/* GObject - GLib Type, Object, Parameter and Signal Library
* Copyright (C) 2009 Red Hat, Inc.
* Copyright (C) 2022 Canonical Ltd.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General
* Public License along with this library; if not, see .
*/
#include
#include
#include
#include "../testcommon.h"
#define WARM_UP_N_RUNS 50
#define WARM_UP_ALWAYS_SEC 2.0
#define ESTIMATE_ROUND_TIME_N_RUNS 5
#define DEFAULT_TEST_TIME 15 /* seconds */
/* The time we want each round to take, in seconds, this should
* be large enough compared to the timer resolution, but small
* enough that the risk of any random slowness will miss the
* running window */
#define TARGET_ROUND_TIME 0.008
static gboolean verbose = FALSE;
static gboolean quiet = FALSE;
static int test_length = DEFAULT_TEST_TIME;
static double test_factor = 0;
static GTimer *global_timer = NULL;
static GOptionEntry cmd_entries[] = {
{"verbose", 'v', 0, G_OPTION_ARG_NONE, &verbose,
"Print extra information", NULL},
{"quiet", 'q', 0, G_OPTION_ARG_NONE, &quiet,
"Print extra information", NULL},
{"seconds", 's', 0, G_OPTION_ARG_INT, &test_length,
"Time to run each test in seconds", NULL},
{"factor", 'f', 0, G_OPTION_ARG_DOUBLE, &test_factor,
"Use a fixed factor for sample runs (also $GLIB_PERFORMANCE_FACTOR)", NULL},
G_OPTION_ENTRY_NULL
};
typedef struct _PerformanceTest PerformanceTest;
struct _PerformanceTest {
const char *name;
gpointer extra_data;
gpointer (*setup) (PerformanceTest *test);
void (*init) (PerformanceTest *test,
gpointer data,
double factor);
void (*run) (PerformanceTest *test,
gpointer data);
void (*finish) (PerformanceTest *test,
gpointer data);
void (*teardown) (PerformanceTest *test,
gpointer data);
void (*print_result) (PerformanceTest *test,
gpointer data,
double time);
};
static void
run_test (PerformanceTest *test)
{
gpointer data = NULL;
guint64 i, num_rounds;
double elapsed, min_elapsed, max_elapsed, avg_elapsed, factor;
GTimer *timer;
if (verbose || !quiet)
g_print ("Running test %s\n", test->name);
/* Set up test */
timer = g_timer_new ();
data = test->setup (test);
if (verbose)
g_print ("Warming up\n");
g_timer_start (timer);
/* Warm up the test by doing a few runs */
for (i = 0; TRUE; i++)
{
test->init (test, data, 1.0);
test->run (test, data);
test->finish (test, data);
if (test_factor > 0)
{
/* The caller specified a constant factor. That makes mostly
* sense, to ensure that the test run is independent from
* external factors. In this case, don't make warm up dependent
* on WARM_UP_ALWAYS_SEC. */
}
else if (global_timer)
{
if (g_timer_elapsed (global_timer, NULL) < WARM_UP_ALWAYS_SEC)
{
/* We always warm up for a certain time where we keep the
* CPU busy.
*
* Note that when we run multiple tests, then this is only
* performed once for the first test. */
continue;
}
g_clear_pointer (&global_timer, g_timer_destroy);
}
if (i >= WARM_UP_N_RUNS)
break;
if (test_factor == 0 && g_timer_elapsed (timer, NULL) > test_length / 10)
{
/* The warm up should not take longer than 10 % of the entire
* test run. Note that the warm up time for WARM_UP_ALWAYS_SEC
* already passed. */
break;
}
}
g_timer_stop (timer);
elapsed = g_timer_elapsed (timer, NULL);
if (verbose)
{
g_print ("Warm up time: %.2f secs\n", elapsed);
g_print ("Estimating round time\n");
}
min_elapsed = 0;
if (test_factor > 0)
{
factor = test_factor;
}
else
{
/* Estimate time for one run by doing a few test rounds. */
for (i = 0; i < ESTIMATE_ROUND_TIME_N_RUNS; i++)
{
test->init (test, data, 1.0);
g_timer_start (timer);
test->run (test, data);
g_timer_stop (timer);
test->finish (test, data);
elapsed = g_timer_elapsed (timer, NULL);
if (i == 0)
min_elapsed = elapsed;
else
min_elapsed = MIN (min_elapsed, elapsed);
}
factor = TARGET_ROUND_TIME / min_elapsed;
}
if (verbose)
g_print ("Uncorrected round time: %.4f msecs, correction factor %.2f\n", 1000*min_elapsed, factor);
/* Calculate number of rounds needed */
num_rounds = (guint64) (test_length / TARGET_ROUND_TIME) + 1;
if (verbose)
g_print ("Running %"G_GINT64_MODIFIER"d rounds\n", num_rounds);
/* Run the test */
avg_elapsed = 0.0;
min_elapsed = 1e100;
max_elapsed = 0.0;
for (i = 0; i < num_rounds; i++)
{
test->init (test, data, factor);
g_timer_start (timer);
test->run (test, data);
g_timer_stop (timer);
test->finish (test, data);
if (i < num_rounds / 20)
{
/* The first 5% are additional warm up. Ignore. */
continue;
}
elapsed = g_timer_elapsed (timer, NULL);
min_elapsed = MIN (min_elapsed, elapsed);
max_elapsed = MAX (max_elapsed, elapsed);
avg_elapsed += elapsed;
}
if (num_rounds > 1)
avg_elapsed = avg_elapsed / num_rounds;
if (verbose)
{
g_print ("Minimum corrected round time: %.2f msecs\n", min_elapsed * 1000);
