/* GIO - GLib Input, Output and Streaming Library
*
* Copyright (C) 2008 Christian Kellner, Samuel Cormier-Iijima
* Copyright © 2009 Codethink Limited
* Copyright © 2009 Red Hat, Inc
* Copyright © 2015 Collabora, Ltd.
*
* SPDX-License-Identifier: LGPL-2.1-or-later
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General
* Public License along with this library; if not, see .
*
* Authors: Christian Kellner
* Samuel Cormier-Iijima
* Ryan Lortie
* Alexander Larsson
* Philip Withnall
*/
#include "config.h"
#include "gsocket.h"
#ifdef G_OS_UNIX
#include "glib-unix.h"
#endif
#include
#include
#include
#include
#ifndef G_OS_WIN32
# include
# include
# include
#endif
#ifdef HAVE_SIOCGIFADDR
#include
#endif
#ifdef HAVE_SYS_FILIO_H
# include
#endif
#ifdef G_OS_UNIX
#include
#endif
#define GOBJECT_COMPILATION
#include "gobject/gtype-private.h" /* For _PRELUDE type define */
#undef GOBJECT_COMPILATION
#include "gcancellable.h"
#include "gdatagrambased.h"
#include "gioenumtypes.h"
#include "ginetaddress.h"
#include "ginetsocketaddress.h"
#include "ginitable.h"
#include "gioerror.h"
#include "gioenums.h"
#include "gioerror.h"
#include "gnetworkingprivate.h"
#include "gsocketaddress.h"
#include "gsocketcontrolmessage.h"
#include "gcredentials.h"
#include "gcredentialsprivate.h"
#include "glibintl.h"
#include "gioprivate.h"
#ifdef G_OS_WIN32
#include "giowin32-afunix.h"
#endif
/**
* GSocket:
*
* A `GSocket` is a low-level networking primitive. It is a more or less
* direct mapping of the BSD socket API in a portable GObject based API.
* It supports both the UNIX socket implementations and winsock2 on Windows.
*
* `GSocket` is the platform independent base upon which the higher level
* network primitives are based. Applications are not typically meant to
* use it directly, but rather through classes like [class@Gio.SocketClient],
* [class@Gio.SocketService] and [class@Gio.SocketConnection]. However there may
* be cases where direct use of `GSocket` is useful.
*
* `GSocket` implements the [iface@Gio.Initable] interface, so if it is manually
* constructed by e.g. [ctor@GObject.Object.new] you must call
* [method@Gio.Initable.init] and check the results before using the object.
* This is done automatically in [ctor@Gio.Socket.new] and
* [ctor@Gio.Socket.new_from_fd], so these functions can return `NULL`.
*
* Sockets operate in two general modes, blocking or non-blocking. When
* in blocking mode all operations (which don’t take an explicit blocking
* parameter) block until the requested operation
* is finished or there is an error. In non-blocking mode all calls that
* would block return immediately with a `G_IO_ERROR_WOULD_BLOCK` error.
* To know when a call would successfully run you can call
* [method@Gio.Socket.condition_check], or [method@Gio.Socket.condition_wait].
* You can also use [method@Gio.Socket.create_source] and attach it to a
* [type@GLib.MainContext] to get callbacks when I/O is possible.
* Note that all sockets are always set to non blocking mode in the system, and
* blocking mode is emulated in `GSocket`.
*
* When working in non-blocking mode applications should always be able to
* handle getting a `G_IO_ERROR_WOULD_BLOCK` error even when some other
* function said that I/O was possible. This can easily happen in case
* of a race condition in the application, but it can also happen for other
* reasons. For instance, on Windows a socket is always seen as writable
* until a write returns `G_IO_ERROR_WOULD_BLOCK`.
*
* `GSocket`s can be either connection oriented or datagram based.
* For connection oriented types you must first establish a connection by
* either connecting to an address or accepting a connection from another
* address. For connectionless socket types the target/source address is
* specified or received in each I/O operation.
*
* All socket file descriptors are set to be close-on-exec.
*
* Note that creating a `GSocket` causes the signal `SIGPIPE` to be
* ignored for the remainder of the program. If you are writing a
* command-line utility that uses `GSocket`, you may need to take into
* account the fact that your program will not automatically be killed
* if it tries to write to `stdout` after it has been closed.
*
* Like most other APIs in GLib, `GSocket` is not inherently thread safe. To use
* a `GSocket` concurrently from multiple threads, you must implement your own
* locking.
*
* Since: 2.22
*/
static void g_socket_initable_iface_init (GInitableIface *iface);
static gboolean g_socket_initable_init (GInitable *initable,
GCancellable *cancellable,
GError **error);
static void g_socket_datagram_based_iface_init (GDatagramBasedInterface *iface);
static gint g_socket_datagram_based_receive_messages (GDatagramBased *self,
GInputMessage *messages,
guint num_messages,
gint flags,
gint64 timeout_us,
GCancellable *cancellable,
GError **error);
static gint g_socket_datagram_based_send_messages (GDatagramBased *self,
GOutputMessage *messages,
guint num_messages,
gint flags,
gint64 timeout_us,
GCancellable *cancellable,
GError **error);
static GSource *g_socket_datagram_based_create_source (GDatagramBased *self,
GIOCondition condition,
GCancellable *cancellable);
static GIOCondition g_socket_datagram_based_condition_check (GDatagramBased *datagram_based,
GIOCondition condition);
static gboolean g_socket_datagram_based_condition_wait (GDatagramBased *datagram_based,
GIOCondition condition,
gint64 timeout_us,
GCancellable *cancellable,
GError **error);
static GSocketAddress *
cache_recv_address (GSocket *socket, struct sockaddr *native, size_t native_len);
static gssize
g_socket_receive_message_with_timeout (GSocket *socket,
GSocketAddress **address,
GInputVector *vectors,
gint num_vectors,
GSocketControlMessage ***messages,
gint *num_messages,
gint *flags,
gint64 timeout_us,
GCancellable *cancellable,
GError **error);
static gint
g_socket_receive_messages_with_timeout (GSocket *socket,
GInputMessage *messages,
guint num_messages,
gint flags,
gint64 timeout_us,
GCancellable *cancellable,
GError **error);
static gint
g_socket_send_messages_with_timeout (GSocket *socket,
GOutputMessage *messages,
guint num_messages,
gint flags,
gint64 timeout_us,
GCancellable *cancellable,
GError **error);
enum
{
PROP_0,
PROP_FAMILY,
PROP_TYPE,
PROP_PROTOCOL,
PROP_FD,
PROP_BLOCKING,
PROP_LISTEN_BACKLOG,
PROP_KEEPALIVE,
PROP_LOCAL_ADDRESS,
PROP_REMOTE_ADDRESS,
PROP_TIMEOUT,
PROP_TTL,
PROP_BROADCAST,
PROP_MULTICAST_LOOPBACK,
PROP_MULTICAST_TTL
};
/* Size of the receiver cache for g_socket_receive_from() */
#define RECV_ADDR_CACHE_SIZE 8
struct _GSocketPrivate
{
GSocketFamily family;
GSocketType type;
GSocketProtocol protocol;
gint fd;
gint listen_backlog;
guint timeout;
GError *construct_error;
GSocketAddress *remote_address;
guint inited : 1;
guint blocking : 1;
guint keepalive : 1;
guint closed : 1;
guint connected_read : 1;
guint connected_write : 1;
guint listening : 1;
guint timed_out : 1;
guint connect_pending : 1;
#ifdef G_OS_WIN32
WSAEVENT event;
gboolean waiting;
DWORD waiting_result;
int current_events;
int current_errors;
int selected_events;
GList *requested_conditions; /* list of requested GIOCondition * */
GMutex win32_source_lock;
GCond win32_source_cond;
#endif
struct {
GSocketAddress *addr;
struct sockaddr *native;
gsize native_len;
guint64 last_used;
