/* GLIB - Library of useful routines for C programming * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ /* * Modified by the GLib Team and others 1997-2000. See the AUTHORS * file for a list of people on the GLib Team. See the ChangeLog * files for a list of changes. These files are distributed with * GLib at ftp://ftp.gtk.org/pub/gtk/. */ /* * MT safe */ #include "config.h" #include #include #include "garray.h" #include "gbytes.h" #include "ghash.h" #include "gslice.h" #include "gmem.h" #include "gtestutils.h" #include "gthread.h" #include "gmessages.h" #include "gqsort.h" #include "grefcount.h" /** * SECTION:arrays * @title: Arrays * @short_description: arrays of arbitrary elements which grow * automatically as elements are added * * Arrays are similar to standard C arrays, except that they grow * automatically as elements are added. * * Array elements can be of any size (though all elements of one array * are the same size), and the array can be automatically cleared to * '0's and zero-terminated. * * To create a new array use g_array_new(). * * To add elements to an array, use g_array_append_val(), * g_array_append_vals(), g_array_prepend_val(), and * g_array_prepend_vals(). * * To access an element of an array, use g_array_index(). * * To set the size of an array, use g_array_set_size(). * * To free an array, use g_array_free(). * * Here is an example that stores integers in a #GArray: * |[ * GArray *garray; * gint i; * // We create a new array to store gint values. * // We don't want it zero-terminated or cleared to 0's. * garray = g_array_new (FALSE, FALSE, sizeof (gint)); * for (i = 0; i < 10000; i++) * g_array_append_val (garray, i); * for (i = 0; i < 10000; i++) * if (g_array_index (garray, gint, i) != i) * g_print ("ERROR: got %d instead of %d\n", * g_array_index (garray, gint, i), i); * g_array_free (garray, TRUE); * ]| */ #define MIN_ARRAY_SIZE 16 typedef struct _GRealArray GRealArray; /** * GArray: * @data: a pointer to the element data. The data may be moved as * elements are added to the #GArray. * @len: the number of elements in the #GArray not including the * possible terminating zero element. * * Contains the public fields of a GArray. */ struct _GRealArray { guint8 *data; guint len; guint alloc; guint elt_size; guint zero_terminated : 1; guint clear : 1; gatomicrefcount ref_count; GDestroyNotify clear_func; }; /** * g_array_index: * @a: a #GArray * @t: the type of the elements * @i: the index of the element to return * * Returns the element of a #GArray at the given index. The return * value is cast to the given type. * * This example gets a pointer to an element in a #GArray: * |[ * EDayViewEvent *event; * // This gets a pointer to the 4th element in the array of * // EDayViewEvent structs. * event = &g_array_index (events, EDayViewEvent, 3); * ]| * * Returns: the element of the #GArray at the index given by @i */ #define g_array_elt_len(array,i) ((array)->elt_size * (i)) #define g_array_elt_pos(array,i) ((array)->data + g_array_elt_len((array),(i))) #define g_array_elt_zero(array, pos, len) \ (memset (g_array_elt_pos ((array), pos), 0, g_array_elt_len ((array), len))) #define g_array_zero_terminate(array) G_STMT_START{ \ if ((array)->zero_terminated) \ g_array_elt_zero ((array), (array)->len, 1); \ }G_STMT_END static guint g_nearest_pow (guint num) G_GNUC_CONST; static void g_array_maybe_expand (GRealArray *array, guint len); /** * g_array_new: * @zero_terminated: %TRUE if the array should have an extra element at * the end which is set to 0 * @clear_: %TRUE if #GArray elements should be automatically cleared * to 0 when they are allocated * @element_size: the size of each element in bytes * * Creates a new #GArray with a reference count of 1. * * Returns: the new #GArray */ GArray* g_array_new (gboolean zero_terminated, gboolean clear, guint elt_size) { g_return_val_if_fail (elt_size > 0, NULL); return g_array_sized_new (zero_terminated, clear, elt_size, 0); } /** * g_array_sized_new: * @zero_terminated: %TRUE if the array should have an extra element at * the end with all bits cleared * @clear_: %TRUE if all bits in the array should be cleared to 0 on * allocation * @element_size: size of each element in the array * @reserved_size: number of elements preallocated * * Creates a new #GArray with @reserved_size elements preallocated and * a reference count of 1. This avoids frequent reallocation, if you * are going to add many elements to the array. Note however that the * size of the array is still 0. * * Returns: the new #GArray */ GArray* g_array_sized_new (gboolean zero_terminated, gboolean clear, guint elt_size, guint reserved_size) { GRealArray *array; g_return_val_if_fail (elt_size > 0, NULL); array = g_slice_new (GRealArray); array->data = NULL; array->len = 0; array->alloc = 0; array->zero_terminated = (zero_terminated ? 1 : 0); array->clear = (clear ? 1 : 0); array->elt_size = elt_size; array->clear_func = NULL; g_atomic_ref_count_init (&array->ref_count); if (array->zero_terminated || reserved_size != 0) { g_array_maybe_expand (array, reserved_size); g_array_zero_terminate(array); } return (GArray*) array; } /** * g_array_set_clear_func: * @array: A #GArray * @clear_func: a function to clear an element of @array * * Sets a function to clear an element of @array. * * The @clear_func will be called when an element in the array * data segment is removed and when the array is freed and data * segment is deallocated as well. @clear_func will be passed a * pointer to the element to clear, rather than the element itself. * * Note that in contrast with other uses of #GDestroyNotify * functions, @clear_func is expected to clear the contents of * the array element it is given, but not free the element itself. * * Since: 2.32 */ void g_array_set_clear_func (GArray *array, GDestroyNotify clear_func) { GRealArray *rarray = (GRealArray *) array; g_return_if_fail (array != NULL); rarray->clear_func = clear_func; } /** * g_array_ref: * @array: A #GArray * * Atomically increments the reference count of @array by one. * This function is thread-safe and may be called from any thread. * * Returns: The passed in #GArray * * Since: 2.22 */ GArray * g_array_ref (GArray *array) { GRealArray *rarray = (GRealArray*) array; g_return_val_if_fail (array, NULL); g_atomic_ref_count_inc (&rarray->ref_count); return array; } typedef enum { FREE_SEGMENT = 1 << 0, PRESERVE_WRAPPER = 1 << 1 } ArrayFreeFlags; static gchar *array_free (GRealArray *, ArrayFreeFlags); /** * g_array_unref: * @array: A #GArray * * Atomically decrements the reference count of @array by one. If the * reference count drops to 0, all memory allocated by the array is * released. This function is thread-safe and may be called from any * thread. * * Since: 2.22 */ void g_array_unref (GArray *array) { GRealArray *rarray = (GRealArray*) array; g_return_if_fail (array); if (g_atomic_ref_count_dec (&rarray->ref_count)) array_free (rarray, FREE_SEGMENT); } /** * g_array_get_element_size: * @array: A #GArray * * Gets the size of the elements in @array. * * Returns: Size of each element, in bytes * * Since: 2.22 */ guint g_array_get_element_size (GArray *array) { GRealArray *rarray = (GRealArray*) array; g_return_val_if_fail (array, 0); return rarray->elt_size; } /** * g_array_free: * @array: a #GArray * @free_segment: if %TRUE the actual element data is freed as well * * Frees the memory allocated for the #GArray. If @free_segment is * %TRUE it frees the memory block holding the elements as well. Pass * %FALSE if you want to free the #GArray wrapper but preserve the * underlying array for use elsewhere. If the reference count of * @array is greater than one, the #GArray wrapper is preserved but * the size of @array will be set to zero. * * If array contents point to dynamically-allocated memory, they should * be freed separately if @free_seg is %TRUE and no @clear_func * function has been set for @array. * * This function is not thread-safe. If using a #GArray from multiple * threads, use only the atomic g_array_ref() and g_array_unref() * functions. * * Returns: the element data if @free_segment is %FALSE, otherwise * %NULL. The element data should be freed using g_free(). */ gchar* g_array_free (GArray *farray, gboolean free_segment) { GRealArray *array = (GRealArray*) farray; ArrayFreeFlags flags; g_return_val_if_fail (array, NULL); flags = (free_segment ? FREE_SEGMENT : 0); /* if others are holding a reference, preserve the wrapper but do free/return the data */ if (!g_atomic_ref_count_dec (&array->ref_count)) flags |= PRESERVE_WRAPPER; return array_free (array, flags); } static gchar * array_free (GRealArray *array, ArrayFreeFlags flags) { gchar *segment; if (flags & FREE_SEGMENT) { if (array->clear_func != NULL) { guint i; for (i = 0; i < array->len; i++) array->clear_func (g_array_elt_pos (array, i)); } g_free (array->data); segment = NULL; } else segment = (gchar*) array->data; if (flags & PRESERVE_WRAPPER) { array->data = NULL; array->len = 0; array->alloc = 0; } else { g_slice_free1 (sizeof (GRealArray), array); } return segment; } /** * g_array_append_vals: * @array: a #GArray * @data: (not nullable): a pointer to the elements to append to the end of the array * @len: the number of elements to append * * Adds @len elements onto the end of the array. * * Returns: the #GArray */ /** * g_array_append_val: * @a: a #GArray * @v: the value to append to the #GArray * * Adds the value on to the end of the array. The array will grow in * size automatically if necessary. * * g_array_append_val() is a macro which uses a reference to the value * parameter @v. This means that you cannot use it with literal values * such as "27". You must use variables. * * Returns: the #GArray */ GArray* g_array_append_vals (GArray *farray, gconstpointer data, guint len) { GRealArray *array = (GRealArray*) farray; g_return_val_if_fail (array, NULL); if (len == 0) return farray; g_array_maybe_expand (array, len); memcpy (g_array_elt_pos (array, array->len), data, g_array_elt_len (array, len)); array->len += len; g_array_zero_terminate (array); return farray; } /** * g_array_prepend_vals: * @array: a #GArray * @data: (nullable): a pointer to the elements to prepend to the start of the array * @len: the number of elements to prepend, which may be zero * * Adds @len elements onto the start of the array. * * @data may be %NULL if (and only if) @len is zero. If @len is zero, this * function is a no-op. * * This operation is slower than g_array_append_vals() since the * existing elements in the array have to be moved to make space for * the new elements. * * Returns: the #GArray */ /** * g_array_prepend_val: * @a: a #GArray * @v: the value to prepend to the #GArray * * Adds the value on to the start of the array. The array will grow in * size automatically if necessary. * * This operation is slower than g_array_append_val() since the * existing elements in the array have to be moved to make space for * the new element. * * g_array_prepend_val() is a macro which uses a reference to the value * parameter @v. This means that you cannot use it with literal values * such as "27". You must use variables. * * Returns: the #GArray */ GArray* g_array_prepend_vals (GArray *farray, gconstpointer data, guint len) { GRealArray *array = (GRealArray*) farray; g_return_val_if_fail (array, NULL); if (len == 0) return farray; g_array_maybe_expand (array, len); memmove (g_array_elt_pos (array, len), g_array_elt_pos (array, 0), g_array_elt_len (array, array->len)); memcpy (g_array_elt_pos (array, 0), data, g_array_elt_len (array, len)); array->len += len; g_array_zero_terminate (array); return farray; } /** * g_array_insert_vals: * @array: a #GArray * @index_: the index to place the elements at * @data: (nullable): a pointer to the elements to insert * @len: the number of elements to insert * * Inserts @len elements into a #GArray at the given index. * * If @index_ is greater than the array’s current length, the array is expanded. * The elements between the old end of the array and the newly inserted elements * will be initialised to zero if the array was configured to clear elements; * otherwise their values will be undefined. * * @data may be %NULL if (and only if) @len is zero. If @len is zero, this * function is a no-op. * * Returns: the #GArray */ /** * g_array_insert_val: * @a: a #GArray * @i: the index to place the element at * @v: the value to insert into the array * * Inserts an element into an array at the given index. * * g_array_insert_val() is a macro which uses a reference to the value * parameter @v. This means that you cannot use it with literal values * such as "27". You must use variables. * * Returns: the #GArray */ GArray* g_array_insert_vals (GArray *farray, guint index_, gconstpointer data, guint len) { GRealArray *array = (GRealArray*) farray; g_return_val_if_fail (array, NULL); if (len == 0) return farray; /* Is the index off the end of the array, and hence do we need to over-allocate * and clear some elements? */ if (index_ >= array->len) { g_array_maybe_expand (array, index_ - array->len + len); return g_array_append_vals (g_array_set_size (farray, index_), data, len); } g_array_maybe_expand (array, len); memmove (g_array_elt_pos (array, len + index_), g_array_elt_pos (array, index_), g_array_elt_len (array, array->len - index_)); memcpy (g_array_elt_pos (array, index_), data, g_array_elt_len (array, len)); array->len += len; g_array_zero_terminate (array); return farray; } /** * g_array_set_size: * @array: a #GArray * @length: the new size of the #GArray * * Sets the size of the array, expanding it if necessary. If the array * was created with @clear_ set to %TRUE, the new elements are set to 0. * * Returns: the #GArray */ GArray* g_array_set_size (GArray *farray, guint length) { GRealArray *array = (GRealArray*) farray; g_return_val_if_fail (array, NULL); if (length > array->len) { g_array_maybe_expand (array, length - array->len); if (array->clear) g_array_elt_zero (array, array->len, length - array->len); } else if (length < array->len) g_array_remove_range (farray, length, array->len - length); array->len = length; g_array_zero_terminate (array); return farray; } /** * g_array_remove_index: * @array: a #GArray * @index_: the index of the element to remove * * Removes the element at the given index from a #GArray. The following * elements are moved down one place. * * Returns: the #GArray */ GArray* g_array_remove_index (GArray *farray, guint index_) { GRealArray* array = (GRealArray*) farray; g_return_val_if_fail (array, NULL); g_return_val_if_fail (index_ < array->len, NULL); if (array->clear_func != NULL) array->clear_func (g_array_elt_pos (array, index_)); if (index_ != array->len - 1) memmove (g_array_elt_pos (array, index_), g_array_elt_pos (array, index_ + 1), g_array_elt_len (array, array->len - index_ - 1)); array->len -= 1; if (G_UNLIKELY (g_mem_gc_friendly)) g_array_elt_zero (array, array->len, 1); else g_array_zero_terminate (array); return farray; } /** * g_array_remove_index_fast: * @array: a @GArray * @index_: the index of the element to remove * * Removes the element at the given index from a #GArray. The last * element in the array is used to fill in the space, so this function * does not preserve the order of the #GArray. But it is faster than * g_array_remove_index(). * * Returns: the #GArray */ GArray* g_array_remove_index_fast (GArray *farray, guint index_) { GRealArray* array = (GRealArray*) farray; g_return_val_if_fail (array, NULL); g_return_val_if_fail (index_ < array->len, NULL); if (array->clear_func != NULL) array->clear_func (g_array_elt_pos (array, index_)); if (index_ != array->len - 1) memcpy (g_array_elt_pos (array, index_), g_array_elt_pos (array, array->len - 1), g_array_elt_len (array, 1)); array->len -= 1; if (G_UNLIKELY (g_mem_gc_friendly)) g_array_elt_zero (array, array->len, 1); else g_array_zero_terminate (array); return farray; } /** * g_array_remove_range: * @array: a @GArray * @index_: the index of the first element to remove * @length: the number of elements to remove * * Removes the given number of elements starting at the given index * from a #GArray. The following elements are moved to close the gap. * * Returns: the #GArray * * Since: 2.4 */ GArray* g_array_remove_range (GArray *farray, guint index_, guint length) { GRealArray *array = (GRealArray*) farray; g_return_val_if_fail (array, NULL); g_return_val_if_fail (index_ <= array->len, NULL); g_return_val_if_fail (index_ + length <= array->len, NULL); if (array->clear_func != NULL) { guint i; for (i = 0; i < length; i++) array->clear_func (g_array_elt_pos (array, index_ + i)); } if (index_ + length != array->len) memmove (g_array_elt_pos (array, index_), g_array_elt_pos (array, index_ + length), (array->len - (index_ + length)) * array->elt_size); array->len -= length; if (G_UNLIKELY (g_mem_gc_friendly)) g_array_elt_zero (array, array->len, length); else g_array_zero_terminate (array); return farray; } /** * g_array_sort: * @array: a #GArray * @compare_func: comparison function * * Sorts a #GArray using @compare_func which should be a qsort()-style * comparison function (returns less than zero for first arg is less * than second arg, zero for equal, greater zero if first arg is * greater than second arg). * * This is guaranteed to be a stable sort since version 2.32. */ void g_array_sort (GArray *farray, GCompareFunc compare_func) { GRealArray *array = (GRealArray*) farray; g_return_if_fail (array != NULL); /* Don't use qsort as we want a guaranteed stable sort */ g_qsort_with_data (array->data, array->len, array->elt_size, (GCompareDataFunc)compare_func, NULL); } /** * g_array_sort_with_data: * @array: a #GArray * @compare_func: comparison function * @user_data: data to pass to @compare_func * * Like g_array_sort(), but the comparison function receives an extra * user data argument. * * This is guaranteed to be a stable sort since version 2.32. * * There used to be a comment here about making the sort stable by * using the addresses of the elements in the comparison function. * This did not actually work, so any such code should be removed. */ void g_array_sort_with_data (GArray *farray, GCompareDataFunc compare_func, gpointer user_data) { GRealArray *array = (GRealArray*) farray; g_return_if_fail (array != NULL); g_qsort_with_data (array->data, array->len, array->elt_size, compare_func, user_data); } /** * g_array_binary_search: * @array: a #GArray. * @target: a pointer to the item to look up. * @compare_func: A #GCompareFunc used to locate @target. * @out_match_index: (optional) (out caller-allocates): return location * for the index of the element, if found. * * Checks whether @target exists in @array by performing a binary * search based on the given comparison function @compare_func which * get pointers to items as arguments. If the element is found, %TRUE * is returned and the element’s index is returned in @out_match_index * (if non-%NULL). Otherwise, %FALSE is returned and @out_match_index * is undefined. If @target exists multiple times in @array, the index * of the first instance is returned. This search is using a binary * search, so the @array must absolutely be sorted to return a correct * result (if not, the function may produce false-negative). * * This example defines a comparison function and search an element in a #GArray: * |[ * static gint* * cmpint (gconstpointer a, gconstpointer b) * { * const gint *_a = a; * const gint *_b = b; * * return *_a - *_b; * } * ... * gint i = 424242; * guint matched_index; * gboolean result = g_array_binary_search (garray, &i, cmpint, &matched_index); * ... * ]| * * Returns: %TRUE if @target is one of the elements of @array, %FALSE otherwise. * * Since: 2.62 */ gboolean g_array_binary_search (GArray *array, gconstpointer target, GCompareFunc compare_func, guint *out_match_index) { gboolean result = FALSE; GRealArray *_array = (GRealArray *) array; guint left, middle, right; gint val; g_return_val_if_fail (_array != NULL, FALSE); g_return_val_if_fail (compare_func != NULL, FALSE); if (G_LIKELY(_array->len)) { left = 0; right = _array->len - 1; while (left <= right) { middle = left + (right - left) / 2; val = compare_func (_array->data + (_array->elt_size * middle), target); if (val == 0) { result = TRUE; break; } else if (val < 0) left = middle + 1; else if (/* val > 0 && */ middle > 0) right = middle - 1; else break; /* element not found */ } } if (result && out_match_index != NULL) *out_match_index = middle; return result; } /* Returns the smallest power of 2 greater than n, or n if * such power does not fit in a guint */ static guint g_nearest_pow (guint num) { guint n = num - 1; g_assert (num > 0); n |= n >> 1; n |= n >> 2; n |= n >> 4; n |= n >> 8; n |= n >> 16; #if SIZEOF_INT == 8 n |= n >> 32; #endif return n + 1; } static void g_array_maybe_expand (GRealArray *array, guint len) { guint want_alloc; /* Detect potential overflow */ if G_UNLIKELY ((G_MAXUINT - array->len) < len) g_error ("adding %u to array would overflow", len); want_alloc = g_array_elt_len (array, array->len + len + array->zero_terminated); if (want_alloc > array->alloc) { want_alloc = g_nearest_pow (want_alloc); want_alloc = MAX (want_alloc, MIN_ARRAY_SIZE); array->data = g_realloc (array->data, want_alloc); if (G_UNLIKELY (g_mem_gc_friendly)) memset (array->data + array->alloc, 0, want_alloc - array->alloc); array->alloc = want_alloc; } } /** * SECTION:arrays_pointer * @title: Pointer Arrays * @short_description: arrays of pointers to any type of data, which * grow automatically as new elements are added * * Pointer Arrays are similar to Arrays but are used only for storing * pointers. * * If you remove elements from the array, elements at the end of the * array are moved into the space previously occupied by the removed * element. This means that you should not rely on the index of particular * elements remaining the same. You should also be careful when deleting * elements while iterating