g_print ("Maximum corrected round time: %.2f msecs\n", max_elapsed * 1000);
g_print ("Average corrected round time: %.2f msecs\n", avg_elapsed * 1000);
}
/* Print the results */
g_print ("%s: ", test->name);
test->print_result (test, data, min_elapsed);
/* Tear down */
test->teardown (test, data);
g_timer_destroy (timer);
}
/*************************************************************
* Simple object is a very simple small GObject subclass
* with no properties, no signals, implementing no interfaces
*************************************************************/
static GType simple_object_get_type (void);
#define SIMPLE_TYPE_OBJECT (simple_object_get_type ())
typedef struct _SimpleObject SimpleObject;
typedef struct _SimpleObjectClass SimpleObjectClass;
struct _SimpleObject
{
GObject parent_instance;
int val;
};
struct _SimpleObjectClass
{
GObjectClass parent_class;
};
G_DEFINE_TYPE (SimpleObject, simple_object, G_TYPE_OBJECT)
static void
simple_object_finalize (GObject *object)
{
G_OBJECT_CLASS (simple_object_parent_class)->finalize (object);
}
static void
simple_object_class_init (SimpleObjectClass *class)
{
GObjectClass *object_class = G_OBJECT_CLASS (class);
object_class->finalize = simple_object_finalize;
}
static void
simple_object_init (SimpleObject *simple_object)
{
simple_object->val = 42;
}
typedef struct _TestIfaceClass TestIfaceClass;
typedef struct _TestIfaceClass TestIface1Class;
typedef struct _TestIfaceClass TestIface2Class;
typedef struct _TestIfaceClass TestIface3Class;
typedef struct _TestIfaceClass TestIface4Class;
typedef struct _TestIfaceClass TestIface5Class;
typedef struct _TestIface TestIface;
struct _TestIfaceClass
{
GTypeInterface base_iface;
void (*method) (TestIface *obj);
};
static GType test_iface1_get_type (void);
static GType test_iface2_get_type (void);
static GType test_iface3_get_type (void);
static GType test_iface4_get_type (void);
static GType test_iface5_get_type (void);
#define TEST_TYPE_IFACE1 (test_iface1_get_type ())
#define TEST_TYPE_IFACE2 (test_iface2_get_type ())
#define TEST_TYPE_IFACE3 (test_iface3_get_type ())
#define TEST_TYPE_IFACE4 (test_iface4_get_type ())
#define TEST_TYPE_IFACE5 (test_iface5_get_type ())
static DEFINE_IFACE (TestIface1, test_iface1, NULL, NULL)
static DEFINE_IFACE (TestIface2, test_iface2, NULL, NULL)
static DEFINE_IFACE (TestIface3, test_iface3, NULL, NULL)
static DEFINE_IFACE (TestIface4, test_iface4, NULL, NULL)
static DEFINE_IFACE (TestIface5, test_iface5, NULL, NULL)
/*************************************************************
* Complex object is a GObject subclass with a properties,
* construct properties, signals and implementing an interface.
*************************************************************/
static GType complex_object_get_type (void);
#define COMPLEX_TYPE_OBJECT (complex_object_get_type ())
typedef struct _ComplexObject ComplexObject;
typedef struct _ComplexObjectClass ComplexObjectClass;
struct _ComplexObject
{
GObject parent_instance;
int val1;
char *val2;
};
struct _ComplexObjectClass
{
GObjectClass parent_class;
void (*signal) (ComplexObject *obj);
void (*signal_empty) (ComplexObject *obj);
};
static void complex_test_iface_init (gpointer g_iface,
gpointer iface_data);
G_DEFINE_TYPE_EXTENDED (ComplexObject, complex_object,
G_TYPE_OBJECT, 0,
G_IMPLEMENT_INTERFACE (TEST_TYPE_IFACE1, complex_test_iface_init)
G_IMPLEMENT_INTERFACE (TEST_TYPE_IFACE2, complex_test_iface_init)
G_IMPLEMENT_INTERFACE (TEST_TYPE_IFACE3, complex_test_iface_init)
G_IMPLEMENT_INTERFACE (TEST_TYPE_IFACE4, complex_test_iface_init)
G_IMPLEMENT_INTERFACE (TEST_TYPE_IFACE5, complex_test_iface_init))
#define COMPLEX_OBJECT(object) (G_TYPE_CHECK_INSTANCE_CAST ((object), COMPLEX_TYPE_OBJECT, ComplexObject))
enum {
PROP_0,
PROP_VAL1,
PROP_VAL2,
N_PROPERTIES
};
static GParamSpec *pspecs[N_PROPERTIES] = { NULL, };
enum {
COMPLEX_SIGNAL,
COMPLEX_SIGNAL_EMPTY,
COMPLEX_SIGNAL_GENERIC,
COMPLEX_SIGNAL_GENERIC_EMPTY,
COMPLEX_SIGNAL_ARGS,
COMPLEX_LAST_SIGNAL
};
static guint complex_signals[COMPLEX_LAST_SIGNAL] = { 0 };
static void
complex_object_finalize (GObject *object)
{
ComplexObject *c = COMPLEX_OBJECT (object);
g_free (c->val2);
G_OBJECT_CLASS (complex_object_parent_class)->finalize (object);
}
static void
complex_object_set_property (GObject *object,
guint prop_id,
const GValue *value,
GParamSpec *pspec)
{
ComplexObject *complex = COMPLEX_OBJECT (object);
switch (prop_id)
{
case PROP_VAL1:
complex->val1 = g_value_get_int (value);
break;
case PROP_VAL2:
g_free (complex->val2);
complex->val2 = g_value_dup_string (value);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}
static void