} recv_addr_cache[RECV_ADDR_CACHE_SIZE];
};
_G_DEFINE_TYPE_EXTENDED_WITH_PRELUDE (GSocket, g_socket, G_TYPE_OBJECT, 0,
/* Need a prelude for https://bugzilla.gnome.org/show_bug.cgi?id=674885 */
g_type_ensure (G_TYPE_SOCKET_FAMILY);
g_type_ensure (G_TYPE_SOCKET_TYPE);
g_type_ensure (G_TYPE_SOCKET_PROTOCOL);
g_type_ensure (G_TYPE_SOCKET_ADDRESS);
/* And networking init is appropriate for the prelude */
g_networking_init ();
, /* And now the regular type init code */
G_ADD_PRIVATE (GSocket)
G_IMPLEMENT_INTERFACE (G_TYPE_INITABLE,
g_socket_initable_iface_init);
G_IMPLEMENT_INTERFACE (G_TYPE_DATAGRAM_BASED,
g_socket_datagram_based_iface_init));
static int
get_socket_errno (void)
{
#ifndef G_OS_WIN32
return errno;
#else
return WSAGetLastError ();
#endif
}
static GIOErrorEnum
socket_io_error_from_errno (int err)
{
#ifdef G_OS_WIN32
return g_io_error_from_win32_error (err);
#else
return g_io_error_from_errno (err);
#endif
}
static const char *
socket_strerror (int err)
{
#ifndef G_OS_WIN32
return g_strerror (err);
#else
const char *msg_ret;
char *msg;
msg = g_win32_error_message (err);
msg_ret = g_intern_string (msg);
g_free (msg);
return msg_ret;
#endif
}
/* Wrapper around g_set_error() to avoid doing excess work */
#define socket_set_error_lazy(err, errsv, fmt) \
G_STMT_START { \
GError **__err = (err); \
int __errsv = (errsv); \
\
if (__err) \
{ \
int __code = socket_io_error_from_errno (__errsv); \
const char *__strerr = socket_strerror (__errsv); \
\
if (__code == G_IO_ERROR_WOULD_BLOCK) \
g_set_error_literal (__err, G_IO_ERROR, __code, __strerr); \
else \
g_set_error (__err, G_IO_ERROR, __code, fmt, __strerr); \
} \
} G_STMT_END
#ifdef G_OS_WIN32
#define win32_unset_event_mask(_socket, _mask) _win32_unset_event_mask (_socket, _mask)
static void
_win32_unset_event_mask (GSocket *socket, int mask)
{
g_mutex_lock (&socket->priv->win32_source_lock);
socket->priv->current_events &= ~mask;
socket->priv->current_errors &= ~mask;
g_mutex_unlock (&socket->priv->win32_source_lock);
}
#else
#define win32_unset_event_mask(_socket, _mask)
#endif
/* Windows has broken prototypes... */
#ifdef G_OS_WIN32
#define getsockopt(sockfd, level, optname, optval, optlen) \
getsockopt (sockfd, level, optname, (gpointer) optval, (int*) optlen)
#define setsockopt(sockfd, level, optname, optval, optlen) \
setsockopt (sockfd, level, optname, (gpointer) optval, optlen)
#define getsockname(sockfd, addr, addrlen) \
getsockname (sockfd, addr, (int *)addrlen)
#define getpeername(sockfd, addr, addrlen) \
getpeername (sockfd, addr, (int *)addrlen)
#define recv(sockfd, buf, len, flags) \
recv (sockfd, (gpointer)buf, len, flags)
#endif
static gchar *
address_to_string (GSocketAddress *address)
{
GString *ret = g_string_new ("");
if (G_IS_INET_SOCKET_ADDRESS (address))
{
GInetSocketAddress *isa = G_INET_SOCKET_ADDRESS (address);
GInetAddress *ia = g_inet_socket_address_get_address (isa);
GSocketFamily family = g_inet_address_get_family (ia);
gchar *tmp;
/* Represent IPv6 addresses in URL style:
* ::1 port 12345 -> [::1]:12345 */
if (family == G_SOCKET_FAMILY_IPV6)
g_string_append_c (ret, '[');
tmp = g_inet_address_to_string (ia);
g_string_append (ret, tmp);
g_free (tmp);
if (family == G_SOCKET_FAMILY_IPV6)
{
guint32 scope = g_inet_socket_address_get_scope_id (isa);
if (scope != 0)
g_string_append_printf (ret, "%%%u", scope);
g_string_append_c (ret, ']');
}
g_string_append_c (ret, ':');
g_string_append_printf (ret, "%u", g_inet_socket_address_get_port (isa));
}
else
{
/* For unknown address types, just show the type */
g_string_append_printf (ret, "(%s)", G_OBJECT_TYPE_NAME (address));
}
return g_string_free (ret, FALSE);
}
static gboolean
check_socket (GSocket *socket,
GError **error)
{
if (!socket->priv->inited)
{
g_set_error_literal (error, G_IO_ERROR, G_IO_ERROR_NOT_INITIALIZED,
_("Invalid socket, not initialized"));
return FALSE;
}
if (socket->priv->construct_error)
{
g_set_error (error, G_IO_ERROR, G_IO_ERROR_NOT_INITIALIZED,
_("Invalid socket, initialization failed due to: %s"),
socket->priv->construct_error->message);
return FALSE;
}
if (socket->priv->closed)
{
g_set_error_literal (error, G_IO_ERROR, G_IO_ERROR_CLOSED,
_("Socket is already closed"));
return FALSE;
}
return TRUE;
}
static gboolean
check_timeout (GSocket *socket,
GError **error)
{
if (socket->priv->timed_out)
{
socket->priv->timed_out = FALSE;
g_set_error_literal (error, G_IO_ERROR, G_IO_ERROR_TIMED_OUT,
_("Socket I/O timed out"));
return FALSE;
}
return TRUE;
}
static void
g_socket_details_from_fd (GSocket *socket)
{
union {
struct sockaddr_storage storage;
struct sockaddr sa;
} address;
gint fd;
socklen_t addrlen;
int value, family;
int errsv;
memset (&address, 0, sizeof (address));
fd = socket->priv->fd;
if (!g_socket_get_option (socket, SOL_SOCKET, SO_TYPE, &value, NULL))
{
errsv = get_socket_errno ();
goto err;
}
switch (value)
{
case SOCK_STREAM:
socket->priv->type = G_SOCKET_TYPE_STREAM;
break;
case SOCK_DGRAM:
socket->priv->type = G_SOCKET_TYPE_DATAGRAM;
break;
case SOCK_SEQPACKET:
socket->priv->type = G_SOCKET_TYPE_SEQPACKET;
break;
default:
socket->priv->type = G_SOCKET_TYPE_INVALID;
break;
}
addrlen = sizeof address;
if (getsockname (fd, &address.sa, &addrlen) != 0)
{
errsv = get_socket_errno ();
goto err;
}
if (addrlen > 0)
{
g_assert (G_STRUCT_OFFSET (struct sockaddr, sa_family) +
(socklen_t) sizeof address.storage.ss_family <= addrlen);
family = address.storage.ss_family;
}
else
{
/* On Solaris, this happens if the socket is not yet connected.
* But we can use SO_DOMAIN as a workaround there.
*/
#ifdef SO_DOMAIN
if (!g_socket_get_option (socket, SOL_SOCKET, SO_DOMAIN, &family, NULL))
{
errsv = get_socket_errno ();
goto err;
}
#else
/* This will translate to G_IO_ERROR_FAILED on either unix or windows */
errsv = -1;
goto err;
#endif
}
switch (family)
{
case G_SOCKET_FAMILY_IPV4:
case G_SOCKET_FAMILY_IPV6:
socket->priv->family = address.storage.ss_family;
switch (socket->priv->type)
{
case G_SOCKET_TYPE_STREAM:
socket->priv->protocol = G_SOCKET_PROTOCOL_TCP;
break;
case G_SOCKET_TYPE_DATAGRAM:
socket->priv->protocol = G_SOCKET_PROTOCOL_UDP;
break;
case G_SOCKET_TYPE_SEQPACKET:
socket->priv->protocol = G_SOCKET_PROTOCOL_SCTP;
break;
default:
break;
}
break;
case G_SOCKET_FAMILY_UNIX:
socket->priv->family = G_SOCKET_FAMILY_UNIX;
socket->priv->protocol = G_SOCKET_PROTOCOL_DEFAULT;
break;
default:
socket->priv->family = G_SOCKET_FAMILY_INVALID;
break;
}
if (socket->priv->family != G_SOCKET_FAMILY_INVALID)
{
addrlen = sizeof address;
if (getpeername (fd, &address.sa, &addrlen) >= 0)
{
socket->priv->connected_read = TRUE;
socket->priv->connected_write = TRUE;
}
}
if (g_socket_get_option (socket, SOL_SOCKET, SO_KEEPALIVE, &value, NULL))
{
socket->priv->keepalive = !!value;
}
else
{
/* Can't read, maybe not supported, assume FALSE */
socket->priv->keepalive = FALSE;
}
return;
err:
g_set_error (&socket->priv->construct_error, G_IO_ERROR,
socket_io_error_from_errno (errsv),
_("creating GSocket from fd: %s"),
socket_strerror (errsv));
}
static void
socket_set_nonblock (int fd)
{
#ifndef G_OS_WIN32
GError *error = NULL;
#else
gulong arg;
#endif
/* Always use native nonblocking sockets, as Windows sets sockets to
* nonblocking automatically in certain operations. This way we make
* things work the same on all platforms.
