/* GIO - GLib Input, Output and Streaming Library * * Copyright © 2008, 2009 codethink * Copyright © 2009 Red Hat, Inc * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General * Public License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place, Suite 330, * Boston, MA 02111-1307, USA. * * Authors: Ryan Lortie * Alexander Larsson */ #include "config.h" #include "gsocketclient.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "glibintl.h" /** * SECTION:gsocketclient * @short_description: Helper for connecting to a network service * @include: gio/gio.h * @see_also: #GSocketConnection, #GSocketListener * * #GSocketClient is a lightweight high-level utility class for connecting to * a network host using a connection oriented socket type. * * You create a #GSocketClient object, set any options you want, and then * call a sync or async connect operation, which returns a #GSocketConnection * subclass on success. * * The type of the #GSocketConnection object returned depends on the type of * the underlying socket that is in use. For instance, for a TCP/IP connection * it will be a #GTcpConnection. * * As #GSocketClient is a lightweight object, you don't need to cache it. You * can just create a new one any time you need one. * * Since: 2.22 */ G_DEFINE_TYPE (GSocketClient, g_socket_client, G_TYPE_OBJECT); enum { EVENT, LAST_SIGNAL }; static guint signals[LAST_SIGNAL] = { 0 }; enum { PROP_NONE, PROP_FAMILY, PROP_TYPE, PROP_PROTOCOL, PROP_LOCAL_ADDRESS, PROP_TIMEOUT, PROP_ENABLE_PROXY, PROP_TLS, PROP_TLS_VALIDATION_FLAGS }; struct _GSocketClientPrivate { GSocketFamily family; GSocketType type; GSocketProtocol protocol; GSocketAddress *local_address; guint timeout; gboolean enable_proxy; GHashTable *app_proxies; gboolean tls; GTlsCertificateFlags tls_validation_flags; }; static GSocket * create_socket (GSocketClient *client, GSocketAddress *dest_address, GError **error) { GSocketFamily family; GSocket *socket; family = client->priv->family; if (family == G_SOCKET_FAMILY_INVALID && client->priv->local_address != NULL) family = g_socket_address_get_family (client->priv->local_address); if (family == G_SOCKET_FAMILY_INVALID) family = g_socket_address_get_family (dest_address); socket = g_socket_new (family, client->priv->type, client->priv->protocol, error); if (socket == NULL) return NULL; if (client->priv->local_address) { if (!g_socket_bind (socket, client->priv->local_address, FALSE, error)) { g_object_unref (socket); return NULL; } } if (client->priv->timeout) g_socket_set_timeout (socket, client->priv->timeout); return socket; } static gboolean can_use_proxy (GSocketClient *client) { GSocketClientPrivate *priv = client->priv; return priv->enable_proxy && priv->type == G_SOCKET_TYPE_STREAM; } static void clarify_connect_error (GError *error, GSocketConnectable *connectable, GSocketAddress *address) { const char *name; char *tmp_name = NULL; if (G_IS_PROXY_ADDRESS (address)) { name = tmp_name = g_inet_address_to_string (g_inet_socket_address_get_address (G_INET_SOCKET_ADDRESS (address))); g_prefix_error (&error, _("Could not connect to proxy server %s: "), name); } else { if (G_IS_NETWORK_ADDRESS (connectable)) name = g_network_address_get_hostname (G_NETWORK_ADDRESS (connectable)); else if (G_IS_NETWORK_SERVICE (connectable)) name = g_network_service_get_domain (G_NETWORK_SERVICE (connectable)); else if (G_IS_INET_SOCKET_ADDRESS (connectable)) name = tmp_name = g_inet_address_to_string (g_inet_socket_address_get_address (G_INET_SOCKET_ADDRESS (connectable))); else name = NULL; if (name) g_prefix_error (&error, _("Could not connect to %s: "), name); else g_prefix_error (&error, _("Could not connect: ")); } g_free (tmp_name); } static void g_socket_client_init (GSocketClient *client) { client->priv = G_TYPE_INSTANCE_GET_PRIVATE (client, G_TYPE_SOCKET_CLIENT, GSocketClientPrivate); client->priv->type = G_SOCKET_TYPE_STREAM; client->priv->app_proxies = g_hash_table_new_full (g_str_hash, g_str_equal, g_free, NULL); } /** * g_socket_client_new: * * Creates a new #GSocketClient with the default options. * * Returns: a #GSocketClient. * Free the returned object with g_object_unref(). * * Since: 2.22 */ GSocketClient * g_socket_client_new (void) { return g_object_new (G_TYPE_SOCKET_CLIENT, NULL); } static void g_socket_client_finalize (GObject *object) { GSocketClient *client = G_SOCKET_CLIENT (object); if (client->priv->local_address) g_object_unref (client->priv->local_address); if (G_OBJECT_CLASS (g_socket_client_parent_class)->finalize) (*G_OBJECT_CLASS (g_socket_client_parent_class)->finalize) (object); g_hash_table_unref (client->priv->app_proxies); } static void g_socket_client_get_property (GObject *object, guint prop_id, GValue *value, GParamSpec *pspec) { GSocketClient *client = G_SOCKET_CLIENT (object); switch (prop_id) { case PROP_FAMILY: g_value_set_enum (value, client->priv->family); break; case PROP_TYPE: g_value_set_enum (value, client->priv->type); break; case PROP_PROTOCOL: g_value_set_enum (value, client->priv->protocol); break; case PROP_LOCAL_ADDRESS: g_value_set_object (value, client->priv->local_address); break; case PROP_TIMEOUT: g_value_set_uint (value, client->priv->timeout); break; case PROP_ENABLE_PROXY: g_value_set_boolean (value, client->priv->enable_proxy); break; case PROP_TLS: g_value_set_boolean (value, g_socket_client_get_tls (client)); break; case PROP_TLS_VALIDATION_FLAGS: g_value_set_flags (value, g_socket_client_get_tls_validation_flags (client)); break; default: G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); } } static void g_socket_client_set_property (GObject *object, guint prop_id, const GValue *value, GParamSpec *pspec) { GSocketClient *client = G_SOCKET_CLIENT (object); switch (prop_id) { case PROP_FAMILY: g_socket_client_set_family (client, g_value_get_enum (value)); break; case PROP_TYPE: g_socket_client_set_socket_type (client, g_value_get_enum (value)); break; case PROP_PROTOCOL: g_socket_client_set_protocol (client, g_value_get_enum (value)); break; case PROP_LOCAL_ADDRESS: g_socket_client_set_local_address (client, g_value_get_object (value)); break; case PROP_TIMEOUT: g_socket_client_set_timeout (client, g_value_get_uint (value)); break; case PROP_ENABLE_PROXY: g_socket_client_set_enable_proxy (client, g_value_get_boolean (value)); break; case PROP_TLS: g_socket_client_set_tls (client, g_value_get_boolean (value)); break; case PROP_TLS_VALIDATION_FLAGS: g_socket_client_set_tls_validation_flags (client, g_value_get_flags (value)); break; default: G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); } } /** * g_socket_client_get_family: * @client: a #GSocketClient. * * Gets the socket family of the socket client. * * See g_socket_client_set_family() for details. * * Returns: a #GSocketFamily * * Since: 2.22 */ GSocketFamily g_socket_client_get_family (GSocketClient *client) { return client->priv->family; } /** * g_socket_client_set_family: * @client: a #GSocketClient. * @family: a #GSocketFamily * * Sets the socket family of the socket client. * If this is set to something other than %G_SOCKET_FAMILY_INVALID * then the sockets created by this object will be of the specified * family. * * This might be useful for instance if you want to force the local * connection to be an ipv4 socket, even though the address might * be an ipv6 mapped to ipv4 address. * * Since: 2.22 */ void g_socket_client_set_family (GSocketClient *client, GSocketFamily family) { if (client->priv->family == family) return; client->priv->family = family; g_object_notify (G_OBJECT (client), "family"); } /** * g_socket_client_get_socket_type: * @client: a #GSocketClient. * * Gets the socket type of the socket client. * * See g_socket_client_set_socket_type() for details. * * Returns: a #GSocketFamily * * Since: 2.22 */ GSocketType g_socket_client_get_socket_type (GSocketClient *client) { return client->priv->type; } /** * g_socket_client_set_socket_type: * @client: a #GSocketClient. * @type: a #GSocketType * * Sets the socket type of the socket client. * The sockets created by this object will be of the specified * type. * * It doesn't make sense to specify a type of %G_SOCKET_TYPE_DATAGRAM, * as GSocketClient is used for connection oriented services. * * Since: 2.22 */ void g_socket_client_set_socket_type (GSocketClient *client, GSocketType type) { if (client->priv->type == type) return; client->priv->type = type; g_object_notify (G_OBJECT (client), "type"); } /** * g_socket_client_get_protocol: * @client: a #GSocketClient * * Gets the protocol name type of the socket client. * * See g_socket_client_set_protocol() for details. * * Returns: a #GSocketProtocol * * Since: 2.22 */ GSocketProtocol g_socket_client_get_protocol (GSocketClient *client) { return client->priv->protocol; } /** * g_socket_client_set_protocol: * @client: a #GSocketClient. * @protocol: a #GSocketProtocol * * Sets the protocol of the socket client. * The sockets created by this object will use of the specified * protocol. * * If @protocol is %0 that means to use the default * protocol for the socket family and type. * * Since: 2.22 */ void g_socket_client_set_protocol (GSocketClient *client, GSocketProtocol protocol) { if (client->priv->protocol == protocol) return; client->priv->protocol = protocol; g_object_notify (G_OBJECT (client), "protocol"); } /** * g_socket_client_get_local_address: * @client: a #GSocketClient. * * Gets the local address of the socket client. * * See g_socket_client_set_local_address() for details. * * Returns: (transfer none): a #GSocketAddress or %NULL. Do not free. * * Since: 2.22 */ GSocketAddress * g_socket_client_get_local_address (GSocketClient *client) { return client->priv->local_address; } /** * g_socket_client_set_local_address: * @client: a #GSocketClient. * @address: a #GSocketAddress, or %NULL * * Sets the local address of the socket client. * The sockets created by this object will bound to the * specified address (if not %NULL) before connecting. * * This is useful if you want to ensure that the local * side of the connection is on a specific port, or on * a specific interface. * * Since: 2.22 */ void g_socket_client_set_local_address (GSocketClient *client, GSocketAddress *address) { if (address) g_object_ref (address); if (client->priv->local_address) { g_object_unref (client->priv->local_address); } client->priv->local_address = address; g_object_notify (G_OBJECT (client), "local-address"); } /** * g_socket_client_get_timeout: * @client: a #GSocketClient * * Gets the I/O timeout time for sockets created by @client. * * See g_socket_client_set_timeout() for details. * * Returns: the timeout in seconds * * Since: 2.26 */ guint g_socket_client_get_timeout (GSocketClient *client) { return client->priv->timeout; } /** * g_socket_client_set_timeout: * @client: a #GSocketClient. * @timeout: the timeout * * Sets the I/O timeout for sockets created by @client. @timeout is a * time in seconds, or 0 for no timeout (the default). * * The timeout value affects the initial connection attempt as well, * so setting this may cause calls to g_socket_client_connect(), etc, * to fail with %G_IO_ERROR_TIMED_OUT. * * Since: 2.26 */ void g_socket_client_set_timeout (GSocketClient *client, guint timeout) { if (client->priv->timeout == timeout) return; client->priv->timeout = timeout; g_object_notify (G_OBJECT (client), "timeout"); } /** * g_socket_client_get_enable_proxy: * @client: a #GSocketClient. * * Gets the proxy enable state; see g_socket_client_set_enable_proxy() * * Returns: whether proxying is enabled * * Since: 2.26 */ gboolean g_socket_client_get_enable_proxy (GSocketClient *client) { return client->priv->enable_proxy; } /** * g_socket_client_set_enable_proxy: * @client: a #GSocketClient. * @enable: whether to