complex_object_get_property (GObject *object,
guint prop_id,
GValue *value,
GParamSpec *pspec)
{
ComplexObject *complex = COMPLEX_OBJECT (object);
switch (prop_id)
{
case PROP_VAL1:
g_value_set_int (value, complex->val1);
break;
case PROP_VAL2:
g_value_set_string (value, complex->val2);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}
static void
complex_object_real_signal (ComplexObject *obj)
{
}
static void
complex_object_class_init (ComplexObjectClass *class)
{
GObjectClass *object_class = G_OBJECT_CLASS (class);
object_class->finalize = complex_object_finalize;
object_class->set_property = complex_object_set_property;
object_class->get_property = complex_object_get_property;
class->signal = complex_object_real_signal;
complex_signals[COMPLEX_SIGNAL] =
g_signal_new ("signal",
G_TYPE_FROM_CLASS (object_class),
G_SIGNAL_RUN_FIRST,
G_STRUCT_OFFSET (ComplexObjectClass, signal),
NULL, NULL,
g_cclosure_marshal_VOID__VOID,
G_TYPE_NONE, 0);
complex_signals[COMPLEX_SIGNAL_EMPTY] =
g_signal_new ("signal-empty",
G_TYPE_FROM_CLASS (object_class),
G_SIGNAL_RUN_FIRST,
G_STRUCT_OFFSET (ComplexObjectClass, signal_empty),
NULL, NULL,
g_cclosure_marshal_VOID__VOID,
G_TYPE_NONE, 0);
complex_signals[COMPLEX_SIGNAL_GENERIC] =
g_signal_new ("signal-generic",
G_TYPE_FROM_CLASS (object_class),
G_SIGNAL_RUN_FIRST,
G_STRUCT_OFFSET (ComplexObjectClass, signal),
NULL, NULL,
NULL,
G_TYPE_NONE, 0);
complex_signals[COMPLEX_SIGNAL_GENERIC_EMPTY] =
g_signal_new ("signal-generic-empty",
G_TYPE_FROM_CLASS (object_class),
G_SIGNAL_RUN_FIRST,
G_STRUCT_OFFSET (ComplexObjectClass, signal_empty),
NULL, NULL,
NULL,
G_TYPE_NONE, 0);
complex_signals[COMPLEX_SIGNAL_ARGS] =
g_signal_new ("signal-args",
G_TYPE_FROM_CLASS (object_class),
G_SIGNAL_RUN_FIRST,
G_STRUCT_OFFSET (ComplexObjectClass, signal),
NULL, NULL,
g_cclosure_marshal_VOID__UINT_POINTER,
G_TYPE_NONE, 2, G_TYPE_UINT, G_TYPE_POINTER);
pspecs[PROP_VAL1] = g_param_spec_int ("val1", "val1", "val1",
0, G_MAXINT, 42,
G_PARAM_STATIC_STRINGS | G_PARAM_CONSTRUCT | G_PARAM_READWRITE);
pspecs[PROP_VAL2] = g_param_spec_string ("val2", "val2", "val2",
NULL,
G_PARAM_STATIC_STRINGS | G_PARAM_READWRITE);
g_object_class_install_properties (object_class, N_PROPERTIES, pspecs);
}
static void
complex_object_iface_method (TestIface *obj)
{
ComplexObject *complex = COMPLEX_OBJECT (obj);
complex->val1++;
}
static void
complex_test_iface_init (gpointer g_iface,
gpointer iface_data)
{
TestIfaceClass *iface = g_iface;
iface->method = complex_object_iface_method;
}
static void
complex_object_init (ComplexObject *complex_object)
{
complex_object->val1 = 42;
}
/*************************************************************
* Test object construction performance
*************************************************************/
#define NUM_OBJECT_TO_CONSTRUCT 10000
struct ConstructionTest {
GObject **objects;
unsigned int n_objects;
GType type;
};
static gpointer
test_construction_setup (PerformanceTest *test)
{
struct ConstructionTest *data;
data = g_new0 (struct ConstructionTest, 1);
data->type = ((GType (*)(void))test->extra_data)();
return data;
}
static void
test_construction_init (PerformanceTest *test,
gpointer _data,
double count_factor)
{
struct ConstructionTest *data = _data;
unsigned int n;
n = (unsigned int) (NUM_OBJECT_TO_CONSTRUCT * count_factor);
if (data->n_objects != n)
{
data->n_objects = n;
data->objects = g_renew (GObject *, data->objects, n);
}
}
static void
test_construction_run (PerformanceTest *test,
gpointer _data)
{
struct ConstructionTest *data = _data;
GObject **objects = data->objects;
GType type = data->type;
unsigned int n_objects;
n_objects = data->n_objects;
for (unsigned int i = 0; i < n_objects; i++)
objects[i] = g_object_new (type, NULL);
}
static void
test_construction_run1 (PerformanceTest *test,
gpointer _data)
{
struct ConstructionTest *data = _data;
GObject **objects = data->objects;
unsigned int n_objects;
n_objects = data->n_objects;
for (unsigned int i = 0; i < n_objects; i++)
objects[i] = (GObject *) g_slice_new0 (SimpleObject);
}
static void
test_complex_construction_run (PerformanceTest *test,
gpointer _data)
{
struct ConstructionTest *data = _data;
GObject **objects = data->objects;
GType type = data->type;
unsigned int n_objects;
n_objects = data->n_objects;
for (unsigned int i = 0; i < n_objects; i++)
objects[i] = g_object_new (type, "val1", 5, "val2", "thousand", NULL);
}
static void
test_complex_construction_run1 (PerformanceTest *test,
gpointer _data)
{
struct ConstructionTest *data = _data;
GObject **objects = data->objects;
GType type = data->type;
unsigned int n_objects;
n_objects = data->n_objects;
for (unsigned int i = 0; i < n_objects; i++)