*/
#ifndef G_OS_WIN32
if (!g_unix_set_fd_nonblocking (fd, TRUE, &error))
{
g_warning ("Error setting socket to nonblocking mode: %s", error->message);
g_clear_error (&error);
}
#else
arg = TRUE;
if (ioctlsocket (fd, FIONBIO, &arg) == SOCKET_ERROR)
{
int errsv = get_socket_errno ();
g_warning ("Error setting socket status flags: %s", socket_strerror (errsv));
}
#endif
}
/* Wrapper around socket() that is shared with gnetworkmonitornetlink.c.
* It always sets SOCK_CLOEXEC | SOCK_NONBLOCK. */
gint
g_socket (gint domain,
gint type,
gint protocol,
GError **error)
{
int fd, errsv;
#if defined(SOCK_CLOEXEC) && defined(SOCK_NONBLOCK)
fd = socket (domain, type | SOCK_CLOEXEC | SOCK_NONBLOCK, protocol);
errsv = errno;
if (fd != -1)
return fd;
/* It's possible that libc has SOCK_CLOEXEC and/or SOCK_NONBLOCK but the kernel does not */
if (fd < 0 && (errsv == EINVAL || errsv == EPROTOTYPE))
#endif
fd = socket (domain, type, protocol);
if (fd < 0)
{
errsv = get_socket_errno ();
g_set_error (error, G_IO_ERROR, socket_io_error_from_errno (errsv),
_("Unable to create socket: %s"), socket_strerror (errsv));
errno = errsv;
return -1;
}
#ifndef G_OS_WIN32
{
int flags;
/* We always want to set close-on-exec to protect users. If you
need to so some weird inheritance to exec you can re-enable this
using lower level hacks with g_socket_get_fd(). */
flags = fcntl (fd, F_GETFD, 0);
if (flags != -1 &&
(flags & FD_CLOEXEC) == 0)
{
flags |= FD_CLOEXEC;
(void) fcntl (fd, F_SETFD, flags);
}
}
#else
if ((domain == AF_INET || domain == AF_INET6) && type == SOCK_DGRAM)
{
BOOL new_behavior = FALSE;
DWORD bytes_returned = 0;
/* Disable connection reset error on ICMP port unreachable. */
WSAIoctl (fd, SIO_UDP_CONNRESET, &new_behavior, sizeof (new_behavior),
NULL, 0, &bytes_returned, NULL, NULL);
}
#endif
/* Ensure the socket is non-blocking. */
socket_set_nonblock (fd);
return fd;
}
/* Returned socket has SOCK_CLOEXEC | SOCK_NONBLOCK set. */
static gint
g_socket_create_socket (GSocketFamily family,
GSocketType type,
int protocol,
GError **error)
{
gint native_type;
switch (type)
{
case G_SOCKET_TYPE_STREAM:
native_type = SOCK_STREAM;
break;
case G_SOCKET_TYPE_DATAGRAM:
native_type = SOCK_DGRAM;
break;
case G_SOCKET_TYPE_SEQPACKET:
native_type = SOCK_SEQPACKET;
break;
default:
g_assert_not_reached ();
}
if (family <= 0)
{
g_set_error (error, G_IO_ERROR, G_IO_ERROR_INVALID_ARGUMENT,
_("Unable to create socket: %s"), _("Unknown family was specified"));
return -1;
}
if (protocol == -1)
{
g_set_error (error, G_IO_ERROR, G_IO_ERROR_INVALID_ARGUMENT,
_("Unable to create socket: %s"), _("Unknown protocol was specified"));
return -1;
}
return g_socket (family, native_type, protocol, error);
}
static void
g_socket_constructed (GObject *object)
{
GSocket *socket = G_SOCKET (object);
if (socket->priv->fd >= 0)
{
/* create socket->priv info from the fd and ensure it’s non-blocking */
g_socket_details_from_fd (socket);
socket_set_nonblock (socket->priv->fd);
}
else
{
/* create the fd from socket->priv info; this sets it non-blocking by construction */
socket->priv->fd = g_socket_create_socket (socket->priv->family,
socket->priv->type,
socket->priv->protocol,
&socket->priv->construct_error);
}
if (socket->priv->fd != -1)
{
#ifdef SO_NOSIGPIPE
/* See note about SIGPIPE below. */
g_socket_set_option (socket, SOL_SOCKET, SO_NOSIGPIPE, TRUE, NULL);
#endif
}
}
static void
g_socket_get_property (GObject *object,
guint prop_id,
GValue *value,
GParamSpec *pspec)
{
GSocket *socket = G_SOCKET (object);
GSocketAddress *address;
switch (prop_id)
{
case PROP_FAMILY:
g_value_set_enum (value, socket->priv->family);
break;
case PROP_TYPE:
g_value_set_enum (value, socket->priv->type);
break;
case PROP_PROTOCOL:
g_value_set_enum (value, socket->priv->protocol);
break;
case PROP_FD:
g_value_set_int (value, socket->priv->fd);
break;
case PROP_BLOCKING:
g_value_set_boolean (value, socket->priv->blocking);
break;
case PROP_LISTEN_BACKLOG:
g_value_set_int (value, socket->priv->listen_backlog);
break;
case PROP_KEEPALIVE:
g_value_set_boolean (value, socket->priv->keepalive);
break;
case PROP_LOCAL_ADDRESS:
address = g_socket_get_local_address (socket, NULL);
g_value_take_object (value, address);
break;
case PROP_REMOTE_ADDRESS:
address = g_socket_get_remote_address (socket, NULL);
g_value_take_object (value, address);
break;
case PROP_TIMEOUT:
g_value_set_uint (value, socket->priv->timeout);
break;
case PROP_TTL:
g_value_set_uint (value, g_socket_get_ttl (socket));
break;
case PROP_BROADCAST:
g_value_set_boolean (value, g_socket_get_broadcast (socket));
break;
case PROP_MULTICAST_LOOPBACK:
g_value_set_boolean (value, g_socket_get_multicast_loopback (socket));
break;
case PROP_MULTICAST_TTL:
g_value_set_uint (value, g_socket_get_multicast_ttl (socket));
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
}
}
static void
g_socket_set_property (GObject *object,
guint prop_id,
const GValue *value,
GParamSpec *pspec)
{
GSocket *socket = G_SOCKET (object);
switch (prop_id)
{
case PROP_FAMILY:
socket->priv->family = g_value_get_enum (value);
break;
case PROP_TYPE:
socket->priv->type = g_value_get_enum (value);
break;
case PROP_PROTOCOL:
socket->priv->protocol = g_value_get_enum (value);
break;
case PROP_FD:
socket->priv->fd = g_value_get_int (value);
break;
case PROP_BLOCKING:
g_socket_set_blocking (socket, g_value_get_boolean (value));
break;
case PROP_LISTEN_BACKLOG:
g_socket_set_listen_backlog (socket, g_value_get_int (value));
break;
case PROP_KEEPALIVE:
g_socket_set_keepalive (socket, g_value_get_boolean (value));
break;
case PROP_TIMEOUT:
g_socket_set_timeout (socket, g_value_get_uint (value));
break;
case PROP_TTL:
g_socket_set_ttl (socket, g_value_get_uint (value));
break;
case PROP_BROADCAST:
g_socket_set_broadcast (socket, g_value_get_boolean (value));
break;
case PROP_MULTICAST_LOOPBACK:
g_socket_set_multicast_loopback (socket, g_value_get_boolean (value));
break;
case PROP_MULTICAST_TTL:
g_socket_set_multicast_ttl (socket, g_value_get_uint (value));
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
}
}
static void
g_socket_finalize (GObject *object)
{
GSocket *socket = G_SOCKET (object);
gint i;
g_clear_error (&socket->priv->construct_error);
if (socket->priv->fd != -1 &&
!socket->priv->closed)
g_socket_close (socket, NULL);
if (socket->priv->remote_address)
g_object_unref (socket->priv->remote_address);
#ifdef G_OS_WIN32
if (socket->priv->event != WSA_INVALID_EVENT)
{
WSACloseEvent (socket->priv->event);
socket->priv->event = WSA_INVALID_EVENT;
}
g_assert (socket->priv->requested_conditions == NULL);
g_mutex_clear (&socket->priv->win32_source_lock);
g_cond_clear (&socket->priv->win32_source_cond);
#endif
for (i = 0; i < RECV_ADDR_CACHE_SIZE; i++)
{
if (socket->priv->recv_addr_cache[i].addr)
{
g_object_unref (socket->priv->recv_addr_cache[i].addr);
g_free (socket->priv->recv_addr_cache[i].native);
}
}
if (G_OBJECT_CLASS (g_socket_parent_class)->finalize)
(*G_OBJECT_CLASS (g_socket_parent_class)->finalize) (object);
}
static void
g_socket_class_init (GSocketClass *klass)
{
GObjectClass *gobject_class G_GNUC_UNUSED = G_OBJECT_CLASS (klass);
#ifdef SIGPIPE
/* There is no portable, thread-safe way to avoid having the process
* be killed by SIGPIPE when calling send() or sendmsg(), so we are
* forced to simply ignore the signal process-wide.