enable proxies * * Sets whether or not @client attempts to make connections via a * proxy server. When enabled (the default), #GSocketClient will use a * #GProxyResolver to determine if a proxy protocol such as SOCKS is * needed, and automatically do the necessary proxy negotiation. * * Since: 2.26 */ void g_socket_client_set_enable_proxy (GSocketClient *client, gboolean enable) { enable = !!enable; if (client->priv->enable_proxy == enable) return; client->priv->enable_proxy = enable; g_object_notify (G_OBJECT (client), "enable-proxy"); } /** * g_socket_client_get_tls: * @client: a #GSocketClient. * * Gets whether @client creates TLS connections. See * g_socket_client_set_tls() for details. * * Returns: whether @client uses TLS * * Since: 2.28 */ gboolean g_socket_client_get_tls (GSocketClient *client) { return client->priv->tls; } /** * g_socket_client_set_tls: * @client: a #GSocketClient. * @tls: whether to use TLS * * Sets whether @client creates TLS (aka SSL) connections. If @tls is * %TRUE, @client will wrap its connections in a #GTlsClientConnection * and perform a TLS handshake when connecting. * * Note that since #GSocketClient must return a #GSocketConnection, * but #GTlsClientConnection is not a #GSocketConnection, this * actually wraps the resulting #GTlsClientConnection in a * #GTcpWrapperConnection when returning it. You can use * g_tcp_wrapper_connection_get_base_io_stream() on the return value * to extract the #GTlsClientConnection. * * If you need to modify the behavior of the TLS handshake (eg, by * setting a client-side certificate to use, or connecting to the * #GTlsConnection::accept-certificate signal), you can connect to * @client's #GSocketClient::event signal and wait for it to be * emitted with %G_SOCKET_CLIENT_TLS_HANDSHAKING, which will give you * a chance to see the #GTlsClientConnection before the handshake * starts. * * Since: 2.28 */ void g_socket_client_set_tls (GSocketClient *client, gboolean tls) { tls = !!tls; if (tls == client->priv->tls) return; client->priv->tls = tls; g_object_notify (G_OBJECT (client), "tls"); } /** * g_socket_client_get_tls_validation_flags: * @client: a #GSocketClient. * * Gets the TLS validation flags used creating TLS connections via * @client. * * Returns: the TLS validation flags * * Since: 2.28 */ GTlsCertificateFlags g_socket_client_get_tls_validation_flags (GSocketClient *client) { return client->priv->tls_validation_flags; } /** * g_socket_client_set_tls_validation_flags: * @client: a #GSocketClient. * @flags: the validation flags * * Sets the TLS validation flags used when creating TLS connections * via @client. The default value is %G_TLS_CERTIFICATE_VALIDATE_ALL. * * Since: 2.28 */ void g_socket_client_set_tls_validation_flags (GSocketClient *client, GTlsCertificateFlags flags) { if (client->priv->tls_validation_flags != flags) { client->priv->tls_validation_flags = flags; g_object_notify (G_OBJECT (client), "tls-validation-flags"); } } static void g_socket_client_class_init (GSocketClientClass *class) { GObjectClass *gobject_class = G_OBJECT_CLASS (class); g_type_class_add_private (class, sizeof (GSocketClientPrivate)); gobject_class->finalize = g_socket_client_finalize; gobject_class->set_property = g_socket_client_set_property; gobject_class->get_property = g_socket_client_get_property; /** * GSocketClient::event: * @client: the #GSocketClient * @event: the event that is occurring * @connectable: the #GSocketConnectable that @event is occurring on * @connection: the current representation of the connection * * Emitted when @client's activity on @connectable changes state. * Among other things, this can be used to provide progress * information about a network connection in the UI. The meanings of * the different @event values are as follows: * * * * %G_SOCKET_CLIENT_RESOLVING: * * @client is about to look up @connectable in DNS. * @connection will be %NULL. * * * * %G_SOCKET_CLIENT_RESOLVED: * * @client has successfully resolved @connectable in DNS. * @connection will be %NULL. * * * * %G_SOCKET_CLIENT_CONNECTING: * * @client is about to make a connection to a remote host; * either a proxy server or the destination server itself. * @connection is the #GSocketConnection, which is not yet * connected. * * * * %G_SOCKET_CLIENT_CONNECTED: * * @client has successfully connected to a remote host. * @connection is the connected #GSocketConnection. * * * * %G_SOCKET_CLIENT_PROXY_NEGOTIATING: * * @client is about to negotiate with a proxy to get it to * connect to @connectable. @connection is the * #GSocketConnection to the proxy server. * * * * %G_SOCKET_CLIENT_PROXY_NEGOTIATED: * * @client has negotiated a connection to @connectable through * a proxy server. @connection is the stream returned from * g_proxy_connect(), which may or may not be a * #GSocketConnection. * * * * %G_SOCKET_CLIENT_TLS_HANDSHAKING: * * @client is about to begin a TLS handshake. @connection is a * #GTlsClientConnection. * * * * %G_SOCKET_CLIENT_TLS_HANDSHAKED: * * @client has successfully completed the TLS handshake. * @connection is a #GTlsClientConnection. * * * * %G_SOCKET_CLIENT_COMPLETE: * * @client has either successfully connected to @connectable * (in which case @connection is the #GSocketConnection that * it will be returning to the caller) or has failed (in which * case @connection is %NULL and the client is about to return * an error). * * * * * Each event except %G_SOCKET_CLIENT_COMPLETE may be emitted * multiple times (or not at all) for a given connectable (in * particular, if @client ends up attempting to connect to more than * one address). However, if @client emits the #GSocketClient:event * signal at all for a given connectable, that it will always emit * it with %G_SOCKET_CLIENT_COMPLETE when it is done. * * Note that there may be additional #GSocketClientEvent values in * the future; unrecognized @event values