{
ComplexObject *object;
object = (ComplexObject *)g_object_new (type, NULL);
object->val1 = 5;
object->val2 = g_strdup ("thousand");
objects[i] = (GObject *)object;
}
}
static void
test_complex_construction_run2 (PerformanceTest *test,
gpointer _data)
{
struct ConstructionTest *data = _data;
GObject **objects = data->objects;
GType type = data->type;
unsigned int n_objects;
n_objects = data->n_objects;
for (unsigned int i = 0; i < n_objects; i++)
{
objects[i] = g_object_new (type, NULL);
}
}
static void
test_construction_finish (PerformanceTest *test,
gpointer _data)
{
struct ConstructionTest *data = _data;
for (unsigned int i = 0; i < data->n_objects; i++)
g_object_unref (data->objects[i]);
}
static void
test_construction_finish1 (PerformanceTest *test,
gpointer _data)
{
struct ConstructionTest *data = _data;
for (unsigned int i = 0; i < data->n_objects; i++)
g_slice_free (SimpleObject, (SimpleObject *)data->objects[i]);
}
static void
test_construction_teardown (PerformanceTest *test,
gpointer _data)
{
struct ConstructionTest *data = _data;
g_free (data->objects);
g_free (data);
}
static void
test_finalization_init (PerformanceTest *test,
gpointer _data,
double count_factor)
{
struct ConstructionTest *data = _data;
unsigned int n;
n = (unsigned int) (NUM_OBJECT_TO_CONSTRUCT * count_factor);
if (data->n_objects != n)
{
data->n_objects = n;
data->objects = g_renew (GObject *, data->objects, n);
}
for (unsigned int i = 0; i < data->n_objects; i++)
{
data->objects[i] = g_object_new (data->type, NULL);
}
}
static void
test_finalization_run (PerformanceTest *test,
gpointer _data)
{
struct ConstructionTest *data = _data;
GObject **objects = data->objects;
unsigned int n_objects;
n_objects = data->n_objects;
for (unsigned int i = 0; i < n_objects; i++)
{
g_object_unref (objects[i]);
}
}
static void
test_finalization_finish (PerformanceTest *test,
gpointer _data)
{
}
static void
test_construction_print_result (PerformanceTest *test,
gpointer _data,
double time)
{
struct ConstructionTest *data = _data;
g_print ("Millions of constructed objects per second: %.3f\n",
data->n_objects / (time * 1000000));
}
static void
test_finalization_print_result (PerformanceTest *test,
gpointer _data,
double time)
{
struct ConstructionTest *data = _data;
g_print ("Millions of finalized objects per second: %.3f\n",
data->n_objects / (time * 1000000));
}
/*************************************************************
* Test runtime type check performance
*************************************************************/
#define NUM_KILO_CHECKS_PER_ROUND 50
struct TypeCheckTest {
GObject *object;
unsigned int n_checks;
};
static gpointer
test_type_check_setup (PerformanceTest *test)
{
struct TypeCheckTest *data;
data = g_new0 (struct TypeCheckTest, 1);
data->object = g_object_new (COMPLEX_TYPE_OBJECT, NULL);
return data;
}
static void
test_type_check_init (PerformanceTest *test,
gpointer _data,
double factor)
{
struct TypeCheckTest *data = _data;
data->n_checks = (unsigned int) (factor * NUM_KILO_CHECKS_PER_ROUND);
}
/* Work around g_type_check_instance_is_a being marked "pure",
and thus only called once for the loop. */
gboolean (*my_type_check_instance_is_a) (GTypeInstance *type_instance,
GType iface_type) = &g_type_check_instance_is_a;
static void
test_type_check_run (PerformanceTest *test,
gpointer _data)
{
struct TypeCheckTest *data = _data;
GObject *object = data->object;
GType type, types[5];
types[0] = test_iface1_get_type ();
types[1] = test_iface2_get_type ();
types[2] = test_iface3_get_type ();
types[3] = test_iface4_get_type ();
types[4] = test_iface5_get_type ();
for (unsigned int i = 0; i < data->n_checks; i++)
{
type = types[i%5];
for (unsigned int j = 0; j < 1000; j++)
{
my_type_check_instance_is_a ((GTypeInstance *)object,
type);
}
}
}
static void
test_type_check_finish (PerformanceTest *test,
gpointer data)
{
}
static void
test_type_check_print_result (PerformanceTest *test,
gpointer _data,
double time)
{
struct TypeCheckTest *data = _data;
g_print ("Million type checks per second: %.2f\n",
data->n_checks / (1000*time));
}
static void
test_type_check_teardown (PerformanceTest *test,
gpointer _data)
{
struct TypeCheckTest *data = _data;
g_object_unref (data->object);
g_free (data);
}
/*************************************************************
* Test signal emissions performance (common code)
*************************************************************/
#define NUM_EMISSIONS_PER_ROUND 10000
struct EmissionTest {
GObject *object;
unsigned int n_checks;
unsigned int signal_id;
};
static void
test_emission_run (PerformanceTest *test,
gpointer _data)
{