*
* Even if we ignore it though, gdb will still stop if the app
* receives a SIGPIPE, which can be confusing and annoying. So when
* possible, we also use MSG_NOSIGNAL / SO_NOSIGPIPE elsewhere to
* prevent the signal from occurring at all.
*/
signal (SIGPIPE, SIG_IGN);
#endif
gobject_class->finalize = g_socket_finalize;
gobject_class->constructed = g_socket_constructed;
gobject_class->set_property = g_socket_set_property;
gobject_class->get_property = g_socket_get_property;
g_object_class_install_property (gobject_class, PROP_FAMILY,
g_param_spec_enum ("family",
P_("Socket family"),
P_("The sockets address family"),
G_TYPE_SOCKET_FAMILY,
G_SOCKET_FAMILY_INVALID,
G_PARAM_CONSTRUCT_ONLY |
G_PARAM_READWRITE |
G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_TYPE,
g_param_spec_enum ("type",
P_("Socket type"),
P_("The sockets type"),
G_TYPE_SOCKET_TYPE,
G_SOCKET_TYPE_STREAM,
G_PARAM_CONSTRUCT_ONLY |
G_PARAM_READWRITE |
G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_PROTOCOL,
g_param_spec_enum ("protocol",
P_("Socket protocol"),
P_("The id of the protocol to use, or -1 for unknown"),
G_TYPE_SOCKET_PROTOCOL,
G_SOCKET_PROTOCOL_UNKNOWN,
G_PARAM_CONSTRUCT_ONLY |
G_PARAM_READWRITE |
G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_FD,
g_param_spec_int ("fd",
P_("File descriptor"),
P_("The sockets file descriptor"),
G_MININT,
G_MAXINT,
-1,
G_PARAM_CONSTRUCT_ONLY |
G_PARAM_READWRITE |
G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_BLOCKING,
g_param_spec_boolean ("blocking",
P_("blocking"),
P_("Whether or not I/O on this socket is blocking"),
TRUE,
G_PARAM_READWRITE |
G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_LISTEN_BACKLOG,
g_param_spec_int ("listen-backlog",
P_("Listen backlog"),
P_("Outstanding connections in the listen queue"),
0,
SOMAXCONN,
10,
G_PARAM_READWRITE |
G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_KEEPALIVE,
g_param_spec_boolean ("keepalive",
P_("Keep connection alive"),
P_("Keep connection alive by sending periodic pings"),
FALSE,
G_PARAM_READWRITE |
G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_LOCAL_ADDRESS,
g_param_spec_object ("local-address",
P_("Local address"),
P_("The local address the socket is bound to"),
G_TYPE_SOCKET_ADDRESS,
G_PARAM_READABLE |
G_PARAM_STATIC_STRINGS));
g_object_class_install_property (gobject_class, PROP_REMOTE_ADDRESS,
g_param_spec_object ("remote-address",
P_("Remote address"),
P_("The remote address the socket is connected to"),
G_TYPE_SOCKET_ADDRESS,
G_PARAM_READABLE |
G_PARAM_STATIC_STRINGS));
/**
* GSocket:timeout:
*
* The timeout in seconds on socket I/O
*
* Since: 2.26
*/
g_object_class_install_property (gobject_class, PROP_TIMEOUT,
g_param_spec_uint ("timeout",
P_("Timeout"),
P_("The timeout in seconds on socket I/O"),
0,
G_MAXUINT,
0,
G_PARAM_READWRITE |
G_PARAM_STATIC_STRINGS));
/**
* GSocket:broadcast:
*
* Whether the socket should allow sending to broadcast addresses.
*
* Since: 2.32
*/
g_object_class_install_property (gobject_class, PROP_BROADCAST,
g_param_spec_boolean ("broadcast",
P_("Broadcast"),
P_("Whether to allow sending to broadcast addresses"),
FALSE,
G_PARAM_READWRITE |
G_PARAM_STATIC_STRINGS));
/**
* GSocket:ttl:
*
* Time-to-live for outgoing unicast packets
*
* Since: 2.32
*/
g_object_class_install_property (gobject_class, PROP_TTL,
g_param_spec_uint ("ttl",
P_("TTL"),
P_("Time-to-live of outgoing unicast packets"),
0, G_MAXUINT, 0,
G_PARAM_READWRITE |
G_PARAM_STATIC_STRINGS));
/**
* GSocket:multicast-loopback:
*
* Whether outgoing multicast packets loop back to the local host.
*
* Since: 2.32
*/
g_object_class_install_property (gobject_class, PROP_MULTICAST_LOOPBACK,
g_param_spec_boolean ("multicast-loopback",
P_("Multicast loopback"),
P_("Whether outgoing multicast packets loop back to the local host"),
TRUE,
G_PARAM_READWRITE |
G_PARAM_STATIC_STRINGS));
/**
* GSocket:multicast-ttl:
*
* Time-to-live out outgoing multicast packets
*
* Since: 2.32
*/
g_object_class_install_property (gobject_class, PROP_MULTICAST_TTL,
g_param_spec_uint ("multicast-ttl",
P_("Multicast TTL"),
P_("Time-to-live of outgoing multicast packets"),
0, G_MAXUINT, 1,
G_PARAM_READWRITE |
G_PARAM_STATIC_STRINGS));
}
static void
g_socket_initable_iface_init (GInitableIface *iface)
{
iface->init = g_socket_initable_init;
}
static void
g_socket_datagram_based_iface_init (GDatagramBasedInterface *iface)
{
iface->receive_messages = g_socket_datagram_based_receive_messages;
iface->send_messages = g_socket_datagram_based_send_messages;
iface->create_source = g_socket_datagram_based_create_source;
iface->condition_check = g_socket_datagram_based_condition_check;
iface->condition_wait = g_socket_datagram_based_condition_wait;
}
static void
g_socket_init (GSocket *socket)
{
socket->priv = g_socket_get_instance_private (socket);
socket->priv->fd = -1;
socket->priv->blocking = TRUE;
socket->priv->listen_backlog = 10;
socket->priv->construct_error = NULL;
#ifdef G_OS_WIN32
socket->priv->event = WSA_INVALID_EVENT;
g_mutex_init (&socket->priv->win32_source_lock);
g_cond_init (&socket->priv->win32_source_cond);
#endif
}
static gboolean
g_socket_initable_init (GInitable *initable,
GCancellable *cancellable,
GError **error)
{
GSocket *socket;
g_return_val_if_fail (G_IS_SOCKET (initable), FALSE);
socket = G_SOCKET (initable);
if (cancellable != NULL)
{
g_set_error_literal (error, G_IO_ERROR, G_IO_ERROR_NOT_SUPPORTED,
_("Cancellable initialization not supported"));
return FALSE;
}
socket->priv->inited = TRUE;
if (socket->priv->construct_error)
{
if (error)
*error = g_error_copy (socket->priv->construct_error);
return FALSE;
}
return TRUE;
}
static gboolean
check_datagram_based (GDatagramBased *self,
GError **error)
{
switch (g_socket_get_socket_type (G_SOCKET (self)))
{
case G_SOCKET_TYPE_INVALID:
case G_SOCKET_TYPE_STREAM:
g_set_error (error, G_IO_ERROR, G_IO_ERROR_NOT_SUPPORTED,
_("Cannot use datagram operations on a non-datagram "
"socket."));
return FALSE;
case G_SOCKET_TYPE_DATAGRAM:
case G_SOCKET_TYPE_SEQPACKET:
/* Fall through. */
break;
}
/* Due to us sharing #GSocketSource with the #GSocket implementation, it is
* pretty tricky to split out #GSocket:timeout so that it does not affect
* #GDatagramBased operations (but still affects #GSocket operations). It is
* not worth that effort — just disallow it and require the user to specify
* timeouts on a per-operation basis. */
if (g_socket_get_timeout (G_SOCKET (self)) != 0)
{
g_set_error (error, G_IO_ERROR, G_IO_ERROR_NOT_SUPPORTED,
_("Cannot use datagram operations on a socket with a "
"timeout set."));
return FALSE;
}
return TRUE;
}
static gint
g_socket_datagram_based_receive_messages (GDatagramBased *self,
GInputMessage *messages,
guint num_messages,
gint flags,
gint64 timeout_us,
GCancellable *cancellable,
GError **error)
{
if (!check_datagram_based (self, error))
return FALSE;
return g_socket_receive_messages_with_timeout (G_SOCKET (self), messages,
num_messages, flags, timeout_us,
cancellable, error);
}
static gint
g_socket_datagram_based_send_messages (GDatagramBased *self,
GOutputMessage *messages,
guint num_messages,
gint flags,
gint64 timeout_us,
GCancellable *cancellable,
GError **error)
{
if (!check_datagram_based (self, error))
return FALSE;
return g_socket_send_messages_with_timeout (G_SOCKET (self), messages,
num_messages, flags, timeout_us,
cancellable, error);
}
static GSource *
g_socket_datagram_based_create_source (GDatagramBased *self,
GIOCondition condition,
GCancellable *cancellable)
{
if (!check_datagram_based (self, NULL))
return NULL;
return g_socket_create_source (G_SOCKET (self), condition, cancellable);
}
static GIOCondition
g_socket_datagram_based_condition_check (GDatagramBased *datagram_based,
GIOCondition condition)
{
if (!check_datagram_based (datagram_based, NULL))
return G_IO_ERR;
return g_socket_condition_check (G_SOCKET (datagram_based), condition);
}
static gboolean
g_socket_datagram_based_condition_wait (GDatagramBased *datagram_based,
GIOCondition condition,
gint64 timeout_us,
GCancellable *cancellable,
GError **error)
{
if (!check_datagram_based (datagram_based, error))
return FALSE;
return g_socket_condition_timed_wait (G_SOCKET (datagram_based), condition,
timeout_us, cancellable, error);
}
/**
* g_socket_new:
* @family: the socket family to use, e.g. %G_SOCKET_FAMILY_IPV4.