over the array. * * To create a pointer array, use g_ptr_array_new(). * * To add elements to a pointer array, use g_ptr_array_add(). * * To remove elements from a pointer array, use g_ptr_array_remove(), * g_ptr_array_remove_index() or g_ptr_array_remove_index_fast(). * * To access an element of a pointer array, use g_ptr_array_index(). * * To set the size of a pointer array, use g_ptr_array_set_size(). * * To free a pointer array, use g_ptr_array_free(). * * An example using a #GPtrArray: * |[ * GPtrArray *array; * gchar *string1 = "one"; * gchar *string2 = "two"; * gchar *string3 = "three"; * * array = g_ptr_array_new (); * g_ptr_array_add (array, (gpointer) string1); * g_ptr_array_add (array, (gpointer) string2); * g_ptr_array_add (array, (gpointer) string3); * * if (g_ptr_array_index (array, 0) != (gpointer) string1) * g_print ("ERROR: got %p instead of %p\n", * g_ptr_array_index (array, 0), string1); * * g_ptr_array_free (array, TRUE); * ]| */ typedef struct _GRealPtrArray GRealPtrArray; /** * GPtrArray: * @pdata: points to the array of pointers, which may be moved when the * array grows * @len: number of pointers in the array * * Contains the public fields of a pointer array. */ struct _GRealPtrArray { gpointer *pdata; guint len; guint alloc; gatomicrefcount ref_count; GDestroyNotify element_free_func; }; /** * g_ptr_array_index: * @array: a #GPtrArray * @index_: the index of the pointer to return * * Returns the pointer at the given index of the pointer array. * * This does not perform bounds checking on the given @index_, * so you are responsible for checking it against the array length. * * Returns: the pointer at the given index */ static void g_ptr_array_maybe_expand (GRealPtrArray *array, guint len); /** * g_ptr_array_new: * * Creates a new #GPtrArray with a reference count of 1. * * Returns: the new #GPtrArray */ GPtrArray* g_ptr_array_new (void) { return g_ptr_array_sized_new (0); } /** * g_ptr_array_copy: * @array: #GPtrArray to duplicate * @func: (nullable): a copy function used to copy every element in the array * @user_data: user data passed to the copy function @func, or %NULL * * Makes a full (deep) copy of a #GPtrArray. * * @func, as a #GCopyFunc, takes two arguments, the data to be copied * and a @user_data pointer. On common processor architectures, it's safe to * pass %NULL as @user_data if the copy function takes only one argument. You * may get compiler warnings from this though if compiling with GCC’s * `-Wcast-function-type` warning. * * If @func is %NULL, then only the pointers (and not what they are * pointing to) are copied to the new #GPtrArray. * * The copy of @array will have the same #GDestroyNotify for its elements as * @array. * * Returns: (transfer full): a deep copy of the initial #GPtrArray. * * Since: 2.62 **/ GPtrArray * g_ptr_array_copy (GPtrArray *array, GCopyFunc func, gpointer user_data) { gsize i; GPtrArray *new_array; g_return_val_if_fail (array != NULL, NULL); new_array = g_ptr_array_sized_new (array->len); g_ptr_array_set_free_func (new_array, ((GRealPtrArray *) array)->element_free_func); if (func != NULL) { for (i = 0; i < array->len; i++) new_array->pdata[i] = func (array->pdata[i], user_data); } else { memcpy (new_array->pdata, array->pdata, array->len * sizeof (*array->pdata)); } new_array->len = array->len; return new_array; } /** * g_ptr_array_sized_new: * @reserved_size: number of pointers preallocated * * Creates a new #GPtrArray with @reserved_size pointers preallocated * and a reference count of 1. This avoids frequent reallocation, if * you are going to add many pointers to the array. Note however that * the size of the array is still 0. * * Returns: the new #GPtrArray */ GPtrArray* g_ptr_array_sized_new (guint reserved_size) { GRealPtrArray *array; array = g_slice_new (GRealPtrArray); array->pdata = NULL; array->len = 0; array->alloc = 0; array->element_free_func = NULL; g_atomic_ref_count_init (&array->ref_count); if (reserved_size != 0) g_ptr_array_maybe_expand (array, reserved_size); return (GPtrArray*) array; } /** * g_array_copy: * @array: A #GArray. * * Create a shallow copy of a #GArray. If the array elements consist of * pointers to data, the pointers are copied but the actual data is not. * * Returns: (transfer container): A copy of @array. * * Since: 2.62 **/ GArray * g_array_copy (GArray *array) { GRealArray *rarray = (GRealArray *) array; GRealArray *new_rarray; g_return_val_if_fail (rarray != NULL, NULL); new_rarray = (GRealArray *) g_array_sized_new (rarray->zero_terminated, rarray->clear, rarray->elt_size, rarray->len); new_rarray->len = rarray->len; memcpy (new_rarray->data, rarray->data, rarray->alloc); return (GArray *) new_rarray; } /** * g_ptr_array_new_with_free_func: * @element_free_func: (nullable): A function to free elements with * destroy @array or %NULL * * Creates a new #GPtrArray with a reference count of 1 and use * @element_free_func for freeing each element when the array is destroyed * either via g_ptr_array_unref(), when g_ptr_array_free() is called with * @free_segment set to %TRUE or when removing elements. * * Returns: A new #GPtrArray * * Since: 2.22 */ GPtrArray* g_ptr_array_new_with_free_func (GDestroyNotify element_free_func) { GPtrArray *array; array = g_ptr_array_new (); g_ptr_array_set_free_func (array, element_free_func); return array; } /** * g_ptr_array_new_full: * @reserved_size: number of pointers preallocated * @element_free_func: (nullable): A function to free elements with * destroy @array or %NULL * * Creates a new #GPtrArray with @reserved_size pointers preallocated * and a reference count of 1. This avoids frequent reallocation, if * you are going to add many pointers to the array. Note however that * the size of the array is still 0. It also set @element_free_func * for freeing each element when the array is destroyed either via * g_ptr_array_unref(), when g_ptr_array_free() is called with * @free_segment set to %TRUE or when removing elements. * * Returns: A new #GPtrArray * * Since: 2.30 */ GPtrArray* g_ptr_array_new_full (guint reserved_size, GDestroyNotify element_free_func) { GPtrArray *array; array = g_ptr_array_sized_new (reserved_size); g_ptr_array_set_free_func (array, element_free_func); return array; } /** * g_ptr_array_set_free_func: * @array: A #GPtrArray * @element_free_func: (nullable): A function to free elements with * destroy @array or %NULL * * Sets a function for freeing each element when @array is destroyed * either via g_ptr_array_unref(), when g_ptr_array_free() is called * with @free_segment set to %TRUE or when removing elements. * * Since: 2.22 */ void g_ptr_array_set_free_func (GPtrArray *array, GDestroyNotify element_free_func) { GRealPtrArray *rarray = (GRealPtrArray *)array; g_return_if_fail (array); rarray->element_free_func = element_free_func; } /** * g_ptr_array_ref: * @array: a #GPtrArray * * Atomically increments the reference count of @array by one. * This function is thread-safe and may be called from any thread. * * Returns: The passed in #GPtrArray * * Since: 2.22 */ GPtrArray* g_ptr_array_ref (GPtrArray *array) { GRealPtrArray *rarray = (GRealPtrArray *)array; g_return_val_if_fail (array, NULL); g_atomic_ref_count_inc (&rarray->ref_count); return array; } static gpointer *ptr_array_free (GPtrArray *, ArrayFreeFlags); /** * g_ptr_array_unref: * @array: A #GPtrArray * * Atomically decrements the reference count of @array by one. If the * reference count drops to 0, the effect is the same as calling * g_ptr_array_free() with @free_segment set to %TRUE. This function * is thread-safe and may be called from any thread. * * Since: 2.22 */ void g_ptr_array_unref (GPtrArray *array) { GRealPtrArray *rarray = (GRealPtrArray *)array; g_return_if_fail (array); if (g_atomic_ref_count_dec (&rarray->ref_count)) ptr_array_free (array, FREE_SEGMENT); } /** * g_ptr_array_free: * @array: a #GPtrArray * @free_seg: if %TRUE the actual pointer array is freed as well * * Frees the memory allocated for the #GPtrArray. If @free_seg is %TRUE * it frees the memory block holding the elements as well. Pass %FALSE * if you want to free the #GPtrArray wrapper but preserve the * underlying array for use elsewhere. If the reference count of @array * is greater than one, the #GPtrArray wrapper is preserved but the * size of @array will be set to zero. * * If array contents point to dynamically-allocated memory, they should * be freed separately if @free_seg is %TRUE and no #GDestroyNotify * function has been set for @array. * * This function is not thread-safe. If using a #GPtrArray from multiple * threads, use only the atomic g_ptr_array_ref() and g_ptr_array_unref() * functions. * * Returns: the pointer array if @free_seg is %FALSE, otherwise %NULL. * The pointer array should be freed using g_free(). */ gpointer* g_ptr_array_free (GPtrArray *array, gboolean free_segment) { GRealPtrArray *rarray = (GRealPtrArray *)array; ArrayFreeFlags flags; g_return_val_if_fail (rarray, NULL); flags = (free_segment ? FREE_SEGMENT : 0); /* if others are holding a reference, preserve the wrapper but * do free/return the data */ if (!g_atomic_ref_count_dec (&rarray->ref_count)) flags |= PRESERVE_WRAPPER; return ptr_array_free (array, flags); } static gpointer * ptr_array_free (GPtrArray *array, ArrayFreeFlags flags) { GRealPtrArray *rarray = (GRealPtrArray *)array; gpointer *segment; if (flags & FREE_SEGMENT) { /* Data here is stolen and freed manually. It is an * error to attempt to access the array data (including * mutating the array bounds) during destruction). * * https://bugzilla.gnome.org/show_bug.cgi?id=769064 */ gpointer *stolen_pdata = g_steal_pointer (&rarray->pdata); if (rarray->element_free_func != NULL) { gsize i; for (i = 0; i < rarray->len; ++i) rarray->element_free_func (stolen_pdata[i]); } g_free (stolen_pdata); segment = NULL; } else segment = rarray->pdata; if (flags & PRESERVE_WRAPPER) { rarray->pdata = NULL; rarray->len = 0; rarray->alloc = 0; } else { g_slice_free1 (sizeof (GRealPtrArray), rarray); } return segment; } static void g_ptr_array_maybe_expand (GRealPtrArray *array, guint len) { /* Detect potential overflow */ if G_UNLIKELY ((G_MAXUINT - array->len) < len) g_error ("adding %u to array would overflow", len); if ((array->len + len) > array->alloc) { guint old_alloc = array->alloc; array->alloc = g_nearest_pow (array->len + len); array->alloc = MAX (array->alloc, MIN_ARRAY_SIZE); array->pdata = g_realloc (array->pdata, sizeof (gpointer) * array->alloc); if (G_UNLIKELY (g_mem_gc_friendly)) for ( ; old_alloc < array->alloc; old_alloc++) array->pdata [old_alloc] = NULL; } } /** * g_ptr_array_set_size: * @array: a #GPtrArray * @length: the new length of the pointer array * * Sets the size of the array. When making the array larger, * newly-added elements will be set to %NULL. When making it smaller, * if @array has a non-%NULL #GDestroyNotify function then it will be * called for the removed elements. */ void g_ptr_array_set_size (GPtrArray *array, gint length) { GRealPtrArray *rarray = (GRealPtrArray *)array; guint length_unsigned; g_return_if_fail (rarray); g_return_if_fail (rarray->len == 0 || (rarray->len != 0 && rarray->pdata != NULL)); g_return_if_fail (length >= 0); length_unsigned = (guint) length; if (length_unsigned > rarray->len) { guint i; g_ptr_array_maybe_expand (rarray, (length_unsigned - rarray->len)); /* This is not * memset (array->pdata + array->len, 0, * sizeof (gpointer) * (length_unsigned - array->len)); * to make it really portable. Remember (void*)NULL needn't be * bitwise zero. It of course is silly not to use memset (..,0,..). */ for (i = rarray->len; i < length_unsigned; i++) rarray->pdata[i] = NULL; } else if (length_unsigned < rarray->len) g_ptr_array_remove_range (array, length_unsigned, rarray->len - length_unsigned); rarray->len = length_unsigned; } static gpointer ptr_array_remove_index (GPtrArray *array, guint index_, gboolean fast, gboolean free_element) { GRealPtrArray *rarray = (GRealPtrArray *) array; gpointer result; g_return_val_if_fail (rarray, NULL); g_return_val_if_fail (rarray->len == 0 || (rarray->len != 0 && rarray->pdata != NULL), NULL); g_return_val_if_fail (index_ < rarray->len, NULL); result = rarray->pdata[index_]; if (rarray->element_free_func != NULL && free_element) rarray->element_free_func (rarray->pdata[index_]); if (index_ != rarray->len - 1 && !fast) memmove (rarray->pdata + index_, rarray->pdata + index_ + 1, sizeof (gpointer) * (rarray->len - index_ - 1)); else if (index_ != rarray->len - 1) rarray->pdata[index_] = rarray->pdata[rarray->len - 1]; rarray->len -= 1; if (G_UNLIKELY (g_mem_gc_friendly)) rarray->pdata[rarray->len] = NULL; return result; } /** * g_ptr_array_remove_index: * @array: a #GPtrArray * @index_: the index of the pointer to remove * * Removes the pointer at the given index from the pointer array. * The following elements are moved down one place. If @array has * a non-%NULL #GDestroyNotify function it is called for the removed * element. If so, the return value from this function will potentially point * to freed memory (depending on the #GDestroyNotify implementation). * * Returns: (nullable): the pointer which was removed */ gpointer g_ptr_array_remove_index (GPtrArray *array, guint index_) { return ptr_array_remove_index (array, index_, FALSE, TRUE); } /** * g_ptr_array_remove_index_fast: * @array: a #GPtrArray * @index_: the index of the pointer to remove * * Removes the pointer at the given index from the pointer array. * The last element in the array is used to fill in the space, so * this function does not preserve the order of the array. But it * is faster than g_ptr_array_remove_index(). If @array has a non-%NULL * #GDestroyNotify function it is called for the removed element. If so, the * return value from this function will potentially point to freed memory * (depending on the #GDestroyNotify implementation). * * Returns: (nullable): the pointer which was removed */ gpointer g_ptr_array_remove_index_fast (GPtrArray *array, guint index_) { return ptr_array_remove_index (array, index_, TRUE, TRUE); } /** * g_ptr_array_steal_index: * @array: a #GPtrArray * @index_: the index of the pointer to steal * * Removes the pointer at the given index from the pointer array. * The following elements are moved down one place. The #GDestroyNotify for * @array is *not* called on the removed element; ownership is transferred to * the caller of this function. * * Returns: (transfer full) (nullable): the pointer which was removed * Since: 2.58 */ gpointer g_ptr_array_steal_index (GPtrArray *array, guint index_) { return ptr_array_remove_index (array, index_, FALSE, FALSE); } /** * g_ptr_array_steal_index_fast: * @array: a #GPtrArray * @index_: the index of the pointer to steal * * Removes the pointer at the given index from the pointer array. * The last element in the array is used to fill in the space, so * this function does not preserve the order of the array. But it * is faster than g_ptr_array_steal_index(). The #GDestroyNotify for @array is * *not* called on the removed element; ownership is transferred to the caller * of this function. * * Returns: (transfer full) (nullable): the pointer which was removed * Since: 2.58 */ gpointer g_ptr_array_steal_index_fast (GPtrArray *array, guint index_) { return ptr_array_remove_index (array, index_, TRUE, FALSE); } /** * g_ptr_array_remove_range: * @array: a @GPtrArray * @index_: the index of the first pointer to remove * @length: the number of pointers to remove * * Removes the given number of pointers starting at the given index * from a #GPtrArray. The following elements are moved to close the * gap. If @array has a non-%NULL #GDestroyNotify function it is * called for the removed elements. * * Returns: the @array * * Since: 2.4 */ GPtrArray* g_ptr_array_remove_range (GPtrArray *array, guint index_, guint length) { GRealPtrArray *rarray = (GRealPtrArray *)array; guint n; g_return_val_if_fail (rarray != NULL, NULL); g_return_val_if_fail (rarray->len == 0 || (rarray->len != 0 && rarray->pdata != NULL), NULL); g_return_val_if_fail (index_ <= rarray->len, NULL); g_return_val_if_fail (index_ + length <= rarray->len, NULL); if (rarray->element_free_func != NULL) { for (n = index_; n < index_ + length; n++) rarray->element_free_func (rarray->pdata[n]); } if (index_ + length != rarray->len) { memmove (&rarray->pdata[index_], &rarray->pdata[index_ + length], (rarray->len - (index_ + length)) * sizeof (gpointer)); } rarray->len -= length; if (G_UNLIKELY (g_mem_gc_friendly)) { guint i; for (i = 0; i < length; i++) rarray->pdata[rarray->len + i] = NULL; } return array; } /** * g_ptr_array_remove: * @array: a #GPtrArray * @data: the pointer to remove * * Removes the first occurrence of the given pointer from the pointer * array. The following elements are moved down one place. If @array * has a non-%NULL #GDestroyNotify function it is called for the * removed element. * * It returns %TRUE if the pointer was removed, or %FALSE if the * pointer was not found. * * Returns: %TRUE if the pointer is removed, %FALSE if the pointer * is not found in the array */ gboolean g_ptr_array_remove (GPtrArray *array, gpointer data) { guint i; g_return_val_if_fail (array, FALSE); g_return_val_if_fail (array->len == 0 || (array->len != 0 && array->pdata != NULL), FALSE); for (i = 0; i < array->len; i += 1) { if (array->pdata[i] == data) { g_ptr_array_remove_index (array, i); return TRUE; } } return FALSE; } /** * g_ptr_array_remove_fast: * @array: a #GPtrArray * @data: the pointer to remove * * Removes the first occurrence of the given pointer from the pointer * array. The last element in the array is used to fill in the space, * so this function does not preserve the order of the array. But it * is faster than g_ptr_array_remove(). If @array has a non-%NULL * #GDestroyNotify function it is called for the removed element. * * It returns %TRUE if the pointer was removed, or %FALSE if the * pointer was not found. * * Returns: %TRUE if the pointer was found in the array */ gboolean g_ptr_array_remove_fast (GPtrArray *array, gpointer data) { GRealPtrArray *rarray = (GRealPtrArray *)array; guint i; g_return_val_if_fail (rarray, FALSE); g_return_val_if_fail (rarray->len == 0 || (rarray->len != 0 && rarray->pdata != NULL), FALSE); for (i = 0; i < rarray->len; i += 1) { if (rarray->pdata[i] == data) { g_ptr_array_remove_index_fast (array, i); return TRUE; } } return FALSE; } /** * g_ptr_array_add: * @array: a #GPtrArray * @data: the pointer to add * * Adds a pointer to the end of the pointer array. The array will grow * in size automatically if necessary. */ void g_ptr_array_add (GPtrArray *array, gpointer data) { GRealPtrArray *rarray = (GRealPtrArray *)array; g_return_if_fail (rarray); g_return_if_fail (rarray->len == 0 || (rarray->len != 0 && rarray->pdata != NULL)); g_ptr_array_maybe_expand (rarray, 1); rarray->pdata[rarray->len++] = data; } /** * g_ptr_array_extend: * @array_to_extend: a #GPtrArray. * @array: (transfer none): a #GPtrArray to add to the end of @array_to_extend. * @func: (nullable): a copy function used to copy every element in the array * @user_data: user data passed to the copy function @func, or %NULL * * Adds all pointers of @array to the end of the array @array_to_extend. * The array will grow in size automatically if needed. @array_to_extend is * modified in-place. * * @func, as a #GCopyFunc, takes two arguments, the data to be copied * and a @user_data pointer. On common processor architectures, it's safe to * pass %NULL as @user_data if the copy function takes only one argument. You * may get compiler warnings from this though if compiling with GCC’s * `-Wcast-function-type` warning. * * If @func is %NULL, then only the pointers (and not what they are * pointing to) are copied to the new #GPtrArray. * * Since: 2.62 **/ void g_ptr_array_extend (GPtrArray *array_to_extend, GPtrArray *array, GCopyFunc func, gpointer user_data) { GRealPtrArray *rarray_to_extend = (GRealPtrArray *) array_to_extend; gsize i; g_return_if_fail (array_to_extend != NULL); g_return_if_fail (array != NULL); g_ptr_array_maybe_expand (rarray_to_extend, array->len); if (func != NULL) { for (i = 0; i < array->len; i++) rarray_to_extend->pdata[i + rarray_to_extend->len] = func (array->pdata[i], user_data); } else { memcpy (rarray_to_extend->pdata + rarray_to_extend->len, array->pdata, array->len * sizeof (*array->pdata)); } rarray_to_extend->len += array->len; } /** * g_ptr_array_extend_and_steal: * @array_to_extend: (transfer none): a #GPtrArray. * @array: (transfer container): a #GPtrArray to add to the end of * @array_to_extend. * * Adds all the pointers in @array to the end of @array_to_extend, transferring * ownership of each element from @array to @array_to_extend and modifying * @array_to_extend in-place. @array is then freed. * * As with g_ptr_array_free(), @array will be destroyed if its reference count * is 1. If its reference count is higher, it will be decremented and the * length of @array set to zero. * * Since: 2.62 **/ void g_ptr_array_extend_and_steal (GPtrArray *array_to_extend, GPtrArray *array) { gpointer *pdata; g_ptr_array_extend (array_to_extend, array, NULL, NULL); /* Get rid of @array without triggering the GDestroyNotify attached * to the elements moved from @array to @array_to_extend. */ pdata = g_steal_pointer (&array->pdata); array->len = 0; g_ptr_array_unref (array); g_free (pdata); } /** * g_ptr_array_insert: * @array: a #GPtrArray * @index_: the index to place the new element at, or -1 to append * @data: the pointer to add. * * Inserts an element into the pointer array at the given index. The * array will grow in size automatically if necessary. * * Since: 2.40 */ void g_ptr_array_insert (GPtrArray *array, gint index_, gpointer data) { GRealPtrArray *rarray = (GRealPtrArray *)array; g_return_if_fail (rarray); g_return_if_fail (index_ >= -1); g_return_if_fail (index_ <= (gint)rarray->len); g_ptr_array_maybe_expand (rarray, 