struct EmissionTest *data = _data;
GObject *object = data->object;
for (unsigned int i = 0; i < data->n_checks; i++)
g_signal_emit (object, data->signal_id, 0);
}
static void
test_emission_run_args (PerformanceTest *test,
gpointer _data)
{
struct EmissionTest *data = _data;
GObject *object = data->object;
for (unsigned int i = 0; i < data->n_checks; i++)
g_signal_emit (object, data->signal_id, 0, 0, NULL);
}
/*************************************************************
* Test signal unhandled emissions performance
*************************************************************/
static gpointer
test_emission_unhandled_setup (PerformanceTest *test)
{
struct EmissionTest *data;
data = g_new0 (struct EmissionTest, 1);
data->object = g_object_new (COMPLEX_TYPE_OBJECT, NULL);
data->signal_id = complex_signals[GPOINTER_TO_UINT (test->extra_data)];
return data;
}
static void
test_emission_unhandled_init (PerformanceTest *test,
gpointer _data,
double factor)
{
struct EmissionTest *data = _data;
data->n_checks = (unsigned int) (factor * NUM_EMISSIONS_PER_ROUND);
}
static void
test_emission_unhandled_finish (PerformanceTest *test,
gpointer data)
{
}
static void
test_emission_unhandled_print_result (PerformanceTest *test,
gpointer _data,
double time)
{
struct EmissionTest *data = _data;
g_print ("Emissions per second: %.0f\n",
data->n_checks / time);
}
static void
test_emission_unhandled_teardown (PerformanceTest *test,
gpointer _data)
{
struct EmissionTest *data = _data;
g_object_unref (data->object);
g_free (data);
}
/*************************************************************
* Test signal handled emissions performance
*************************************************************/
static void
test_emission_handled_handler (ComplexObject *obj, gpointer data)
{
}
static gpointer
test_emission_handled_setup (PerformanceTest *test)
{
struct EmissionTest *data;
data = g_new0 (struct EmissionTest, 1);
data->object = g_object_new (COMPLEX_TYPE_OBJECT, NULL);
data->signal_id = complex_signals[GPOINTER_TO_UINT (test->extra_data)];
g_signal_connect (data->object, "signal",
G_CALLBACK (test_emission_handled_handler),
NULL);
g_signal_connect (data->object, "signal-empty",
G_CALLBACK (test_emission_handled_handler),
NULL);
g_signal_connect (data->object, "signal-generic",
G_CALLBACK (test_emission_handled_handler),
NULL);
g_signal_connect (data->object, "signal-generic-empty",
G_CALLBACK (test_emission_handled_handler),
NULL);
g_signal_connect (data->object, "signal-args",
G_CALLBACK (test_emission_handled_handler),
NULL);
return data;
}
static void
test_emission_handled_init (PerformanceTest *test,
gpointer _data,
double factor)
{
struct EmissionTest *data = _data;
data->n_checks = (unsigned int) (factor * NUM_EMISSIONS_PER_ROUND);
}
static void
test_emission_handled_finish (PerformanceTest *test,
gpointer data)
{
}
static void
test_emission_handled_print_result (PerformanceTest *test,
gpointer _data,
double time)
{
struct EmissionTest *data = _data;
g_print ("Emissions per second: %.0f\n",
data->n_checks / time);
}
static void
test_emission_handled_teardown (PerformanceTest *test,
gpointer _data)
{
struct EmissionTest *data = _data;
g_object_unref (data->object);
g_free (data);
}
/*************************************************************
* Test object notify performance (common code)
*************************************************************/
#define NUM_NOTIFY_PER_ROUND 10000
struct NotifyTest {
GObject *object;
unsigned int n_checks;
};
static void
test_notify_run (PerformanceTest *test,
void *_data)
{
struct NotifyTest *data = _data;
GObject *object = data->object;
for (unsigned int i = 0; i < data->n_checks; i++)
g_object_notify (object, "val1");
}
static void
test_notify_by_pspec_run (PerformanceTest *test,
void *_data)
{
struct NotifyTest *data = _data;
GObject *object = data->object;
for (unsigned int i = 0; i < data->n_checks; i++)
g_object_notify_by_pspec (object, pspecs[PROP_VAL1]);
}
/*************************************************************
* Test notify unhandled performance
*************************************************************/
static void *
test_notify_unhandled_setup (PerformanceTest *test)
{
struct NotifyTest *data;
data = g_new0 (struct NotifyTest, 1);
data->object = g_object_new (COMPLEX_TYPE_OBJECT, NULL);
return data;
}
static void
test_notify_unhandled_init (PerformanceTest *test,
void *_data,
double factor)
{
struct NotifyTest *data = _data;
data->n_checks = (unsigned int) (factor * NUM_NOTIFY_PER_ROUND);
}
static void
test_notify_unhandled_finish (PerformanceTest *test,
void *data)
{
}
static void
test_notify_unhandled_print_result (PerformanceTest *test,
