g_get_user_database_entry() capitalises the first letter of pw_name
with g_ascii_toupper (pw->pw_name[0]).
However, the manpage for getpwnam() and getpwuid() says the result of
those calls "may point to a static area". GLib is then trying to edit
static memory which belongs to a shared library, so segfaults.
The reentrant variants of the above calls are supposed to fill the user
buffer supplied to them, however Michael Catanzaro also found a bug in
systemd where the data is not copied to the user buffer and still points
to static memory, resulting in the same sort of segfault. See:
https://github.com/systemd/systemd/issues/20679
Solve both these cases in GLib by copying pw_name off to a temporary
variable, set uppercase on that variable, and use the variable to join
into the desired string. Free the variable after it is no longer needed.
Signed-off-by: Jamie Bainbridge <jamie.bainbridge@gmail.com>
Previously, priority was not randomly generated and was instead derived
from `GSequenceNode*` pointer value.
As a result, when a `GSequence` was freed and another was created, the
nodes were returned to memory allocator in such order that allocating
them again caused various performance problems in treap.
To my understanding, the problem develops like this :
1) Initially, memory allocator makes some nodes
2) For each node, priority is derived from pointer alone.
Due to the hash function, initially the priorities are reasonably
randomly distributed.
3) `GSequence` moves inserted nodes around to satisfy treap property.
The priority for node must be >= than priorities of its children
4) When `GSequence` is freed, it frees nodes in a new order.
It finds root node and then recursively frees left/right children.
Due to (3), hashes of freed nodes become partially ordered.
Note that this doesn't depend on choice of hash function.
5) Memory allocator will typically add freed chunks to free list.
This means that it will reallocate nodes in same or inverse order.
6) This results in order of hashes being more and more non-random.
7) This order happens to be increasingly anti-optimal.
That is, `GSequence` needs more `node_rotate` to maintain treap.
This also causes the tree to become more and more unbalanced.
The problem becomes worse with each iteration.
The solution is to use additional noise to maintain reasonable
randomness. This prevents "poisoning" the memory allocator.
On top of that, this patch somehow decreases average tree's height,
which is good because it speeds up various operations. I can't quite
explain why the height decreases with new code, probably the properties
of old hash function didn't quite match the needs of treap?
My averaged results for tree height with different sequence lengths:
Items | before| after |
--------+-------+---------------+
2 | 2,69 | 2,67 -00,74% |
4 | 3,71 | 3,80 +02,43% |
8 | 5,30 | 5,34 +00,75% |
16 | 7,45 | 7,22 -03,09% |
32 | 10,05 | 9,38 -06,67% |
64 | 12,97 | 11,72 -09,64% |
128 | 16,01 | 14,20 -11,31% |
256 | 19,11 | 16,77 -12,24% |
512 | 22,03 | 19,39 -11,98% |
1024 | 25,29 | 22,03 -12,89% |
2048 | 28,43 | 24,82 -12,70% |
4096 | 31,11 | 27,52 -11,54% |
8192 | 34,31 | 30,30 -11,69% |
16384 | 37,40 | 32,81 -12,27% |
32768 | 40,40 | 35,84 -11,29% |
65536 | 43,00 | 38,24 -11,07% |
131072 | 45,50 | 40,83 -10,26% |
262144 | 48,40 | 43,00 -11,16% |
524288 | 52,40 | 46,80 -10,69% |
The memory cost of the patch is zero on 64-bit, because the new field
uses the alignment hole between two other fields.
Note: priorities can sometimes have collisions. This is fine, because
treap allows equal priorities, but these will gradually decrease
performance. The hash function that was used previously has just one
collision on 0xbfff7fff in 32-bit space, but such pointer will not
occur because `g_slice_alloc()` always aligns to sizeof(void*).
However, in 64-bit space the old hash function had collisions anyway,
because it only uses lower 32 bits of pointer.
Closes#2468
The previous test was racy: it assumed that not all queued thread pool
jobs would start to be executed before `g_thread_pool_free()` was
called, whereas actually on some systems (particularly BSD ones), they
would all start (or even finish) being executed, and hence the free
function might never be called.
Rewrite the test to:
• Synchronise the test function and worker thread functions more
closely.
• Not bother about ordering the shared and exclusive variants of the
test differently. That seems to be a hangover from another test
above.
• Limit the number of worker threads to 1, rather than 2, since this
makes the test easier to control.
This has been tested with `--repeat 10000` on Linux, and it succeeds all
of those runs whereas previously it failed quite reliably.
Signed-off-by: Philip Withnall <pwithnall@endlessos.org>
Fixes: #2456
Now that `g_thread_pool_new_full()` can be used to set a user-provided
free function for queue elements, ensure that the internal dummy item
used to wake up the worker threads is removed from the queue before it’s
called.
Signed-off-by: Philip Withnall <pwithnall@endlessos.org>
Helps: #2456
This allows a pattern like
g_test_message ("cannot reticulate splines: %s", error->message);
g_test_fail ();
to be replaced by the simpler
g_test_fail_printf ("cannot reticulate splines: %s", error->message);
with the secondary benefit of making the message available to TAP
consumers as part of the "not ok" message.
Signed-off-by: Simon McVittie <smcv@collabora.com>
Forming the g_test_skip() message from printf-style arguments seems
common enough to deserve a convenience function.
g_test_incomplete() is mechanically almost equivalent to g_test_skip()
(the semantics are different but the implementation is very similar),
so give it a similar mechanism for symmetry.
Signed-off-by: Simon McVittie <smcv@collabora.com>
We had two compensating bugs here. We didn't correctly clear the
error indicator after testing a test-case that calls g_test_fail(),
which meant we were leaving the error set to exit status 1 when
falling through to the next test; and then we didn't check the exit
status of the next test, but instead assumed that g_spawn_sync()
would fail (it does not).
Signed-off-by: Simon McVittie <smcv@collabora.com>
Previously, these would have done 2**32 replacements, and the first one
would have consumed 6GB of memory in the process. They now match what
Python `str.replace()` does.
Reproduces: https://gitlab.gnome.org/GNOME/glib/-/issues/2452
Signed-off-by: Simon McVittie <smcv@collabora.com>
This matches the behaviour of Python `str.replace()`, and avoids carrying
out 2**32 replacements before n wraps around, which is almost certainly
not what we want.
Resolves: https://gitlab.gnome.org/GNOME/glib/-/issues/2452
Signed-off-by: Simon McVittie <smcv@collabora.com>
These are taken from another project (steam-runtime-tools) where I
implemented a similar replace method before realising that more recent
GLib versions had g_string_replace().
Signed-off-by: Simon McVittie <smcv@collabora.com>
g_source_set_name duplicates the string, and this is
showing up as one of the more prominent sources of strdups
in GTK profiles, despite all the names we use being literals.
Add a variant that avoids the overhead.