* @type: the socket type to use.
* @protocol: the id of the protocol to use, or 0 for default.
* @error: #GError for error reporting, or %NULL to ignore.
*
* Creates a new #GSocket with the defined family, type and protocol.
* If @protocol is 0 (%G_SOCKET_PROTOCOL_DEFAULT) the default protocol type
* for the family and type is used.
*
* The @protocol is a family and type specific int that specifies what
* kind of protocol to use. #GSocketProtocol lists several common ones.
* Many families only support one protocol, and use 0 for this, others
* support several and using 0 means to use the default protocol for
* the family and type.
*
* The protocol id is passed directly to the operating
* system, so you can use protocols not listed in #GSocketProtocol if you
* know the protocol number used for it.
*
* Returns: a #GSocket or %NULL on error.
* Free the returned object with g_object_unref().
*
* Since: 2.22
*/
GSocket *
g_socket_new (GSocketFamily family,
GSocketType type,
GSocketProtocol protocol,
GError **error)
{
return G_SOCKET (g_initable_new (G_TYPE_SOCKET,
NULL, error,
"family", family,
"type", type,
"protocol", protocol,
NULL));
}
/**
* g_socket_new_from_fd:
* @fd: a native socket file descriptor.
* @error: #GError for error reporting, or %NULL to ignore.
*
* Creates a new #GSocket from a native file descriptor
* or winsock SOCKET handle.
*
* This reads all the settings from the file descriptor so that
* all properties should work. Note that the file descriptor
* will be set to non-blocking mode, independent on the blocking
* mode of the #GSocket.
*
* On success, the returned #GSocket takes ownership of @fd. On failure, the
* caller must close @fd themselves.
*
* Since GLib 2.46, it is no longer a fatal error to call this on a non-socket
* descriptor. Instead, a GError will be set with code %G_IO_ERROR_FAILED
*
* Returns: a #GSocket or %NULL on error.
* Free the returned object with g_object_unref().
*
* Since: 2.22
*/
GSocket *
g_socket_new_from_fd (gint fd,
GError **error)
{
return G_SOCKET (g_initable_new (G_TYPE_SOCKET,
NULL, error,
"fd", fd,
NULL));
}
/**
* g_socket_set_blocking:
* @socket: a #GSocket.
* @blocking: Whether to use blocking I/O or not.
*
* Sets the blocking mode of the socket. In blocking mode
* all operations (which don’t take an explicit blocking parameter) block until
* they succeed or there is an error. In
* non-blocking mode all functions return results immediately or
* with a %G_IO_ERROR_WOULD_BLOCK error.
*
* All sockets are created in blocking mode. However, note that the
* platform level socket is always non-blocking, and blocking mode
* is a GSocket level feature.
*
* Since: 2.22
*/
void
g_socket_set_blocking (GSocket *socket,
gboolean blocking)
{
g_return_if_fail (G_IS_SOCKET (socket));
blocking = !!blocking;
if (socket->priv->blocking == blocking)
return;
socket->priv->blocking = blocking;
g_object_notify (G_OBJECT (socket), "blocking");
}
/**
* g_socket_get_blocking:
* @socket: a #GSocket.
*
* Gets the blocking mode of the socket. For details on blocking I/O,
* see g_socket_set_blocking().
*
* Returns: %TRUE if blocking I/O is used, %FALSE otherwise.
*
* Since: 2.22
*/
gboolean
g_socket_get_blocking (GSocket *socket)
{
g_return_val_if_fail (G_IS_SOCKET (socket), FALSE);
return socket->priv->blocking;
}
/**
* g_socket_set_keepalive:
* @socket: a #GSocket.
* @keepalive: Value for the keepalive flag
*
* Sets or unsets the %SO_KEEPALIVE flag on the underlying socket. When
* this flag is set on a socket, the system will attempt to verify that the
* remote socket endpoint is still present if a sufficiently long period of
* time passes with no data being exchanged. If the system is unable to
* verify the presence of the remote endpoint, it will automatically close
* the connection.
*
* This option is only functional on certain kinds of sockets. (Notably,
* %G_SOCKET_PROTOCOL_TCP sockets.)
*
* The exact time between pings is system- and protocol-dependent, but will
* normally be at least two hours. Most commonly, you would set this flag
* on a server socket if you want to allow clients to remain idle for long
* periods of time, but also want to ensure that connections are eventually
* garbage-collected if clients crash or become unreachable.
*
* Since: 2.22
*/
void
g_socket_set_keepalive (GSocket *socket,
gboolean keepalive)
{
GError *error = NULL;
g_return_if_fail (G_IS_SOCKET (socket));
keepalive = !!keepalive;
if (socket->priv->keepalive == keepalive)
return;
if (!g_socket_set_option (socket, SOL_SOCKET, SO_KEEPALIVE,
keepalive, &error))
{
g_warning ("error setting keepalive: %s", error->message);
g_error_free (error);
return;
}
socket->priv->keepalive = keepalive;
g_object_notify (G_OBJECT (socket), "keepalive");
}
/**
* g_socket_get_keepalive:
* @socket: a #GSocket.
*
* Gets the keepalive mode of the socket. For details on this,
* see g_socket_set_keepalive().
*
* Returns: %TRUE if keepalive is active, %FALSE otherwise.
*
* Since: 2.22
*/
gboolean
g_socket_get_keepalive (GSocket *socket)
{
g_return_val_if_fail (G_IS_SOCKET (socket), FALSE);
return socket->priv->keepalive;
}
/**
* g_socket_get_listen_backlog:
* @socket: a #GSocket.
*
* Gets the listen backlog setting of the socket. For details on this,
* see g_socket_set_listen_backlog().
*
* Returns: the maximum number of pending connections.
*
* Since: 2.22
*/
gint
g_socket_get_listen_backlog (GSocket *socket)
{
g_return_val_if_fail (G_IS_SOCKET (socket), 0);
return socket->priv->listen_backlog;
}
/**
* g_socket_set_listen_backlog:
* @socket: a #GSocket.
* @backlog: the maximum number of pending connections.
*
* Sets the maximum number of outstanding connections allowed
* when listening on this socket. If more clients than this are
* connecting to the socket and the application is not handling them
* on time then the new connections will be refused.
*
* Note that this must be called before g_socket_listen() and has no
* effect if called after that.
*
* Since: 2.22
*/
void
g_socket_set_listen_backlog (GSocket *socket,
gint backlog)
{
g_return_if_fail (G_IS_SOCKET (socket));
g_return_if_fail (!socket->priv->listening);
if (backlog != socket->priv->listen_backlog)
{
socket->priv->listen_backlog = backlog;
g_object_notify (G_OBJECT (socket), "listen-backlog");
}
}
/**
* g_socket_get_timeout:
* @socket: a #GSocket.