void *_data,
double time)
{
struct NotifyTest *data = _data;
g_print ("Notify (unhandled) per second: %.0f\n",
data->n_checks / time);
}
static void
test_notify_unhandled_teardown (PerformanceTest *test,
void *_data)
{
struct NotifyTest *data = _data;
g_object_unref (data->object);
g_free (data);
}
/*************************************************************
* Test notify handled performance
*************************************************************/
static void
test_notify_handled_handler (ComplexObject *obj, GParamSpec *pspec, void *data)
{
}
static void *
test_notify_handled_setup (PerformanceTest *test)
{
struct NotifyTest *data;
data = g_new0 (struct NotifyTest, 1);
data->object = g_object_new (COMPLEX_TYPE_OBJECT, NULL);
g_signal_connect (data->object, "notify::val1",
G_CALLBACK (test_notify_handled_handler), data);
g_signal_connect (data->object, "notify::val2",
G_CALLBACK (test_notify_handled_handler), data);
return data;
}
static void
test_notify_handled_init (PerformanceTest *test,
void *_data,
double factor)
{
struct NotifyTest *data = _data;
data->n_checks = (unsigned int) (factor * NUM_NOTIFY_PER_ROUND);
}
static void
test_notify_handled_finish (PerformanceTest *test,
void *data)
{
}
static void
test_notify_handled_print_result (PerformanceTest *test,
void *_data,
double time)
{
struct NotifyTest *data = _data;
g_print ("Notify per second: %.0f\n",
data->n_checks / time);
}
static void
test_notify_handled_teardown (PerformanceTest *test,
void *_data)
{
struct NotifyTest *data = _data;
g_assert_cmpuint (
g_signal_handlers_disconnect_by_func (data->object,
test_notify_handled_handler,
data), ==, 2);
g_object_unref (data->object);
g_free (data);
}
/*************************************************************
* Test object set performance
*************************************************************/
#define NUM_SET_PER_ROUND 10000
struct SetTest {
GObject *object;
unsigned int n_checks;
};
static void
test_set_run (PerformanceTest *test,
void *_data)
{
struct SetTest *data = _data;
GObject *object = data->object;
for (unsigned int i = 0; i < data->n_checks; i++)
g_object_set (object, "val1", i, NULL);
}
static void *
test_set_setup (PerformanceTest *test)
{
struct SetTest *data;
data = g_new0 (struct SetTest, 1);
data->object = g_object_new (COMPLEX_TYPE_OBJECT, NULL);
/* g_object_get() will take a reference. Increasing the ref count from 1 to 2
* is more expensive, due to the check for toggle notifications. We have a
* performance test for that already. Don't also test that overhead during
* "property-get" test and avoid this by taking an additional reference. */
g_object_ref (data->object);
return data;
}
static void
test_set_init (PerformanceTest *test,
void *_data,
double factor)
{
struct SetTest *data = _data;
data->n_checks = (unsigned int) (factor * NUM_SET_PER_ROUND);
}
static void
test_set_finish (PerformanceTest *test,
void *data)
{
}
static void
test_set_print_result (PerformanceTest *test,
void *_data,
double time)
{
struct SetTest *data = _data;
g_print ("Property set per second: %.0f\n",
data->n_checks / time);
}
static void
test_set_teardown (PerformanceTest *test,
void *_data)
{
struct SetTest *data = _data;
g_object_unref (data->object);
g_object_unref (data->object);
g_free (data);
}
/*************************************************************
* Test object get performance
*************************************************************/
#define NUM_GET_PER_ROUND 10000
struct GetTest {
GObject *object;
unsigned int n_checks;
};
static void
test_get_run (PerformanceTest *test,
void *_data)
{
struct GetTest *data = _data;
GObject *object = data->object;
int val;
for (unsigned int i = 0; i < data->n_checks; i++)
g_object_get (object, "val1", &val, NULL);
}
static void *
test_get_setup (PerformanceTest *test)
{
struct GetTest *data;
data = g_new0 (struct GetTest, 1);
data->object = g_object_new (COMPLEX_TYPE_OBJECT, NULL);
/* g_object_get() will take a reference. Increasing the ref count from 1 to 2
* is more expensive, due to the check for toggle notifications. We have a
* performance test for that already. Don't also test that overhead during
* "property-get" test and avoid this by taking an additional reference. */
g_object_ref (data->object);
return data;
}
static void
test_get_init (PerformanceTest *test,
void *_data,
double factor)
{
struct GetTest *data = _data;
data->n_checks = (unsigned int) (factor * NUM_GET_PER_ROUND);
}
static void
test_get_finish (PerformanceTest *test,
void *data)
{
}
static void
test_get_print_result (PerformanceTest *test,
void *_data,
double time)
{
struct GetTest *data = _data;
g_print ("Property get per second: %.0f\n",
