequence_is_empty (seq));
for (i = 0; i < 1000; i++)
{
g_sequence_append (seq, GINT_TO_POINTER (i));
g_assert_false (g_sequence_is_empty (seq));
}
for (i = 0; i < 1000; i++)
{
GSequenceIter *end = g_sequence_get_end_iter (seq);
g_assert_false (g_sequence_is_empty (seq));
g_sequence_remove (g_sequence_iter_prev (end));
}
g_assert_true (g_sequence_is_empty (seq));
g_sequence_free (seq);
}
int
main (int argc,
char **argv)
{
Fix several signedness warnings in glib/tests/sequence.c glib/tests/sequence.c: In function ‘check_integrity’: glib/tests/sequence.c:139:27: error: comparison of integer expressions of different signedness: ‘int’ and ‘guint’ {aka ‘unsigned int’} 139 | g_assert (info->n_items == g_queue_get_length (info->queue)); | ^~ glib/gmacros.h:941:25: note: in definition of macro ‘G_LIKELY’ 941 | #define G_LIKELY(expr) (expr) | ^~~~ glib/tests/sequence.c:139:3: note: in expansion of macro ‘g_assert’ 139 | g_assert (info->n_items == g_queue_get_length (info->queue)); | ^~~~~~~~ glib/tests/sequence.c:157:27: error: comparison of integer expressions of different signedness: ‘int’ and ‘guint’ {aka ‘unsigned int’} 157 | g_assert (info->n_items == g_queue_get_length (info->queue)); | ^~ glib/gmacros.h:941:25: note: in definition of macro ‘G_LIKELY’ 941 | #define G_LIKELY(expr) (expr) | ^~~~ glib/tests/sequence.c:157:3: note: in expansion of macro ‘g_assert’ 157 | g_assert (info->n_items == g_queue_get_length (info->queue)); | ^~~~~~~~ glib/tests/sequence.c: In function ‘run_random_tests’: glib/tests/sequence.c:554:55: error: comparison of integer expressions of different signedness: ‘guint’ {aka ‘unsigned int’} and ‘gint’ {aka ‘int’} 554 | g_assert (g_queue_get_length (seq->queue) == g_sequence_get_length (seq->sequence)); | ^~ glib/gmacros.h:941:25: note: in definition of macro ‘G_LIKELY’ 941 | #define G_LIKELY(expr) (expr) | ^~~~ glib/tests/sequence.c:554:13: note: in expansion of macro ‘g_assert’ 554 | g_assert (g_queue_get_length (seq->queue) == g_sequence_get_length (seq->sequence)); | ^~~~~~~~ glib/tests/sequence.c: In function ‘main’: glib/tests/sequence.c:1404:17: error: comparison of integer expressions of different signedness: ‘gint’ {aka ‘int’} and ‘long unsigned int’ 1404 | for (i = 0; i < G_N_ELEMENTS (seeds); ++i) | ^
2020-11-14 13:40:19 +01:00
gsize i;
guint32 seed;
gchar *path;
g_test_init (&argc, &argv, NULL);
/* Standalone tests */
g_test_add_func ("/sequence/out-of-range-jump", test_out_of_range_jump);
g_test_add_func ("/sequence/iter-move", test_iter_move);
g_test_add_func ("/sequence/insert-sorted-non-pointer", test_insert_sorted_non_pointer);
g_test_add_func ("/sequence/stable-sort", test_stable_sort);
g_test_add_func ("/sequence/is_empty", test_empty);
/* Regression tests */
for (i = 0; i < G_N_ELEMENTS (seeds); ++i)
{
path = g_strdup_printf ("/sequence/random/seed:%lu", seeds[i]);
g_test_add_data_func (path, GUINT_TO_POINTER (seeds[i]), run_random_tests);
g_free (path);
}
/* New random seed */
seed = g_test_rand_int_range (0, G_MAXINT);
path = g_strdup_printf ("/sequence/random/seed:%u", seed);
g_test_add_data_func (path, GUINT_TO_POINTER (seed), run_random_tests);
g_free (path);
return g_test_run ();
}