*
* Gets the timeout setting of the socket. For details on this, see
* g_socket_set_timeout().
*
* Returns: the timeout in seconds
*
* Since: 2.26
*/
guint
g_socket_get_timeout (GSocket *socket)
{
g_return_val_if_fail (G_IS_SOCKET (socket), 0);
return socket->priv->timeout;
}
/**
* g_socket_set_timeout:
* @socket: a #GSocket.
* @timeout: the timeout for @socket, in seconds, or 0 for none
*
* Sets the time in seconds after which I/O operations on @socket will
* time out if they have not yet completed.
*
* On a blocking socket, this means that any blocking #GSocket
* operation will time out after @timeout seconds of inactivity,
* returning %G_IO_ERROR_TIMED_OUT.
*
* On a non-blocking socket, calls to g_socket_condition_wait() will
* also fail with %G_IO_ERROR_TIMED_OUT after the given time. Sources
* created with g_socket_create_source() will trigger after
* @timeout seconds of inactivity, with the requested condition
* set, at which point calling g_socket_receive(), g_socket_send(),
* g_socket_check_connect_result(), etc, will fail with
* %G_IO_ERROR_TIMED_OUT.
*
* If @timeout is 0 (the default), operations will never time out
* on their own.
*
* Note that if an I/O operation is interrupted by a signal, this may
* cause the timeout to be reset.
*
* Since: 2.26
*/
void
g_socket_set_timeout (GSocket *socket,
guint timeout)
{
g_return_if_fail (G_IS_SOCKET (socket));
if (timeout != socket->priv->timeout)
{
socket->priv->timeout = timeout;
g_object_notify (G_OBJECT (socket), "timeout");
}
}
/**
* g_socket_get_ttl:
* @socket: a #GSocket.
*
* Gets the unicast time-to-live setting on @socket; see
* g_socket_set_ttl() for more details.
*
* Returns: the time-to-live setting on @socket
*
* Since: 2.32
*/
guint
g_socket_get_ttl (GSocket *socket)
{
GError *error = NULL;
gint value;
g_return_val_if_fail (G_IS_SOCKET (socket), 0);
if (socket->priv->family == G_SOCKET_FAMILY_IPV4)
{
g_socket_get_option (socket, IPPROTO_IP, IP_TTL,
&value, &error);
}
else if (socket->priv->family == G_SOCKET_FAMILY_IPV6)
{
g_socket_get_option (socket, IPPROTO_IPV6, IPV6_UNICAST_HOPS,
&value, &error);
}
else
g_return_val_if_reached (0);
if (error)
{
g_warning ("error getting unicast ttl: %s", error->message);
g_error_free (error);
return 0;
}
return value;
}
/**
* g_socket_set_ttl:
* @socket: a #GSocket.
* @ttl: the time-to-live value for all unicast packets on @socket
*
* Sets the time-to-live for outgoing unicast packets on @socket.
* By default the platform-specific default value is used.
*
* Since: 2.32
*/
void
g_socket_set_ttl (GSocket *socket,
guint ttl)
{
GError *error = NULL;
g_return_if_fail (G_IS_SOCKET (socket));
if (socket->priv->family == G_SOCKET_FAMILY_IPV4)
{
g_socket_set_option (socket, IPPROTO_IP, IP_TTL,
ttl, &error);
}
else if (socket->priv->family == G_SOCKET_FAMILY_IPV6)
{
g_socket_set_option (socket, IPPROTO_IP, IP_TTL,
ttl, NULL);
g_socket_set_option (socket, IPPROTO_IPV6, IPV6_UNICAST_HOPS,
ttl, &error);
}
else
g_return_if_reached ();
if (error)
{
g_warning ("error setting unicast ttl: %s", error->message);
g_error_free (error);
return;
}
g_object_notify (G_OBJECT (socket), "ttl");
}
/**
* g_socket_get_broadcast:
* @socket: a #GSocket.
*
* Gets the broadcast setting on @socket; if %TRUE,
* it is possible to send packets to broadcast
* addresses.
*
* Returns: the broadcast setting on @socket
*
* Since: 2.32
*/
gboolean
g_socket_get_broadcast (GSocket *socket)
{
GError *error = NULL;
gint value;
g_return_val_if_fail (G_IS_SOCKET (socket), FALSE);
if (!g_socket_get_option (socket, SOL_SOCKET, SO_BROADCAST,
&value, &error))
{
g_warning ("error getting broadcast: %s", error->message);
g_error_free (error);
return FALSE;
}
return !!value;
}
/**
* g_socket_set_broadcast:
* @socket: a #GSocket.
* @broadcast: whether @socket should allow sending to broadcast
* addresses
*
* Sets whether @socket should allow sending to broadcast addresses.
* This is %FALSE by default.
*
* Since: 2.32
*/
void
g_socket_set_broadcast (GSocket *socket,
gboolean broadcast)
{
GError *error = NULL;
g_return_if_fail (G_IS_SOCKET (socket));
broadcast = !!broadcast;
if (!g_socket_set_option (socket, SOL_SOCKET, SO_BROADCAST,
broadcast, &error))
{
g_warning ("error setting broadcast: %s", error->message);
g_error_free (error);
return;
}
g_object_notify (G_OBJECT (socket), "broadcast");
}
/**
* g_socket_get_multicast_loopback:
* @socket: a #GSocket.
*
* Gets the multicast loopback setting on @socket; if %TRUE (the
* default), outgoing multicast packets will be looped back to
* multicast listeners on the same host.
*
* Returns: the multicast loopback setting on @socket
*
* Since: 2.32
*/
gboolean
g_socket_get_multicast_loopback (GSocket *socket)
{
GError *error = NULL;
gint value;
g_return_val_if_fail (G_IS_SOCKET (socket), FALSE);
if (socket->priv->family == G_SOCKET_FAMILY_IPV4)
{
g_socket_get_option (socket, IPPROTO_IP, IP_MULTICAST_LOOP,
&value, &error);
}
else if (socket->priv->family == G_SOCKET_FAMILY_IPV6)
{
g_socket_get_option (socket, IPPROTO_IPV6, IPV6_MULTICAST_LOOP,
&value, &error);
}
else
g_return_val_if_reached (FALSE);
if (error)
{
g_warning ("error getting multicast loopback: %s", error->message);
g_error_free (error);
return FALSE;
}
return !!value;
}
/**
* g_socket_set_multicast_loopback:
* @socket: a #GSocket.
* @loopback: whether @socket should receive messages sent to its
* multicast groups from the local host
*
* Sets whether outgoing multicast packets will be received by sockets
* listening on that multicast address on the same host. This is %TRUE
* by default.
*
* Since: 2.32
*/
void
g_socket_set_multicast_loopback (GSocket *socket,
gboolean loopback)
{
GError *error = NULL;
g_return_if_fail (G_IS_SOCKET (socket));
loopback = !!loopback;
if (socket->priv->family == G_SOCKET_FAMILY_IPV4)
{
g_socket_set_option (socket, IPPROTO_IP, IP_MULTICAST_LOOP,
loopback, &error);
}
else if (socket->priv->family == G_SOCKET_FAMILY_IPV6)
{
g_socket_set_option (socket, IPPROTO_IP, IP_MULTICAST_LOOP,
loopback, NULL);
g_socket_set_option (socket, IPPROTO_IPV6, IPV6_MULTICAST_LOOP,
loopback, &error);
}
else
g_return_if_reached ();
if (error)
{
g_warning ("error setting multicast loopback: %s", error->message);
g_error_free (error);
return;
}
g_object_notify (G_OBJECT (socket), "multicast-loopback");
}
/**
* g_socket_get_multicast_ttl:
* @socket: a #GSocket.
*
* Gets the multicast time-to-live setting on @socket; see
* g_socket_set_multicast_ttl() for more details.
*
* Returns: the multicast time-to-live setting on @socket
*
* Since: 2.32
*/
guint
g_socket_get_multicast_ttl (GSocket *socket)
{
GError *error = NULL;
gint value;
g_return_val_if_fail (G_IS_SOCKET (socket), 0);
if (socket->priv->family == G_SOCKET_FAMILY_IPV4)
{
g_socket_get_option (socket, IPPROTO_IP, IP_MULTICAST_TTL,
&value, &error);
}
else if (socket->priv->family == G_SOCKET_FAMILY_IPV6)
{
g_socket_get_option (socket, IPPROTO_IPV6, IPV6_MULTICAST_HOPS,
&value, &error);
}
else
g_return_val_if_reached (FALSE);
if (error)
{
g_warning ("error getting multicast ttl: %s", error->message);
g_error_free (error);
return FALSE;
}
return value;
}
/**
* g_socket_set_multicast_ttl:
* @socket: a #GSocket.