data->n_checks / time);
}
static void
test_get_teardown (PerformanceTest *test,
gpointer _data)
{
struct GetTest *data = _data;
g_object_unref (data->object);
g_object_unref (data->object);
g_free (data);
}
/*************************************************************
* Test object refcount performance
*************************************************************/
#define NUM_KILO_REFS_PER_ROUND 100000
struct RefcountTest {
GObject *object;
unsigned int n_checks;
gboolean is_toggle_ref;
};
static void
test_refcount_toggle_ref_cb (gpointer data,
GObject *object,
gboolean is_last_ref)
{
}
static gpointer
test_refcount_setup (PerformanceTest *test)
{
struct RefcountTest *data;
data = g_new0 (struct RefcountTest, 1);
data->object = g_object_new (COMPLEX_TYPE_OBJECT, NULL);
if (g_str_equal (test->name, "refcount-toggle"))
{
g_object_add_toggle_ref (data->object, test_refcount_toggle_ref_cb, NULL);
g_object_unref (data->object);
data->is_toggle_ref = TRUE;
}
return data;
}
static void
test_refcount_init (PerformanceTest *test,
gpointer _data,
double factor)
{
struct RefcountTest *data = _data;
data->n_checks = (unsigned int) (factor * NUM_KILO_REFS_PER_ROUND);
}
static void
test_refcount_run (PerformanceTest *test,
gpointer _data)
{
struct RefcountTest *data = _data;
GObject *object = data->object;
for (unsigned int i = 0; i < data->n_checks; i++)
{
g_object_ref (object);
g_object_ref (object);
g_object_ref (object);
g_object_unref (object);
g_object_unref (object);
g_object_ref (object);
g_object_ref (object);
g_object_unref (object);
g_object_unref (object);
g_object_unref (object);
}
}
static void
test_refcount_1_run (PerformanceTest *test,
gpointer _data)
{
struct RefcountTest *data = _data;
GObject *object = data->object;
for (unsigned int i = 0; i < data->n_checks; i++)
{
g_object_ref (object);
g_object_unref (object);
}
}
static void
test_refcount_finish (PerformanceTest *test,
gpointer _data)
{
}
static void
test_refcount_print_result (PerformanceTest *test,
gpointer _data,
double time)
{
struct RefcountTest *data = _data;
g_print ("Million refs+unref per second: %.2f\n",
data->n_checks * 5 / (time * 1000000 ));
}
static void
test_refcount_teardown (PerformanceTest *test,
gpointer _data)
{
struct RefcountTest *data = _data;
if (data->is_toggle_ref)
g_object_remove_toggle_ref (data->object, test_refcount_toggle_ref_cb, NULL);
else
g_object_unref (data->object);
g_free (data);
}
/*************************************************************
* Main test code
*************************************************************/
static PerformanceTest tests[] = {
{
"simple-construction",
simple_object_get_type,
test_construction_setup,
test_construction_init,
test_construction_run,
test_construction_finish,
test_construction_teardown,
test_construction_print_result
},
{
"simple-construction1",
simple_object_get_type,
test_construction_setup,
test_construction_init,
test_construction_run1,
test_construction_finish1,
test_construction_teardown,
test_construction_print_result
},
{
"complex-construction",
complex_object_get_type,
test_construction_setup,
test_construction_init,
test_complex_construction_run,
test_construction_finish,
test_construction_teardown,
test_construction_print_result
},
{
"complex-construction1",
complex_object_get_type,
test_construction_setup,
test_construction_init,
test_complex_construction_run1,
test_construction_finish,
test_construction_teardown,
test_construction_print_result
},
{
"complex-construction2",
complex_object_get_type,
test_construction_setup,
test_construction_init,
test_complex_construction_run2,
test_construction_finish,
test_construction_teardown,
test_construction_print_result
},
{
"finalization",
simple_object_get_type,
test_construction_setup,
test_finalization_init,
test_finalization_run,
test_finalization_finish,
test_construction_teardown,
test_finalization_print_result
},
{
"type-check",
NULL,
test_type_check_setup,
test_type_check_init,
test_type_check_run,
test_type_check_finish,
test_type_check_teardown,
test_type_check_print_result
},
{
"emit-unhandled",
GUINT_TO_POINTER (COMPLEX_SIGNAL),
test_emission_unhandled_setup,
test_emission_unhandled_init,
test_emission_run,
test_emission_unhandled_finish,
test_emission_unhandled_teardown,
test_emission_unhandled_print_result
},
{
"emit-unhandled-empty",
GUINT_TO_POINTER (COMPLEX_SIGNAL_EMPTY),
test_emission_unhandled_setup,
test_emission_unhandled_init,
test_emission_run,
test_emission_unhandled_finish,
test_emission_unhandled_teardown,
test_emission_unhandled_print_result
},
{
"emit-unhandled-generic",
GUINT_TO_POINTER (COMPLEX_SIGNAL_GENERIC),
test_emission_unhandled_setup,