should be ignored. * * Since: 2.32 */ signals[EVENT] = g_signal_new (I_("event"), G_TYPE_FROM_CLASS (gobject_class), G_SIGNAL_RUN_LAST, G_STRUCT_OFFSET (GSocketClientClass, event), NULL, NULL, NULL, G_TYPE_NONE, 3, G_TYPE_SOCKET_CLIENT_EVENT, G_TYPE_SOCKET_CONNECTABLE, G_TYPE_IO_STREAM); g_object_class_install_property (gobject_class, PROP_FAMILY, g_param_spec_enum ("family", P_("Socket family"), P_("The sockets address family to use for socket construction"), G_TYPE_SOCKET_FAMILY, G_SOCKET_FAMILY_INVALID, G_PARAM_CONSTRUCT | G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_TYPE, g_param_spec_enum ("type", P_("Socket type"), P_("The sockets type to use for socket construction"), G_TYPE_SOCKET_TYPE, G_SOCKET_TYPE_STREAM, G_PARAM_CONSTRUCT | G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_PROTOCOL, g_param_spec_enum ("protocol", P_("Socket protocol"), P_("The protocol to use for socket construction, or 0 for default"), G_TYPE_SOCKET_PROTOCOL, G_SOCKET_PROTOCOL_DEFAULT, G_PARAM_CONSTRUCT | G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_LOCAL_ADDRESS, g_param_spec_object ("local-address", P_("Local address"), P_("The local address constructed sockets will be bound to"), G_TYPE_SOCKET_ADDRESS, G_PARAM_CONSTRUCT | G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_TIMEOUT, g_param_spec_uint ("timeout", P_("Socket timeout"), P_("The I/O timeout for sockets, or 0 for none"), 0, G_MAXUINT, 0, G_PARAM_CONSTRUCT | G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_ENABLE_PROXY, g_param_spec_boolean ("enable-proxy", P_("Enable proxy"), P_("Enable proxy support"), TRUE, G_PARAM_CONSTRUCT | G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_TLS, g_param_spec_boolean ("tls", P_("TLS"), P_("Whether to create TLS connections"), FALSE, G_PARAM_CONSTRUCT | G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_TLS_VALIDATION_FLAGS, g_param_spec_flags ("tls-validation-flags", P_("TLS validation flags"), P_("TLS validation flags to use"), G_TYPE_TLS_CERTIFICATE_FLAGS, G_TLS_CERTIFICATE_VALIDATE_ALL, G_PARAM_CONSTRUCT | G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); } static void g_socket_client_emit_event (GSocketClient *client, GSocketClientEvent event, GSocketConnectable *connectable, GIOStream *connection) { g_signal_emit (client, signals[EVENT], 0, event, connectable, connection); } /** * g_socket_client_connect: * @client: a #GSocketClient. * @connectable: a #GSocketConnectable specifying the remote address. * @cancellable: (allow-none): optional #GCancellable object, %NULL to ignore. * @error: #GError for error reporting, or %NULL to ignore. * * Tries to resolve the @connectable and make a network connection to it. * * Upon a successful connection, a new #GSocketConnection is constructed * and returned. The caller owns this new object and must drop their * reference to it when finished with it. * * The type of the #GSocketConnection object returned depends on the type of * the underlying socket that is used. For instance, for a TCP/IP connection * it will be a #GTcpConnection. * * The socket created will be the same family as the address that the * @connectable resolves to, unless family is set with g_socket_client_set_family() * or indirectly via g_socket_client_set_local_address(). The socket type * defaults to %G_SOCKET_TYPE_STREAM but can be set with * g_socket_client_set_socket_type(). * * If a local address is specified with g_socket_client_set_local_address() the * socket will be bound to this address before connecting. * * Returns: (transfer full): a #GSocketConnection on success, %NULL on error. * * Since: 2.22 */ GSocketConnection * g_socket_client_connect (GSocketClient *client, GSocketConnectable *connectable, GCancellable *cancellable, GError **error) { GIOStream *connection = NULL; GSocketAddressEnumerator *enumerator = NULL; GError *last_error, *tmp_error; last_error = NULL; if (can_use_proxy (client)) enumerator = g_socket_connectable_proxy_enumerate (connectable); else enumerator = g_socket_connectable_enumerate (connectable); while (connection == NULL) { GSocketAddress *address = NULL; gboolean application_proxy = FALSE; GSocket *socket; gboolean using_proxy; if (g_cancellable_is_cancelled (cancellable)) { g_clear_error (error); g_cancellable_set_error_if_cancelled (cancellable, error); break; } tmp_error = NULL; g_socket_client_emit_event (client, G_SOCKET_CLIENT_RESOLVING, connectable, NULL); address = g_socket_address_enumerator_next (enumerator, cancellable, &tmp_error); if (address == NULL) { if (tmp_error) { g_clear_error (&last_error); g_propagate_error (error, tmp_error); } else if (last_error) { g_propagate_error (error, last_error); } else g_set_error_literal (error, G_IO_ERROR, G_IO_ERROR_FAILED, _("Unknown error on connect")); break; } g_socket_client_emit_event (client, G_SOCKET_CLIENT_RESOLVED, connectable, NULL); using_proxy = (G_IS_PROXY_ADDRESS (address) && client->priv->enable_proxy); /* clear error from previous attempt */ g_clear_error (&last_error); socket = create_socket (client, address, &last_error); if (socket == NULL) { g_object_unref (address); continue; } connection = (GIOStream *)g_socket_connection_factory_create_connection (socket); g_socket_client_emit_event (client, G_SOCKET_CLIENT_CONNECTING, connectable, connection); if (g_socket_connection_connect (G_SOCKET_CONNECTION (connection), address, cancellable, &last_error)) { g_socket_client_emit_event (client, G_SOCKET_CLIENT_CONNECTED, connectable, connection); } else { clarify_connect_error (last_error, connectable, address); g_object_unref (connection); connection = NULL; } if (connection && using_proxy) { GProxyAddress *proxy_addr = G_PROXY_ADDRESS (address); const gchar *protocol; GProxy *proxy; protocol = g_proxy_address_get_protocol (proxy_addr); proxy = g_proxy_get_default_for_protocol (protocol); /* The connection should not be anything else