* @ttl: the time-to-live value for all multicast datagrams on @socket
*
* Sets the time-to-live for outgoing multicast datagrams on @socket.
* By default, this is 1, meaning that multicast packets will not leave
* the local network.
*
* Since: 2.32
*/
void
g_socket_set_multicast_ttl (GSocket *socket,
guint ttl)
{
GError *error = NULL;
g_return_if_fail (G_IS_SOCKET (socket));
if (socket->priv->family == G_SOCKET_FAMILY_IPV4)
{
g_socket_set_option (socket, IPPROTO_IP, IP_MULTICAST_TTL,
ttl, &error);
}
else if (socket->priv->family == G_SOCKET_FAMILY_IPV6)
{
g_socket_set_option (socket, IPPROTO_IP, IP_MULTICAST_TTL,
ttl, NULL);
g_socket_set_option (socket, IPPROTO_IPV6, IPV6_MULTICAST_HOPS,
ttl, &error);
}
else
g_return_if_reached ();
if (error)
{
g_warning ("error setting multicast ttl: %s", error->message);
g_error_free (error);
return;
}
g_object_notify (G_OBJECT (socket), "multicast-ttl");
}
/**
* g_socket_get_family:
* @socket: a #GSocket.
*
* Gets the socket family of the socket.
*
* Returns: a #GSocketFamily
*
* Since: 2.22
*/
GSocketFamily
g_socket_get_family (GSocket *socket)
{
g_return_val_if_fail (G_IS_SOCKET (socket), G_SOCKET_FAMILY_INVALID);
return socket->priv->family;
}
/**
* g_socket_get_socket_type:
* @socket: a #GSocket.
*
* Gets the socket type of the socket.
*
* Returns: a #GSocketType
*
* Since: 2.22
*/
GSocketType
g_socket_get_socket_type (GSocket *socket)
{
g_return_val_if_fail (G_IS_SOCKET (socket), G_SOCKET_TYPE_INVALID);
return socket->priv->type;
}
/**
* g_socket_get_protocol:
* @socket: a #GSocket.
*
* Gets the socket protocol id the socket was created with.
* In case the protocol is unknown, -1 is returned.
*
* Returns: a protocol id, or -1 if unknown
*
* Since: 2.22
*/
GSocketProtocol
g_socket_get_protocol (GSocket *socket)
{
g_return_val_if_fail (G_IS_SOCKET (socket), -1);
return socket->priv->protocol;
}
/**
* g_socket_get_fd:
* @socket: a #GSocket.
*
* Returns the underlying OS socket object. On unix this
* is a socket file descriptor, and on Windows this is
* a Winsock2 SOCKET handle. This may be useful for
* doing platform specific or otherwise unusual operations
* on the socket.
*
* Returns: the file descriptor of the socket.
*
* Since: 2.22
*/
int
g_socket_get_fd (GSocket *socket)
{
g_return_val_if_fail (G_IS_SOCKET (socket), -1);
return socket->priv->fd;
}
/**
* g_socket_get_local_address:
* @socket: a #GSocket.
* @error: #GError for error reporting, or %NULL to ignore.
*
* Try to get the local address of a bound socket. This is only
* useful if the socket has been bound to a local address,
* either explicitly or implicitly when connecting.
*
* Returns: (transfer full): a #GSocketAddress or %NULL on error.
* Free the returned object with g_object_unref().
*
* Since: 2.22
*/
GSocketAddress *
g_socket_get_local_address (GSocket *socket,
GError **error)
{
union {
struct sockaddr_storage storage;
struct sockaddr sa;
} buffer;
socklen_t len = sizeof (buffer);
g_return_val_if_fail (G_IS_SOCKET (socket), NULL);
if (getsockname (socket->priv->fd, &buffer.sa, &len) < 0)
{
int errsv = get_socket_errno ();
g_set_error (error, G_IO_ERROR, socket_io_error_from_errno (errsv),
_("could not get local address: %s"), socket_strerror (errsv));
return NULL;
}
return g_socket_address_new_from_native (&buffer.storage, len);
}
/**
* g_socket_get_remote_address:
* @socket: a #GSocket.
* @error: #GError for error reporting, or %NULL to ignore.
*
* Try to get the remote address of a connected socket. This is only
* useful for connection oriented sockets that have been connected.
*
* Returns: (transfer full): a #GSocketAddress or %NULL on error.
* Free the returned object with g_object_unref().
*
* Since: 2.22
*/
GSocketAddress *
g_socket_get_remote_address (GSocket *socket,
GError **error)
{
union {
struct sockaddr_storage storage;
struct sockaddr sa;
} buffer;
socklen_t len = sizeof (buffer);
g_return_val_if_fail (G_IS_SOCKET (socket), NULL);
if (socket->priv->connect_pending)
{
if (!g_socket_check_connect_result (socket, error))
return NULL;
else
socket->priv->connect_pending = FALSE;
}
if (!socket->priv->remote_address)
{
if (getpeername (socket->priv->fd, &buffer.sa, &len) < 0)
{
int errsv = get_socket_errno ();
g_set_error (error, G_IO_ERROR, socket_io_error_from_errno (errsv),
_("could not get remote address: %s"), socket_strerror (errsv));
return NULL;
}
socket->priv->remote_address = g_socket_address_new_from_native (&buffer.storage, len);
}
return g_object_ref (socket->priv->remote_address);
}
/**
* g_socket_is_connected:
* @socket: a #GSocket.
*
* Check whether the socket is connected. This is only useful for
* connection-oriented sockets.
*
* If using g_socket_shutdown(), this function will return %TRUE until the
* socket has been shut down for reading and writing. If you do a non-blocking
* connect, this function will not return %TRUE until after you call
* g_socket_check_connect_result().
*
* Returns: %TRUE if socket is connected, %FALSE otherwise.
*
* Since: 2.22
*/
gboolean
g_socket_is_connected (GSocket *socket)
{
g_return_val_if_fail (G_IS_SOCKET (socket), FALSE);
return (socket->priv->connected_read || socket->priv->connected_write);
}
/**
* g_socket_listen:
* @socket: a #GSocket.
* @error: #GError for error reporting, or %NULL to ignore.
*
* Marks the socket as a server socket, i.e. a socket that is used
* to accept incoming requests using g_socket_accept().
*
* Before calling this the socket must be bound to a local address using
* g_socket_bind().
*
* To set the maximum amount of outstanding clients, use
* g_socket_set_listen_backlog().
*
* Returns: %TRUE on success, %FALSE on error.
*
* Since: 2.22
*/
gboolean
g_socket_listen (GSocket *socket,
GError **error)
{
g_return_val_if_fail (G_IS_SOCKET (socket), FALSE);
if (!check_socket (socket, error))
return FALSE;
if (listen (socket->priv->fd, socket->priv->listen_backlog) < 0)
{
int errsv = get_socket_errno ();
g_set_error (error, G_IO_ERROR, socket_io_error_from_errno (errsv),
_("could not listen: %s"), socket_strerror (errsv));
return FALSE;
}
socket->priv->listening = TRUE;
return TRUE;
}
/**
* g_socket_bind:
* @socket: a #GSocket.
* @address: a #GSocketAddress specifying the local address.
* @allow_reuse: whether to allow reusing this address
* @error: #GError for error reporting, or %NULL to ignore.
*
* When a socket is created it is attached to an address family, but it
* doesn't have an address in this family. g_socket_bind() assigns the
* address (sometimes called name) of the socket.
*
* It is generally required to bind to a local address before you can
* receive connections. (See g_socket_listen() and g_socket_accept() ).
* In certain situations, you may also want to bind a socket that will be
* used to initiate connections, though this is not normally required.
*
* If @socket is a TCP socket, then @allow_reuse controls the setting
* of the `SO_REUSEADDR` socket option; normally it should be %TRUE for
* server sockets (sockets that you will eventually call
* g_socket_accept() on), and %FALSE for client sockets. (Failing to
* set this flag on a server socket may cause g_socket_bind() to return
* %G_IO_ERROR_ADDRESS_IN_USE if the server program is stopped and then
* immediately restarted.)
*
* If @socket is a UDP socket, then @allow_reuse determines whether or
* not other UDP sockets can be bound to the same address at the same
* time. In particular, you can have several UDP sockets bound to the
* same address, and they will all receive all of the multicast and
* broadcast packets sent to that address. (The behavior of unicast
* UDP packets to an address with multiple listeners is not defined.)