test_emission_unhandled_init,
test_emission_run,
test_emission_unhandled_finish,
test_emission_unhandled_teardown,
test_emission_unhandled_print_result
},
{
"emit-unhandled-generic-empty",
GUINT_TO_POINTER (COMPLEX_SIGNAL_GENERIC_EMPTY),
test_emission_unhandled_setup,
test_emission_unhandled_init,
test_emission_run,
test_emission_unhandled_finish,
test_emission_unhandled_teardown,
test_emission_unhandled_print_result
},
{
"emit-unhandled-args",
GUINT_TO_POINTER (COMPLEX_SIGNAL_ARGS),
test_emission_unhandled_setup,
test_emission_unhandled_init,
test_emission_run_args,
test_emission_unhandled_finish,
test_emission_unhandled_teardown,
test_emission_unhandled_print_result
},
{
"emit-handled",
GUINT_TO_POINTER (COMPLEX_SIGNAL),
test_emission_handled_setup,
test_emission_handled_init,
test_emission_run,
test_emission_handled_finish,
test_emission_handled_teardown,
test_emission_handled_print_result
},
{
"emit-handled-empty",
GUINT_TO_POINTER (COMPLEX_SIGNAL_EMPTY),
test_emission_handled_setup,
test_emission_handled_init,
test_emission_run,
test_emission_handled_finish,
test_emission_handled_teardown,
test_emission_handled_print_result
},
{
"emit-handled-generic",
GUINT_TO_POINTER (COMPLEX_SIGNAL_GENERIC),
test_emission_handled_setup,
test_emission_handled_init,
test_emission_run,
test_emission_handled_finish,
test_emission_handled_teardown,
test_emission_handled_print_result
},
{
"emit-handled-generic-empty",
GUINT_TO_POINTER (COMPLEX_SIGNAL_GENERIC_EMPTY),
test_emission_handled_setup,
test_emission_handled_init,
test_emission_run,
test_emission_handled_finish,
test_emission_handled_teardown,
test_emission_handled_print_result
},
{
"emit-handled-args",
GUINT_TO_POINTER (COMPLEX_SIGNAL_ARGS),
test_emission_handled_setup,
test_emission_handled_init,
test_emission_run_args,
test_emission_handled_finish,
test_emission_handled_teardown,
test_emission_handled_print_result
},
{
"notify-unhandled",
complex_object_get_type,
test_notify_unhandled_setup,
test_notify_unhandled_init,
test_notify_run,
test_notify_unhandled_finish,
test_notify_unhandled_teardown,
test_notify_unhandled_print_result
},
{
"notify-by-pspec-unhandled",
complex_object_get_type,
test_notify_unhandled_setup,
test_notify_unhandled_init,
test_notify_by_pspec_run,
test_notify_unhandled_finish,
test_notify_unhandled_teardown,
test_notify_unhandled_print_result
},
{
"notify-handled",
complex_object_get_type,
test_notify_handled_setup,
test_notify_handled_init,
test_notify_run,
test_notify_handled_finish,
test_notify_handled_teardown,
test_notify_handled_print_result
},
{
"notify-by-pspec-handled",
complex_object_get_type,
test_notify_handled_setup,
test_notify_handled_init,
test_notify_by_pspec_run,
test_notify_handled_finish,
test_notify_handled_teardown,
test_notify_handled_print_result
},
{
"property-set",
complex_object_get_type,
test_set_setup,
test_set_init,
test_set_run,
test_set_finish,
test_set_teardown,
test_set_print_result
},
{
"property-get",
complex_object_get_type,
test_get_setup,
test_get_init,
test_get_run,
test_get_finish,
test_get_teardown,
test_get_print_result
},
{
"refcount",
NULL,
test_refcount_setup,
test_refcount_init,
test_refcount_run,
test_refcount_finish,
test_refcount_teardown,
test_refcount_print_result
},
{
"refcount-1",
NULL,
test_refcount_setup,
test_refcount_init,
test_refcount_1_run,
test_refcount_finish,
test_refcount_teardown,
test_refcount_print_result
},
{
"refcount-toggle",
NULL,
test_refcount_setup,
test_refcount_init,
test_refcount_1_run,
test_refcount_finish,
test_refcount_teardown,
test_refcount_print_result
},
};
static PerformanceTest *
find_test (const char *name)
{
for (size_t i = 0; i < G_N_ELEMENTS (tests); i++)
{
if (strcmp (tests[i].name, name) == 0)
return &tests[i];
}
return NULL;
}
int
main (int argc,
char *argv[])
{
PerformanceTest *test;
GOptionContext *context;
GError *error = NULL;
const char *str;
if ((str = g_getenv ("GLIB_PERFORMANCE_FACTOR")) && str[0])
{
test_factor = g_strtod (str, NULL);
}
context = g_option_context_new ("GObject performance tests");
g_option_context_add_main_entries (context, cmd_entries, NULL);
if (!g_option_context_parse (context, &argc, &argv, &error))
{
g_printerr ("%s: %s\n", argv[0], error->message);
return 1;
}
if (test_factor < 0)
{
g_printerr ("%s: test factor must be positive\n", argv[0]);
return 1;
}
global_timer = g_timer_new ();
if (argc > 1)
{
for (int i = 1; i < argc; i++)
{
test = find_test (argv[i]);
if (test)
run_test (test);
}
}
else
{
for (size_t k = 0; k < G_N_ELEMENTS (tests); k++)
run_test (&tests[k]);
}
g_option_context_free (context);
g_clear_pointer (&global_timer, g_timer_destroy);
return 0;
}