1); if (index_ < 0) index_ = rarray->len; if ((guint) index_ < rarray->len) memmove (&(rarray->pdata[index_ + 1]), &(rarray->pdata[index_]), (rarray->len - index_) * sizeof (gpointer)); rarray->len++; rarray->pdata[index_] = data; } /** * g_ptr_array_sort: * @array: a #GPtrArray * @compare_func: comparison function * * Sorts the array, using @compare_func which should be a qsort()-style * comparison function (returns less than zero for first arg is less * than second arg, zero for equal, greater than zero if irst arg is * greater than second arg). * * Note that the comparison function for g_ptr_array_sort() doesn't * take the pointers from the array as arguments, it takes pointers to * the pointers in the array. Here is a full example of usage: * * |[ * typedef struct * { * gchar *name; * gint size; * } FileListEntry; * * static gint * sort_filelist (gconstpointer a, gconstpointer b) * { * const FileListEntry *entry1 = *((FileListEntry **) a); * const FileListEntry *entry2 = *((FileListEntry **) b); * * return g_ascii_strcasecmp (entry1->name, entry2->name); * } * * … * g_autoptr (GPtrArray) file_list = NULL; * * // initialize file_list array and load with many FileListEntry entries * ... * // now sort it with * g_ptr_array_sort (file_list, (GCompareFunc) sort_filelist); * ]| * * This is guaranteed to be a stable sort since version 2.32. */ void g_ptr_array_sort (GPtrArray *array, GCompareFunc compare_func) { g_return_if_fail (array != NULL); /* Don't use qsort as we want a guaranteed stable sort */ g_qsort_with_data (array->pdata, array->len, sizeof (gpointer), (GCompareDataFunc)compare_func, NULL); } /** * g_ptr_array_sort_with_data: * @array: a #GPtrArray * @compare_func: comparison function * @user_data: data to pass to @compare_func * * Like g_ptr_array_sort(), but the comparison function has an extra * user data argument. * * Note that the comparison function for g_ptr_array_sort_with_data() * doesn't take the pointers from the array as arguments, it takes * pointers to the pointers in the array. Here is a full example of use: * * |[ * typedef enum { SORT_NAME, SORT_SIZE } SortMode; * * typedef struct * { * gchar *name; * gint size; * } FileListEntry; * * static gint * sort_filelist (gconstpointer a, gconstpointer b, gpointer user_data) * { * gint order; * const SortMode *sort_mode = GPOINTER_TO_INT (user_data); * const FileListEntry *entry1 = *((FileListEntry **) a); * const FileListEntry *entry2 = *((FileListEntry **) b); * * switch (*sort_mode) * { * case SORT_NAME: * order = g_ascii_strcasecmp (entry1->name, entry2->name); * break; * case SORT_SIZE: * order = entry1->size - entry2->size; * break; * default: * order = 0; * break; * } * return order; * } * * ... * g_autoptr (GPtrArray) file_list = NULL; * SortMode sort_mode; * * // initialize file_list array and load with many FileListEntry entries * ... * // now sort it with * sort_mode = SORT_NAME; * g_ptr_array_sort_with_data (file_list, * (GCompareFunc) sort_filelist, * GINT_TO_POINTER (sort_mode)); * ]| * * This is guaranteed to be a stable sort since version 2.32. */ void g_ptr_array_sort_with_data (GPtrArray *array, GCompareDataFunc compare_func, gpointer user_data) { g_return_if_fail (array != NULL); g_qsort_with_data (array->pdata, array->len, sizeof (gpointer), compare_func, user_data); } /** * g_ptr_array_foreach: * @array: a #GPtrArray * @func: the function to call for each array element * @user_data: user data to pass to the function * * Calls a function for each element of a #GPtrArray. @func must not * add elements to or remove elements from the array. * * Since: 2.4 */ void g_ptr_array_foreach (GPtrArray *array, GFunc func, gpointer user_data) { guint i; g_return_if_fail (array); for (i = 0; i < array->len; i++) (*func) (array->pdata[i], user_data); } /** * g_ptr_array_find: (skip) * @haystack: pointer array to be searched * @needle: pointer to look for * @index_: (optional) (out caller-allocates): return location for the index of * the element, if found * * Checks whether @needle exists in @haystack. If the element is found, %TRUE is * returned and the element’s index is returned in @index_ (if non-%NULL). * Otherwise, %FALSE is returned and @index_ is undefined. If @needle exists * multiple times in @haystack, the index of the first instance is returned. * * This does pointer comparisons only. If you want to use more complex equality * checks, such as string comparisons, use g_ptr_array_find_with_equal_func(). * * Returns: %TRUE if @needle is one of the elements of @haystack * Since: 2.54 */ gboolean g_ptr_array_find (GPtrArray *haystack, gconstpointer needle, guint *index_) { return g_ptr_array_find_with_equal_func (haystack, needle, NULL, index_); } /** * g_ptr_array_find_with_equal_func: (skip) * @haystack: pointer array to be searched * @needle: pointer to look for * @equal_func: (nullable): the function to call for each element, which should * return %TRUE when the desired element is found; or %NULL to use pointer * equality * @index_: (optional) (out caller-allocates): return location for the index of * the element, if found * * Checks whether @needle exists in @haystack, using the given @equal_func. * If the element is found, %TRUE is returned and the element’s index is * returned in @index_ (if non-%NULL). Otherwise, %FALSE is returned and @index_ * is undefined. If @needle exists multiple times in @haystack, the index of * the first instance is returned. * * @equal_func is called with the element from the array as its first parameter, * and @needle as its second parameter. If @equal_func is %NULL, pointer * equality is used. * * Returns: %TRUE if @needle is one of the elements of @haystack * Since: 2.54 */ gboolean g_ptr_array_find_with_equal_func (GPtrArray *haystack, gconstpointer needle, GEqualFunc equal_func, guint *index_) { guint i; g_return_val_if_fail (haystack != NULL, FALSE); if (equal_func == NULL) equal_func = g_direct_equal; for (i = 0; i < haystack->len; i++) { if (equal_func (g_ptr_array_index (haystack, i), needle)) { if (index_ != NULL) *index_ = i; return TRUE; } } return FALSE; } /** * SECTION:arrays_byte * @title: Byte Arrays * @short_description: arrays of bytes * * #GByteArray is a mutable array of bytes based on #GArray, to provide arrays * of bytes which grow automatically as elements are added. * * To create a new #GByteArray use g_byte_array_new(). To add elements to a * #GByteArray, use g_byte_array_append(), and g_byte_array_prepend(). * * To set the size of a #GByteArray, use g_byte_array_set_size(). * * To free a #GByteArray, use g_byte_array_free(). * * An example for using a #GByteArray: * |[ * GByteArray *gbarray; * gint i; * * gbarray = g_byte_array_new (); * for (i = 0; i < 10000; i++) * g_byte_array_append (gbarray, (guint8*) "abcd", 4); * * for (i = 0; i < 10000; i++) * { * g_assert (gbarray->data[4*i] == 'a'); * g_assert (gbarray->data[4*i+1] == 'b'); * g_assert (gbarray->data[4*i+2] == 'c'); * g_assert (gbarray->data[4*i+3] == 'd'); * } * * g_byte_array_free (gbarray, TRUE); * ]| * * See #GBytes if you are interested in an immutable object representing a * sequence of bytes. */ /** * GByteArray: * @data: a pointer to the element data. The data may be moved as * elements are added to the #GByteArray * @len: the number of elements in the #GByteArray * * Contains the