Much like GBindingGroup, the GSignalGroup object allows you to connect many
signal connections for an object and connect/disconnect/block/unblock them
as a group.
This is useful when using many connections on an object to ensure that they
are properly removed when changing state or disposing a third-party
object.
This has been used for years in various GNOME projects and makes sense to
have upstream instead of multiple copies.
Originally, GBindingGroup started with Builder as a way to simplify all
of the third-degree object bindings necessary around Model-Controller
objects such as TextBuffer/TextView.
Over time, it has grown to be useful in a number of scenarios outside
of Builder and has been copied into a number of projects such as GNOME
Text Editor, GtkSourceView, libdazzle, and more.
It makes sense at this point to unify on a single implementation and
include that upstream in GObject directly alongside GBinding.
Meson 0.54.0 added a new method meson.override_dependency() that must be
used to ensure dependency consistency. This patch ensures a project that
depends on glib will never link to a mix of system and subproject
libraries. It would happen in such cases:
The system has glib 2.40 installed, and a project does:
dependency('glib-2.0', version: '>=2.60',
fallback: ['glib', 'glib_dep'])
dependency('gobject-2.0')
The first call will configure glib subproject because the system libglib
is too old, but the 2nd call will return system libgobject.
By overriding 'gobject-2.0' dependency while configuring glib subproject
during the first call, meson knows that on the 2nd call it must return
the subproject dependency instead of system dependency.
This also has the nice side effect that with Meson >0.54.0 an
application depending on glib can declare the fallback without knowing
the dependency variable name: dependency('glib-2.0', fallback: 'glib').
If we're cross-compiling, the installed-tests are useful even if we
can't run them on the build machine: we can copy them to the host
machine (possibly via a distro package like Debian's libglib2.0-tests)
and run them there.
While I'm changing the build-tests condition anyway, deduplicate it.
Based on a patch by Helmut Grohne.
Bug-Debian: https://bugs.debian.org/941509
Signed-off-by: Simon McVittie <smcv@collabora.com>
We're using the `install` argument for configure_file() all over the
place.
The support for an `install` argument for configure_file() was added in
Meson 0.50, but we haven't bumped the minimum version of Meson we
require, yet; which means we're getting compatibility warnings when
using recent versions of Meson, and undefined behaviour when using older
versions.
The configure_file() object defaults to `install: false`, unless an
install directory is used. This means that all instances of an `install`
argument with an explicit `true` or `false` value can be removed,
whereas all instances of `install` with a value determined from a
configuration option must be turned into an explicit conditional.
Currently, there is no way to prevent tests from building using meson.
When cross-compiling, building the tests isn't necessary.
Instead, only build the tests on the following conditions:
1) If not cross-compiling.
2) If cross-compiling, and there is an exe wrapper.
Turns out the fix in commit 93555577c wasn't enough, when using glib as
subproject and the parent project uses only libgio_dep, and include
<gi18n.h>, it won't find libintl.h because it's in the
include_directories of libglib_dep. Fix that by declaring dependencies
explicitly, which is the right thing to do since glib and gobject are
public dependencies of gio. That reflects what we do for the pkg-config
file as well.
When using glib as subproject we are forced to pass glib_dep,
gobject_dep and gio_dep to any build target. If we pass only gio_dep it
will missing include directory for glib and gobject.
The new python module, added with 0.46, works with Python 2 and 3 and
allows to pass a path for the interpreter to use, if the need arises.
Previously the meson build set PYTHON, used in the shebang line of
the scripts installed by glib, to the full path of the interpreter.
The new meson module doesn't expose that atm, but we should set it to
a executable name anyway, and not a full path.
Several of our tools are installed and are used by other projects to
generate code. However, there is no 'install' when projects use glib
as a subproject.
We need some way for glib to 'provide' these tools so that when some
project uses glib as a subproject, find_program('glib-mkenums') will
transparently return the glib-mkenums we just built.
Starting from Meson 0.46, this can be done with the
`meson.override_find_program()` function.
As a bonus, the Meson GNOME module will also use these
'overriden'/'provided' programs instead of looking for them in PATH.
On non-glibc platforms gettext is provided by extra libintl dependency.
We wrongly thought libintl is an internal dependency and applications
needs to explicitly link on it, but turns out that breaks many
applications and with autotools the .pc generated actually has -lintl in
public "Libs:".
https://bugzilla.gnome.org/show_bug.cgi?id=796085
-z nodelete breaks the libresourceplugin module usage in the resources.c
test, which expects to be able to unload it.
Make the Meson build match what the autotools build does: only pass
glib_link_flags to the headline libraries (glib-2.0, gio-2.0,
gobject-2.0, gthread-2.0, gmodule-2.0) and omit it from all other build
targets.
https://bugzilla.gnome.org/show_bug.cgi?id=788771
Properly define GLIB/GOBJECT_STATIC_COMPILATION when static build is enabled.
Use library() instead of shared_library() to allow selecting static builds.
https://bugzilla.gnome.org/show_bug.cgi?id=784995
The m4 and bash completion items are usable and relevant
depending on the host system's configuration. So, we check for the
presence of the programs that these items depend on, and only install
them when those programs are found.
For the Valgrind suppression files, we don't install them on Windows as
Valgrind is currently not supported on Windows.
Als fix the path where the GDB helpers are installed, as the path is
incorrectly constructed.
This will fix the "install" stage when building on Visual Studio at
least as there are some post-install steps that are related to them,
which will make use of these programs.
https://bugzilla.gnome.org/show_bug.cgi?id=783270
The Meson build has fallen a bit behind the Autotools one, when it comes
to the internally built tools like glib-mkenums and glib-genmarshals.
We don't need to generate gmarshal.strings any more, and since the
glib-genmarshal tool is now written in Python it can also be used when
cross-compiling, and without indirection, just like we use glib-mkenums.
We can also coalesce various rules into a simple array iteration, with
minimal changes to glib-mkenums, thus making the build a bit more
resilient and without unnecessary duplication.
This reduces the build-time dependencies of glib to only Python 3,
Meson, and git. Git is also optional if you provide a tarball in
which the subproject directories already exist.
The Python port was done by Jussi Pakkanen on bugzilla:
https://bugzilla.gnome.org/show_bug.cgi?id=779332
This version contains some fixes from that and also changes all
instances of `@` to `\u0040` because Meson does not yet provide a
configure_file() mode that ignores unknown @MACRO@ values.
This is a stub-only library that can be used while building against
MSVC and contains no i18n machinery at all.
The dependencies added indirectly use the libintl.h header, and when
built as a subproject, the header won't be in a path known the
pre-processor.
Don't use it project-wide for building everything. Otherwise
symbols for shared modules won't be exposed, e.g. in the
resourceplugin used by the gio resource unit test.
Disable gio tests on Windows, fix .gitignore to not ignore
config.h.meson, and add more things to it.
Rename the library file naming and versioning to match what Autotools
outputs, e.g., libglib-2.0.so.0.5000.2 on Linux, libglib-2.0-0.dll and
glib-2.0-0.dll on Windows with MSVC.
Several more tiny fixes, more executables built and installed, install
pkg-config and m4 files, fix building of gobject tests.
Changes to gdbus-codegen to support out-of-tree builds without
environment variables set (which you can't in Meson). We now add the
build directory to the Python module search path.