/* GLIB sliced memory - fast threaded memory chunk allocator * Copyright (C) 2005 Tim Janik * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see <http://www.gnu.org/licenses/>. */ #include <glib.h> #include <stdio.h> #include <string.h> #define quick_rand32() (rand_accu = 1664525 * rand_accu + 1013904223, rand_accu) static guint prime_size = 1021; /* 769; 509 */ static gboolean clean_memchunks = FALSE; static guint number_of_blocks = 10000; /* total number of blocks allocated */ static guint number_of_repetitions = 10000; /* number of alloc+free repetitions */ static gboolean want_corruption = FALSE; /* --- old memchunk prototypes (memchunks.c) --- */ GMemChunk* old_mem_chunk_new (const gchar *name, gint atom_size, gulong area_size, gint type); void old_mem_chunk_destroy (GMemChunk *mem_chunk); gpointer old_mem_chunk_alloc (GMemChunk *mem_chunk); gpointer old_mem_chunk_alloc0 (GMemChunk *mem_chunk); void old_mem_chunk_free (GMemChunk *mem_chunk, gpointer mem); void old_mem_chunk_clean (GMemChunk *mem_chunk); void old_mem_chunk_reset (GMemChunk *mem_chunk); void old_mem_chunk_print (GMemChunk *mem_chunk); void old_mem_chunk_info (void); #ifndef G_ALLOC_AND_FREE #define G_ALLOC_AND_FREE 2 #endif /* --- functions --- */ static inline int corruption (void) { if (G_UNLIKELY (want_corruption)) { /* corruption per call likelyness is about 1:4000000 */ guint32 r = g_random_int() % 8000009; return r == 277 ? +1 : r == 281 ? -1 : 0; } return 0; } static inline gpointer memchunk_alloc (GMemChunk **memchunkp, guint size) { size = MAX (size, 1); if (G_UNLIKELY (!*memchunkp)) *memchunkp = old_mem_chunk_new ("", size, 4096, G_ALLOC_AND_FREE); return old_mem_chunk_alloc (*memchunkp); } static inline void memchunk_free (GMemChunk *memchunk, gpointer chunk) { old_mem_chunk_free (memchunk, chunk); if (clean_memchunks) old_mem_chunk_clean (memchunk); } static gpointer test_memchunk_thread (gpointer data) { GMemChunk **memchunks; guint i, j; guint8 **ps; guint *ss; guint32 rand_accu = 2147483563; /* initialize random numbers */ if (data) rand_accu = *(guint32*) data; else { GTimeVal rand_tv; g_get_current_time (&rand_tv); rand_accu = rand_tv.tv_usec + (rand_tv.tv_sec << 16); } /* prepare for memchunk creation */ memchunks = g_alloca (sizeof (memchunks[0]) * prime_size); memset (memchunks, 0, sizeof (memchunks[0]) * prime_size); ps = g_new (guint8*, number_of_blocks); ss = g_new (guint, number_of_blocks); /* create number_of_blocks random sizes */ for (i = 0; i < number_of_blocks; i++) ss[i] = quick_rand32() % prime_size; /* allocate number_of_blocks blocks */ for (i = 0; i < number_of_blocks; i++) ps[i] = memchunk_alloc (&memchunks[ss[i]], ss[i]); for (j = 0; j < number_of_repetitions; j++) { /* free number_of_blocks/2 blocks */ for (i = 0; i < number_of_blocks; i += 2) memchunk_free (memchunks[ss[i]], ps[i]); /* allocate number_of_blocks/2 blocks with new sizes */ for (i = 0; i < number_of_blocks; i += 2) { ss[i] = quick_rand32() % prime_size; ps[i] = memchunk_alloc (&memchunks[ss[i]], ss[i]); } } /* free number_of_blocks blocks */ for (i = 0; i < number_of_blocks; i++) memchunk_free (memchunks[ss[i]], ps[i]); /* alloc and free many equally sized chunks in a row */ for (i = 0; i < number_of_repetitions; i++) { guint sz = quick_rand32() % prime_size; guint k = number_of_blocks / 100; for (j = 0; j < k; j++) ps[j] = memchunk_alloc (&memchunks[sz], sz); for (j = 0; j < k; j++) memchunk_free (memchunks[sz], ps[j]); } /* cleanout memchunks */ for (i = 0; i < prime_size; i++) if (memchunks[i]) old_mem_chunk_destroy (memchunks[i]); g_free (ps); g_free (ss); return NULL; } static gpointer test_sliced_mem_thread (gpointer data) { guint32 rand_accu = 2147483563; guint i, j; guint8 **ps; guint *ss; /* initialize random numbers */ if (data) rand_accu = *(guint32*) data; else { GTimeVal rand_tv; g_get_current_time (&rand_tv); rand_accu = rand_tv.tv_usec + (rand_tv.tv_sec << 16); } ps = g_new (guint8*, number_of_blocks); ss = g_new (guint, number_of_blocks); /* create number_of_blocks random sizes */ for (i = 0; i < number_of_blocks; i++) ss[i] = quick_rand32() % prime_size; /* allocate number_of_blocks blocks */ for (i = 0; i < number_of_blocks; i++) ps[i] = g_slice_alloc (ss[i] + corruption()); for (j = 0; j < number_of_repetitions; j++) { /* free number_of_blocks/2 blocks */ for (i = 0; i < number_of_blocks; i += 2) g_slice_free1 (ss[i] + corruption(), ps[i] + corruption()); /* allocate number_of_blocks/2 blocks with new sizes */ for (i = 0; i < number_of_blocks; i += 2) { ss[i] = quick_rand32() % prime_size; ps[i] = g_slice_alloc (ss[i] + corruption()); } } /* free number_of_blocks blocks */ for (i = 0; i < number_of_blocks; i++) g_slice_free1 (ss[i] + corruption(), ps[i] + corruption()); /* alloc and free many equally sized chunks in a row */ for (i = 0; i < number_of_repetitions; i++) { guint sz = quick_rand32() % prime_size; guint k = number_of_blocks / 100; for (j = 0; j < k; j++) ps[j] = g_slice_alloc (sz + corruption()); for (j = 0; j < k; j++) g_slice_free1 (sz + corruption(), ps[j] + corruption()); } g_free (ps); g_free (ss); return NULL; } static void usage (void) { g_print ("Usage: slice-test [n_threads] [G|S|M|O][f][c][~] [maxblocksize] [seed]\n"); } int main (int argc, char *argv[]) { guint seed32, *seedp = NULL; gboolean ccounters = FALSE, use_memchunks = FALSE; guint n_threads = 1; const gchar *mode = "slab allocator + magazine cache", *emode = " "; if (argc > 1) n_threads = g_ascii_strtoull (argv[1], NULL, 10); if (argc > 2) { guint i, l = strlen (argv[2]); for (i = 0; i < l; i++) switch (argv[2][i]) { case 'G': /* GLib mode */ g_slice_set_config (G_SLICE_CONFIG_ALWAYS_MALLOC, FALSE); g_slice_set_config (G_SLICE_CONFIG_BYPASS_MAGAZINES, FALSE); mode = "slab allocator + magazine cache"; break; case 'S': /* slab mode */ g_slice_set_config (G_SLICE_CONFIG_ALWAYS_MALLOC, FALSE); g_slice_set_config (G_SLICE_CONFIG_BYPASS_MAGAZINES, TRUE); mode = "slab allocator"; break; case 'M': /* malloc mode */ g_slice_set_config (G_SLICE_CONFIG_ALWAYS_MALLOC, TRUE); mode = "system malloc"; break; case 'O': /* old memchunks */ use_memchunks = TRUE; mode = "old memchunks"; break; case 'f': /* eager freeing */ g_slice_set_config (G_SLICE_CONFIG_WORKING_SET_MSECS, 0); clean_memchunks = TRUE; emode = " with eager freeing"; break; case 'c': /* print contention counters */ ccounters = TRUE; break; case '~': want_corruption = TRUE; /* force occasional corruption */ break; default: usage(); return 1; } } if (argc > 3) prime_size = g_ascii_strtoull (argv[3], NULL, 10); if (argc > 4) { seed32 = g_ascii_strtoull (argv[4], NULL, 10); seedp = &seed32; } if (argc <= 1) usage(); { gchar strseed[64] = "<random>"; GThread **threads; guint i; if (seedp) g_snprintf (strseed, 64, "%u", *seedp); g_print ("Starting %d threads allocating random blocks <= %u bytes with seed=%s using %s%s\n", n_threads, prime_size, strseed, mode, emode); threads = g_alloca (sizeof(GThread*) * n_threads); if (!use_memchunks) for (i = 0; i < n_threads; i++) threads[i] = g_thread_create (test_sliced_mem_thread, seedp, TRUE, NULL); else { for (i = 0; i < n_threads; i++) threads[i] = g_thread_create (test_memchunk_thread, seedp, TRUE, NULL); } for (i = 0; i < n_threads; i++) g_thread_join (threads[i]); if (ccounters) { guint n, n_chunks = g_slice_get_config (G_SLICE_CONFIG_CHUNK_SIZES); g_print (" ChunkSize | MagazineSize | Contention\n"); for (i = 0; i < n_chunks; i++) { gint64 *vals = g_slice_get_config_state (G_SLICE_CONFIG_CONTENTION_COUNTER, i, &n); g_print (" %9" G_GINT64_FORMAT " | %9" G_GINT64_FORMAT " | %9" G_GINT64_FORMAT "\n", vals[0], vals[2], vals[1]); g_free (vals); } } else g_print ("Done.\n"); return 0; } }