public fields of a GByteArray. */ /** * g_byte_array_new: * * Creates a new #GByteArray with a reference count of 1. * * Returns: (transfer full): the new #GByteArray */ GByteArray* g_byte_array_new (void) { return (GByteArray *)g_array_sized_new (FALSE, FALSE, 1, 0); } /** * g_byte_array_new_take: * @data: (transfer full) (array length=len): byte data for the array * @len: length of @data * * Create byte array containing the data. The data will be owned by the array * and will be freed with g_free(), i.e. it could be allocated using g_strdup(). * * Since: 2.32 * * Returns: (transfer full): a new #GByteArray */ GByteArray* g_byte_array_new_take (guint8 *data, gsize len) { GByteArray *array; GRealArray *real; array = g_byte_array_new (); real = (GRealArray *)array; g_assert (real->data == NULL); g_assert (real->len == 0); real->data = data; real->len = len; real->alloc = len; return array; } /** * g_byte_array_sized_new: * @reserved_size: number of bytes preallocated * * Creates a new #GByteArray with @reserved_size bytes preallocated. * This avoids frequent reallocation, if you are going to add many * bytes to the array. Note however that the size of the array is still * 0. * * Returns: the new #GByteArray */ GByteArray* g_byte_array_sized_new (guint reserved_size) { return (GByteArray *)g_array_sized_new (FALSE, FALSE, 1, reserved_size); } /** * g_byte_array_free: * @array: a #GByteArray * @free_segment: if %TRUE the actual byte data is freed as well * * Frees the memory allocated by the #GByteArray. If @free_segment is * %TRUE it frees the actual byte data. If the reference count of * @array is greater than one, the #GByteArray wrapper is preserved but * the size of @array will be set to zero. * * Returns: the element data if @free_segment is %FALSE, otherwise * %NULL. The element data should be freed using g_free(). */ guint8* g_byte_array_free (GByteArray *array, gboolean free_segment) { return (guint8 *)g_array_free ((GArray *)array, free_segment); } /** * g_byte_array_free_to_bytes: * @array: (transfer full): a #GByteArray * * Transfers the data from the #GByteArray into a new immutable #GBytes. * * The #GByteArray is freed unless the reference count of @array is greater * than one, the #GByteArray wrapper is preserved but the size of @array * will be set to zero. * * This is identical to using g_bytes_new_take() and g_byte_array_free() * together. * * Since: 2.32 * * Returns: (transfer full): a new immutable #GBytes representing same * byte data that was in the array */ GBytes* g_byte_array_free_to_bytes (GByteArray *array) { gsize length; g_return_val_if_fail (array != NULL, NULL); length = array->len; return g_bytes_new_take (g_byte_array_free (array, FALSE), length); } /** * g_byte_array_ref: * @array: A #GByteArray * * Atomically increments the reference count of @array by one. * This function is thread-safe and may be called from any thread. * * Returns: The passed in #GByteArray * * Since: 2.22 */ GByteArray* g_byte_array_ref (GByteArray *array) { return (GByteArray *)g_array_ref ((GArray *)array); } /** * g_byte_array_unref: * @array: A #GByteArray * * Atomically decrements the reference count of @array by one. If the * reference count drops to 0, all memory allocated by the array is * released. This function is thread-safe and may be called from any * thread. * * Since: 2.22 */ void g_byte_array_unref (GByteArray *array) { g_array_unref ((GArray *)array); } /** * g_byte_array_append: * @array: a #GByteArray * @data: the byte data to be added * @len: the number of bytes to add * * Adds the given bytes to the end of the #GByteArray. * The array will grow in size automatically if necessary. * * Returns: the #GByteArray */ GByteArray* g_byte_array_append (GByteArray *array, const guint8 *data, guint len) { g_array_append_vals ((GArray *)array, (guint8 *)data, len); return array; } /** * g_byte_array_prepend: * @array: a #GByteArray * @data: the byte data to be added * @len: the number of bytes to add * * Adds the given data to the start of the #GByteArray. * The array will grow in size automatically if necessary. * * Returns: the #GByteArray */ GByteArray* g_byte_array_prepend (GByteArray *array, const guint8 *data, guint len) { g_array_prepend_vals ((GArray *)array, (guint8 *)data, len); return array; } /** * g_byte_array_set_size: * @array: a #GByteArray * @length: the new size of the #GByteArray * * Sets the size of the #GByteArray, expanding it if necessary. * * Returns: the #GByteArray */ GByteArray* g_byte_array_set_size (GByteArray *array, guint length) { g_array_set_size ((GArray *)array, length); return array; } /** * g_byte_array_remove_index: * @array: a #GByteArray * @index_: the index of the byte to remove * * Removes the byte at the given index from a #GByteArray. * The following bytes are moved down one place. * * Returns: the #GByteArray **/ GByteArray* g_byte_array_remove_index (GByteArray *array, guint index_) { g_array_remove_index ((GArray *)array, index_); return array; } /** * g_byte_array_remove_index_fast: * @array: a #GByteArray * @index_: the index of the byte to remove * * Removes the byte at the given index from a #GByteArray. The last * element in the array is used to fill in the space, so this function * does not preserve the order of the #GByteArray. But it is faster * than g_byte_array_remove_index(). * * Returns: the #GByteArray */ GByteArray* g_byte_array_remove_index_fast (GByteArray *array, guint index_) { g_array_remove_index_fast ((GArray *)array, index_); return array; } /** * g_byte_array_remove_range: * @array: a @GByteArray * @index_: the index of the first byte to remove * @length: the number of bytes to remove * * Removes the given number of bytes starting at the given index from a * #GByteArray. The following elements are moved to close the gap. * * Returns: the #GByteArray * * Since: 2.4 */ GByteArray* g_byte_array_remove_range (GByteArray *array, guint index_, guint length) { g_return_val_if_fail (array, NULL); g_return_val_if_fail (index_ <= array->len, NULL); g_return_val_if_fail (index_ + length <= array->len, NULL); return (GByteArray *)g_array_remove_range ((GArray *)array, index_, length); } /** * g_byte_array_sort: * @array: a #GByteArray * @compare_func: comparison function * * Sorts a byte array, using @compare_func which should be a * qsort()-style comparison function (returns less than zero for first * arg is less than second arg, zero for equal, greater than zero if * first arg is greater than second arg). * * If two array elements compare equal, their order in the sorted array * is undefined. If you want equal elements to keep their order (i.e. * you want a stable sort) you can write a comparison function that, * if two elements would otherwise compare equal, compares them by * their addresses. */ void g_byte_array_sort (GByteArray *array, GCompareFunc compare_func) { g_array_sort ((GArray *)array, compare_func); } /** * g_byte_array_sort_with_data: * @array: a #GByteArray * @compare_func: comparison function * @user_data: data to pass to @compare_func * * Like g_byte_array_sort(), but the comparison function takes an extra * user data argument. */ void g_byte_array_sort_with_data (GByteArray *array, GCompareDataFunc compare_func, gpointer user_data) { g_array_sort_with_data ((GArray *)array, compare_func, user_data); }