then TCP Connection, * but let's put a safety guard in case */ if (!G_IS_TCP_CONNECTION (connection)) { g_critical ("Trying to proxy over non-TCP connection, this is " "most likely a bug in GLib IO library."); g_set_error_literal (&last_error, G_IO_ERROR, G_IO_ERROR_NOT_SUPPORTED, _("Trying to proxy over non-TCP connection is not supported.")); g_object_unref (connection); connection = NULL; } else if (proxy) { GIOStream *proxy_connection; g_socket_client_emit_event (client, G_SOCKET_CLIENT_PROXY_NEGOTIATING, connectable, connection); proxy_connection = g_proxy_connect (proxy, connection, proxy_addr, cancellable, &last_error); g_object_unref (connection); connection = proxy_connection; g_object_unref (proxy); if (connection) g_socket_client_emit_event (client, G_SOCKET_CLIENT_PROXY_NEGOTIATED, connectable, connection); } else if (!g_hash_table_lookup_extended (client->priv->app_proxies, protocol, NULL, NULL)) { g_set_error (&last_error, G_IO_ERROR, G_IO_ERROR_NOT_SUPPORTED, _("Proxy protocol '%s' is not supported."), protocol); g_object_unref (connection); connection = NULL; } else { application_proxy = TRUE; } } if (!application_proxy && connection && client->priv->tls) { GIOStream *tlsconn; tlsconn = g_tls_client_connection_new (connection, connectable, &last_error); g_object_unref (connection); connection = tlsconn; if (tlsconn) { g_tls_client_connection_set_validation_flags (G_TLS_CLIENT_CONNECTION (tlsconn), client->priv->tls_validation_flags); g_socket_client_emit_event (client, G_SOCKET_CLIENT_TLS_HANDSHAKING, connectable, connection); if (g_tls_connection_handshake (G_TLS_CONNECTION (tlsconn), cancellable, &last_error)) { g_socket_client_emit_event (client, G_SOCKET_CLIENT_TLS_HANDSHAKED, connectable, connection); } else { g_object_unref (tlsconn); connection = NULL; } } } if (connection && !G_IS_SOCKET_CONNECTION (connection)) { GSocketConnection *wrapper_connection; wrapper_connection = g_tcp_wrapper_connection_new (connection, socket); g_object_unref (connection); connection = (GIOStream *)wrapper_connection; } g_object_unref (socket); g_object_unref (address); } g_object_unref (enumerator); g_socket_client_emit_event (client, G_SOCKET_CLIENT_COMPLETE, connectable, connection); return G_SOCKET_CONNECTION (connection); } /** * g_socket_client_connect_to_host: * @client: a #GSocketClient * @host_and_port: the name and optionally port of the host to connect to * @default_port: the default port to connect to * @cancellable: (allow-none): a #GCancellable, or %NULL * @error: a pointer to a #GError, or %NULL * * This is a helper function for g_socket_client_connect(). * * Attempts to create a TCP connection to the named host. * * @host_and_port may be in any of a number of recognized formats; an IPv6 * address, an IPv4 address, or a domain name (in which case a DNS * lookup is performed). Quoting with [] is supported for all address * types. A port override may be specified in the usual way with a * colon. Ports may be given as decimal numbers or symbolic names (in * which case an /etc/services lookup is performed). * * If no port override is given in @host_and_port then @default_port will be * used as the port number to connect to. * * In general, @host_and_port is expected to be provided by the user (allowing * them to give the hostname, and a port override if necessary) and * @default_port is expected to be provided by the application. * * In the case that an IP address is given, a single connection * attempt is made. In the case that a name is given, multiple * connection attempts may be made, in turn and according to the * number of address records in DNS, until a connection succeeds. * * Upon a successful connection, a new #GSocketConnection is constructed * and returned. The caller owns this new object and must drop their * reference to it when finished with it. * * In the event of any failure (DNS error, service not found, no hosts * connectable) %NULL is returned and @error (if non-%NULL) is set * accordingly. * * Returns: (transfer full): a #GSocketConnection on success, %NULL on error. * * Since: 2.22 */ GSocketConnection * g_socket_client_connect_to_host (GSocketClient *client, const gchar *host_and_port, guint16 default_port, GCancellable *cancellable, GError **error) { GSocketConnectable *connectable; GSocketConnection *connection; connectable = g_network_address_parse (host_and_port, default_port, error); if (connectable == NULL) return NULL; connection = g_socket_client_connect (client, connectable, cancellable, error); g_object_unref (connectable); return connection; } /** * g_socket_client_connect_to_service: * @client: a #GSocketConnection * @domain: a domain name * @service: the name of the service to connect to * @cancellable: (allow-none): a #GCancellable, or %NULL * @error: a pointer to a #GError, or %NULL * * Attempts to create a TCP connection to a service. * * This call looks up the SRV record for @service at @domain for the * "tcp" protocol. It then attempts to connect, in turn, to each of * the hosts providing the service until either a connection succeeds * or there are no hosts remaining. * * Upon a successful connection, a new #GSocketConnection is constructed * and returned. The caller owns this new object and must drop their * reference to it when finished with it. * * In the event of any failure (DNS error, service not found, no hosts * connectable) %NULL is returned and @error (if non-%NULL) is set * accordingly. * * Returns: (transfer full): a #GSocketConnection if successful, or %NULL on error */ GSocketConnection * g_socket_client_connect_to_service (GSocketClient *client, const gchar *domain, const gchar *service, GCancellable *cancellable, GError **error) { GSocketConnectable *connectable; GSocketConnection *connection; connectable = g_network_service_new (service, "tcp", domain); connection = g_socket_client_connect (client, connectable, cancellable, error); g_object_unref (connectable); return connection; } /** * g_socket_client_connect_to_uri: * @client: a #GSocketClient * @uri: A network URI * @default_port: the default port to connect to * @cancellable: (allow-none): a #GCancellable, or %NULL * @error: a pointer to a #GError, or %NULL * * This is a helper function for g_socket_client_connect(). * * Attempts to create a TCP connection with a network URI. * * @uri may be any valid URI containing an "authority" (hostname/port) * component. If a port is not specified in the URI, @default_port * will be used. TLS will be negotiated if #GSocketClient:tls is %TRUE. * (#GSocketClient does not know to automatically assume TLS for * certain URI schemes.) * * Using this rather than g_socket_client_connect() or * g_socket_client_connect_to_host() allows #GSocketClient to * determine when to use application-specific proxy protocols. * * Upon a successful connection, a new #GSocketConnection is constructed * and returned. The caller owns this new object and must drop their * reference to it when finished with it. * * In the event of any failure (DNS error, service not found, no hosts * connectable) %NULL is returned and @error (if non-%NULL) is set * accordingly. * * Returns: (transfer full): a #GSocketConnection on success, %NULL on error. * * Since: 2.26 */ GSocketConnection * g_socket_client_connect_to_uri (GSocketClient *client, const gchar *uri, guint16 default_port, GCancellable *cancellable, GError **error) { GSocketConnectable *connectable; GSocketConnection *connection; connectable = g_network_address_parse_uri (uri, default_port, error); if (connectable == NULL) return NULL; connection = g_socket_client_connect (client, connectable, cancellable, error); g_object_unref (connectable); return connection; } typedef struct { GSimpleAsyncResult *result; GCancellable *cancellable; GSocketClient *client; GSocketConnectable *connectable; GSocketAddressEnumerator *enumerator; GProxyAddress *proxy_addr; GSocketAddress *current_addr; GSocket *current_socket; GIOStream *connection; GError *last_error; } GSocketClientAsyncConnectData; static void g_socket_client_async_connect_complete (GSocketClientAsyncConnectData *data) { g_socket_client_emit_event (data->client, G_SOCKET_CLIENT_COMPLETE, data->connectable, data->connection); if (data->last_error) { g_simple_async_result_take_error (data->result, data->last_error); } else { g_assert (data->connection); if (!G_IS_SOCKET_CONNECTION (data->connection)) { GSocketConnection *wrapper_connection; wrapper_connection = g_tcp_wrapper_connection_new (data->connection, data->current_socket); g_object_unref (data->connection); data->connection = (GIOStream *)wrapper_connection; } g_simple_async_result_set_op_res_gpointer (data->result, data->connection, g_object_unref); } g_simple_async_result_complete (data->result); g_object_unref (data->result); g_object_unref (data->connectable); g_object_unref (data->enumerator); if (data->cancellable) g_object_unref (data->cancellable); if (data->current_addr) g_object_unref (data->current_addr); if (data->current_socket) g_object_unref (data->current_socket); if (data->proxy_addr) g_object_unref (data->proxy_addr); g_slice_free (GSocketClientAsyncConnectData, data); } static void g_socket_client_enumerator_callback (GObject *object, GAsyncResult *result, gpointer user_data); static void set_last_error (GSocketClientAsyncConnectData *data, GError *error) { g_clear_error (&data->last_error); data->last_error = error; } static void enumerator_next_async (GSocketClientAsyncConnectData *data) { /* We need to cleanup the state */ g_clear_object (&data->current_socket); g_clear_object (&data->current_addr); g_clear_object (&data->proxy_addr); g_clear_object (&data->connection); g_socket_client_emit_event (data->client, G_SOCKET_CLIENT_RESOLVING, data->connectable, NULL); g_socket_address_enumerator_next_async (data->enumerator, data->cancellable, g_socket_client_enumerator_callback, data); } static void g_socket_client_tls_handshake_callback (GObject *object, GAsyncResult *result, gpointer user_data) { GSocketClientAsyncConnectData *data = user_data; if (g_tls_connection_handshake_finish (G_TLS_CONNECTION (object), result, &data->last_error)) { g_object_unref (data->connection); data->connection = G_IO_STREAM (object); g_socket_client_emit_event (data->client, G_SOCKET_CLIENT_TLS_HANDSHAKED, data->connectable, data->connection); g_socket_client_async_connect_complete (data); } else { g_object_unref (object); enumerator_next_async (data); } } static void g_socket_client_tls_handshake (GSocketClientAsyncConnectData *data) { GIOStream *tlsconn; if (!data->client->priv->tls) { g_socket_client_async_connect_complete (data); return; } tlsconn = g_tls_client_connection_new (data->connection, data->connectable, &data->last_error); if (tlsconn) { g_tls_client_connection_set_validation_flags (G_TLS_CLIENT_CONNECTION (tlsconn), data->client->priv->tls_validation_flags); g_socket_client_emit_event (data->client, G_SOCKET_CLIENT_TLS_HANDSHAKING, data->connectable, G_IO_STREAM (tlsconn)); g_tls_connection_handshake_async (G_TLS_CONNECTION (tlsconn), G_PRIORITY_DEFAULT, data->cancellable, g_socket_client_tls_handshake_callback, data); } else { enumerator_next_async (data); } } static void g_socket_client_proxy_connect_callback (GObject *object, GAsyncResult *result, gpointer user_data) { GSocketClientAsyncConnectData *data = user_data; g_object_unref (data->connection); data->connection = g_proxy_connect_finish (G_PROXY (object), result, &data->last_error); if (data->connection) { g_socket_client_emit_event (data->client, G_SOCKET_CLIENT_PROXY_NEGOTIATED, data->connectable, data->connection); } else { enumerator_next_async (data); return; } g_socket_client_tls_handshake (data); } static void g_socket_client_connected_callback (GObject *source, GAsyncResult *result, gpointer user_data) { GSocketClientAsyncConnectData *data = user_data; GError *error = NULL; GProxy *proxy; const gchar *protocol; if (!g_socket_connection_connect_finish (G_SOCKET_CONNECTION (source), result, &error)) { clarify_connect_error (error, data->connectable, data->current_addr); set_last_error (data, error); /* try next one */ enumerator_next_async (data); return; } g_socket_client_emit_event (data->client, G_SOCKET_CLIENT_CONNECTED, data->connectable, data->connection); /* wrong, but backward compatible */ g_socket_set_blocking (data->current_socket, TRUE); if (!data->proxy_addr) { g_socket_client_tls_handshake (data); return; } protocol = g_proxy_address_get_protocol (data->proxy_addr); proxy = g_proxy_get_default_for_protocol (protocol); /* The connection should not be anything other than TCP, * but let's put a safety guard in case */ if (!G_IS_TCP_CONNECTION (data->connection)) { g_critical ("Trying to proxy over non-TCP connection, this is " "most likely a bug in GLib IO library."); g_set_error_literal (&data->last_error, G_IO_ERROR, G_IO_ERROR_NOT_SUPPORTED, _("Trying to proxy over non-TCP connection is not supported.")); enumerator_next_async (data); } else if (proxy) { g_socket_client_emit_event (data->client, G_SOCKET_CLIENT_PROXY_NEGOTIATING, data->connectable, data->connection); g_proxy_connect_async (proxy, data->connection, data->proxy_addr, data->cancellable, g_socket_client_proxy_connect_callback, data); g_object_unref (proxy); } else if (!g_hash_table_lookup_extended (data->client->priv->app_proxies, protocol, NULL, NULL)) { g_clear_error (&data->last_error); g_set_error (&data->last_error, G_IO_ERROR, G_IO_ERROR_NOT_SUPPORTED, _("Proxy protocol '%s' is not supported."), protocol); enumerator_next_async (data); } else { /* Simply complete the connection, we don't want to do TLS handshake * as the application proxy handling may need proxy handshake first */ g_socket_client_async_connect_complete (data); } } static void g_socket_client_enumerator_callback (GObject *object, GAsyncResult *result, gpointer user_data) { GSocketClientAsyncConnectData *data = user_data; GSocketAddress *address = NULL; GSocket *socket; GError *tmp_error = NULL; if (g_cancellable_is_cancelled (data->cancellable)) { g_clear_error (&data->last_error); g_cancellable_set_error_if_cancelled (data->cancellable, &data->last_error); g_socket_client_async_connect_complete (data); return; } address = g_socket_address_enumerator_next_finish (data->enumerator, result, &tmp_error); if (address == NULL) { if (tmp_error) set_last_error (data, tmp_error); else if (data->last_error == NULL) g_set_error_literal (&data->last_error, G_IO_ERROR, G_IO_ERROR_FAILED, _("Unknown error on connect")); g_socket_client_async_connect_complete (data); return; } g_socket_client_emit_event (data->client, G_SOCKET_CLIENT_RESOLVED, data->connectable, NULL); if (G_IS_PROXY_ADDRESS (address) && data->client->priv->enable_proxy) data->proxy_addr = g_object_ref (G_PROXY_ADDRESS (address)); g_clear_error (&data->last_error); socket = create_socket (data->client, address, &data->last_error); if (socket == NULL) { g_object_unref (address); enumerator_next_async (data); return; } data->current_socket = socket; data->current_addr = address; data->connection = (GIOStream *) g_socket_connection_factory_create_connection (socket); g_socket_client_emit_event (data->client, G_SOCKET_CLIENT_CONNECTING, data->connectable, data->connection); g_socket_connection_connect_async (G_SOCKET_CONNECTION (data->connection), address, data->cancellable, g_socket_client_connected_callback, data); } /** * g_socket_client_connect_async: * @client: a #GSocketClient * @connectable: a #GSocketConnectable specifying the remote address. * @cancellable: (allow-none): a #GCancellable, or %NULL * @callback: (scope async): a #GAsyncReadyCallback * @user_data: (closure): user data for the callback * * This is the asynchronous version of g_socket_client_connect(). * * When the operation is finished @callback will be * called. You can then call g_socket_client_connect_finish() to get * the result of the operation. * * Since: 2.22 */ void g_socket_client_connect_async (GSocketClient *client, GSocketConnectable *connectable, GCancellable *cancellable, GAsyncReadyCallback callback, gpointer user_data) { GSocketClientAsyncConnectData *data; g_return_if_fail (G_IS_SOCKET_CLIENT (client)); data = g_slice_new0 (GSocketClientAsyncConnectData); data->result = g_simple_async_result_new (G_OBJECT (client), callback, user_data, g_socket_client_connect_async); data->client = client; if (cancellable) data->cancellable = g_object_ref (cancellable); else data->cancellable = NULL; data->last_error = NULL; data->connectable = g_object_ref (connectable); if (can_use_proxy (client)) data->enumerator = g_socket_connectable_proxy_enumerate (connectable); else data->enumerator = g_socket_connectable_enumerate (connectable); enumerator_next_async (data); } /** * g_socket_client_connect_to_host_async: * @client: a #GSocketClient * @host_and_port: the name and optionally the port of the host to connect to * @default_port: the default port to connect to * @cancellable: (allow-none): a #GCancellable, or %NULL * @callback: (scope async): a #GAsyncReadyCallback * @user_data: (closure): user data for the callback * * This is the asynchronous version of g_socket_client_connect_to_host(). * * When the operation is finished @callback will be * called. You can then call g_socket_client_connect_to_host_finish() to get * the result of the operation. * * Since: 2.22 */ void g_socket_client_connect_to_host_async (GSocketClient *client, const gchar *host_and_port, guint16 default_port, GCancellable *cancellable, GAsyncReadyCallback callback, gpointer user_data) { GSocketConnectable *connectable; GError *error; error = NULL; connectable = g_network_address_parse (host_and_port, default_port, &error); if (connectable == NULL) { g_simple_async_report_take_gerror_in_idle (G_OBJECT (client), callback, user_data, error); } else { g_socket_client_connect_async (client, connectable, cancellable, callback, user_data); g_object_unref (connectable); } } /** * g_socket_client_connect_to_service_async: * @client: a #GSocketClient * @domain: a domain name * @service: the name of the service to connect to * @cancellable: (allow-none): a #GCancellable, or %NULL * @callback: (scope async): a #GAsyncReadyCallback * @user_data: (closure): user data for the callback * * This is the asynchronous version of * g_socket_client_connect_to_service(). * * Since: 2.22 */ void g_socket_client_connect_to_service_async (GSocketClient *client, const gchar *domain, const gchar *service, GCancellable *cancellable, GAsyncReadyCallback callback, gpointer user_data) { GSocketConnectable *connectable; connectable = g_network_service_new (service, "tcp", domain); g_socket_client_connect_async (client, connectable, cancellable, callback, user_data); g_object_unref (connectable); } /** * g_socket_client_connect_to_uri_async: * @client: a #GSocketClient * @uri: a network uri * @default_port: the default port to connect to * @cancellable: (allow-none): a #GCancellable, or %NULL * @callback: (scope async): a #GAsyncReadyCallback * @user_data: (closure): user data for the callback * * This is the asynchronous version of g_socket_client_connect_to_uri(). * * When the operation is finished @callback will be * called. You can then call g_socket_client_connect_to_uri_finish() to get * the result of the operation. * * Since: 2.26 */ void g_socket_client_connect_to_uri_async (GSocketClient *client, const gchar *uri, guint16 default_port, GCancellable *cancellable, GAsyncReadyCallback callback, gpointer user_data) { GSocketConnectable *connectable; GError *error; error = NULL; connectable = g_network_address_parse_uri (uri, default_port, &error); if (connectable == NULL) { g_simple_async_report_take_gerror_in_idle (G_OBJECT (client), callback, user_data, error); } else { g_socket_client_connect_async (client, connectable, cancellable, callback, user_data); g_object_unref (connectable); } } /** * g_socket_client_connect_finish: * @client: a #GSocketClient. * @result: a #GAsyncResult. * @error: a #GError location to store the error occurring, or %NULL to * ignore. * * Finishes an async connect operation. See g_socket_client_connect_async() * * Returns: (transfer full): a #GSocketConnection on success, %NULL on error. * * Since: 2.22 */ GSocketConnection * g_socket_client_connect_finish (GSocketClient *client, GAsyncResult *result, GError **error) { GSimpleAsyncResult *simple = G_SIMPLE_ASYNC_RESULT (result); if (g_simple_async_result_propagate_error (simple, error)) return NULL; return g_object_ref (g_simple_async_result_get_op_res_gpointer (simple)); } /** * g_socket_client_connect_to_host_finish: * @client: a #GSocketClient. * @result: a #GAsyncResult. * @error: a #GError location to store the error occurring, or %NULL to * ignore. * * Finishes an async connect operation. See g_socket_client_connect_to_host_async() * * Returns: (transfer full): a #GSocketConnection on success, %NULL on error. * * Since: 2.22 */ GSocketConnection * g_socket_client_connect_to_host_finish (GSocketClient *client, GAsyncResult *result, GError **error) { return g_socket_client_connect_finish (client, result, error); } /** * g_socket_client_connect_to_service_finish: * @client: a #GSocketClient. * @result: a #GAsyncResult. * @error: a #GError location to store the error occurring, or %NULL to * ignore. * * Finishes an async connect operation. See g_socket_client_connect_to_service_async() * * Returns: (transfer full): a #GSocketConnection on success, %NULL on error. * * Since: 2.22 */ GSocketConnection * g_socket_client_connect_to_service_finish (GSocketClient *client, GAsyncResult *result, GError **error) { return g_socket_client_connect_finish (client, result, error); } /** * g_socket_client_connect_to_uri_finish: * @client: a #GSocketClient. * @result: a #GAsyncResult. * @error: a #GError location to store the error occurring, or %NULL to * ignore. * * Finishes an async connect operation. See g_socket_client_connect_to_uri_async() * * Returns: (transfer full): a #GSocketConnection on success, %NULL on error. * * Since: 2.26 */ GSocketConnection * g_socket_client_connect_to_uri_finish (GSocketClient *client, GAsyncResult *result, GError **error) { return g_socket_client_connect_finish (client, result, error); } /** * g_socket_client_add_application_proxy: * @client: a #GSocketClient * @protocol: The proxy protocol * * Enable proxy protocols to be handled by the application. When the * indicated proxy protocol is returned by the #GProxyResolver, * #GSocketClient will consider this protocol as supported but will * not try to find a #GProxy instance to handle handshaking. The * application must check for this case by calling * g_socket_connection_get_remote_address() on the returned * #GSocketConnection, and seeing if it's a #GProxyAddress of the * appropriate type, to determine whether or not it needs to handle * the proxy handshaking itself. * * This should be used for proxy protocols that are dialects of * another protocol such as HTTP proxy. It also allows cohabitation of * proxy protocols that are reused between protocols. A good example * is HTTP. It can be used to proxy HTTP, FTP and Gopher and can also * be use as generic socket proxy through the HTTP CONNECT method. * * When the proxy is detected as being an application proxy, TLS handshake * will be skipped. This is required to let the application do the proxy * specific handshake. */ void g_socket_client_add_application_proxy (GSocketClient *client, const gchar *protocol) { g_hash_table_insert (client->priv->app_proxies, g_strdup (protocol), NULL); }