*
* Returns: %TRUE on success, %FALSE on error.
*
* Since: 2.22
*/
gboolean
g_socket_bind (GSocket *socket,
GSocketAddress *address,
gboolean reuse_address,
GError **error)
{
union {
struct sockaddr_storage storage;
struct sockaddr sa;
} addr;
gboolean so_reuseaddr;
#ifdef SO_REUSEPORT
gboolean so_reuseport;
#endif
g_return_val_if_fail (G_IS_SOCKET (socket) && G_IS_SOCKET_ADDRESS (address), FALSE);
if (!check_socket (socket, error))
return FALSE;
if (!g_socket_address_to_native (address, &addr.storage, sizeof addr, error))
return FALSE;
/* On Windows, SO_REUSEADDR has the semantics we want for UDP
* sockets, but has nasty side effects we don't want for TCP
* sockets.
*
* On other platforms, we set SO_REUSEPORT, if it exists, for
* UDP sockets, and SO_REUSEADDR for all sockets, hoping that
* if SO_REUSEPORT doesn't exist, then SO_REUSEADDR will have
* the desired semantics on UDP (as it does on Linux, although
* Linux has SO_REUSEPORT too as of 3.9).
*/
#ifdef G_OS_WIN32
so_reuseaddr = reuse_address && (socket->priv->type == G_SOCKET_TYPE_DATAGRAM);
#else
so_reuseaddr = !!reuse_address;
#endif
#ifdef SO_REUSEPORT
so_reuseport = reuse_address && (socket->priv->type == G_SOCKET_TYPE_DATAGRAM);
#endif
/* Ignore errors here, the only likely error is "not supported", and
* this is a "best effort" thing mainly.
*/
g_socket_set_option (socket, SOL_SOCKET, SO_REUSEADDR, so_reuseaddr, NULL);
#ifdef SO_REUSEPORT
g_socket_set_option (socket, SOL_SOCKET, SO_REUSEPORT, so_reuseport, NULL);
#endif
if (bind (socket->priv->fd, &addr.sa,
g_socket_address_get_native_size (address)) < 0)
{
int errsv = get_socket_errno ();
gchar *address_string = address_to_string (address);
g_set_error (error,
G_IO_ERROR, socket_io_error_from_errno (errsv),
_("Error binding to address %s: %s"),
address_string, socket_strerror (errsv));
g_free (address_string);
return FALSE;
}
return TRUE;
}
#ifdef G_OS_WIN32
static gulong
g_socket_w32_get_adapter_ipv4_addr (const gchar *name_or_ip)
{
ULONG bufsize = 15000; /* MS-recommended initial bufsize */
DWORD ret = ERROR_BUFFER_OVERFLOW;
unsigned int malloc_iterations = 0;
PIP_ADAPTER_ADDRESSES addr_buf = NULL, eth_adapter;
wchar_t *wchar_name_or_ip = NULL;
gulong ip_result = 0;
NET_IFINDEX if_index;
/*
* For Windows OS only - return adapter IPv4 address in network byte order.
*
* Input string can be either friendly name of adapter, IP address of adapter,
* indextoname, or fullname of adapter.
* Example:
* 192.168.1.109 ===> IP address given directly,
* convert directly with inet_addr() function
* Wi-Fi ===> Adapter friendly name "Wi-Fi",
* scan with GetAdapterAddresses and adapter->FriendlyName
* ethernet_32774 ===> Adapter name as returned by if_indextoname
* {33E8F5CD-BAEA-4214-BE13-B79AB8080CAB} ===> Adaptername,
* as returned in GetAdapterAddresses and adapter->AdapterName
*/
/* Step 1: Check if string is an IP address: */
if (inet_pton (AF_INET, name_or_ip, &ip_result) == 1)
return ip_result; /* Success, IP address string was given directly */
/*
* Step 2: Check if name represents a valid Interface index (e.g. ethernet_75521)
* function if_nametoindex will return >=1 if a valid index, or 0=no match
* valid index will be used later in GetAdaptersAddress loop for lookup of adapter IP address
*/
if_index = if_nametoindex (name_or_ip);
/* Step 3: Prepare wchar string for friendly name comparison */
if (if_index == 0)
{
size_t if_name_len = strlen (name_or_ip);
if (if_name_len >= MAX_ADAPTER_NAME_LENGTH + 4)
return INADDR_NONE;
/* Name-check only needed if index=0... */
wchar_name_or_ip = (wchar_t *) g_try_malloc ((if_name_len + 1) * sizeof(wchar_t));
if (wchar_name_or_ip)
mbstowcs (wchar_name_or_ip, name_or_ip, if_name_len + 1);
/* NOTE: Even if malloc fails here, some comparisons can still be done later... so no exit here! */
}
/*
* Step 4: Allocate memory and get adapter addresses.
* Buffer allocation loop recommended by MS, since size can be dynamic
* https://docs.microsoft.com/en-us/windows/desktop/api/iphlpapi/nf-iphlpapi-getadaptersaddresses
*/
#define MAX_ALLOC_ITERATIONS 3
do
{
malloc_iterations++;
addr_buf = (PIP_ADAPTER_ADDRESSES) g_try_realloc (addr_buf, bufsize);
if (addr_buf)
ret = GetAdaptersAddresses (AF_UNSPEC, GAA_FLAG_INCLUDE_PREFIX, NULL, addr_buf, &bufsize);
}
while (addr_buf &&
ret == ERROR_BUFFER_OVERFLOW &&
malloc_iterations < MAX_ALLOC_ITERATIONS);
#undef MAX_ALLOC_ITERATIONS
if (addr_buf == 0 || ret != NO_ERROR)
{
g_free (addr_buf);
g_free (wchar_name_or_ip);
return INADDR_NONE;
}
/* Step 5: Loop through adapters and check match for index or name */
for (eth_adapter = addr_buf; eth_adapter != NULL; eth_adapter = eth_adapter->Next)
{
/* Check if match for interface index/name: */
gboolean any_match = (if_index > 0) && (eth_adapter->IfIndex == if_index);
/* Check if match for friendly name - but only if NO if_index! */
if (!any_match && if_index == 0 && eth_adapter->FriendlyName &&
eth_adapter->FriendlyName[0] != 0 && wchar_name_or_ip != NULL)
any_match = (_wcsicmp (eth_adapter->FriendlyName, wchar_name_or_ip) == 0);
/* Check if match for adapter low level name - but only if NO if_index: */
if (!any_match && if_index == 0 && eth_adapter->AdapterName &&
eth_adapter->AdapterName[0] != 0)
any_match = (stricmp (eth_adapter->AdapterName, name_or_ip) == 0);
if (any_match)
{
/* We have match for this adapter, lets get its local unicast IP address! */
PIP_ADAPTER_UNICAST_ADDRESS uni_addr;
for (uni_addr = eth_adapter->FirstUnicastAddress;
uni_addr != NULL; uni_addr = uni_addr->Next)
{
if (uni_addr->Address.lpSockaddr->sa_family == AF_INET)
{
ip_result = ((PSOCKADDR_IN) uni_addr->Address.lpSockaddr)->sin_addr.S_un.S_addr;
break; /* finished, exit unicast addr loop */
}
}
}
}
g_free (addr_buf);
g_free (wchar_name_or_ip);
return ip_result;
}
#endif
static gboolean
g_socket_multicast_group_operation (GSocket *socket,
GInetAddress *group,
gboolean source_specific,
const gchar *iface,
gboolean join_group,
GError **error)
{
const guint8 *native_addr;
gint optname, result;
g_return_val_if_fail (G_IS_SOCKET (socket), FALSE);
g_return_val_if_fail (socket->priv->type == G_SOCKET_TYPE_DATAGRAM, FALSE);
g_return_val_if_fail (G_IS_INET_ADDRESS (group), FALSE);
if (!check_socket (socket, error))
return FALSE;
native_addr = g_inet_address_to_bytes (group);
if (g_inet_address_get_family (group) == G_SOCKET_FAMILY_IPV4)
{
#ifdef HAVE_IP_MREQN
struct ip_mreqn mc_req;
#else
struct ip_mreq mc_req;
#endif
memset (&mc_req, 0, sizeof (mc_req));
memcpy (&mc_req.imr_multiaddr, native_addr, sizeof (struct in_addr));
#ifdef HAVE_IP_MREQN
if (iface)
mc_req.imr_ifindex = if_nametoindex (iface);
else
mc_req.imr_ifindex = 0; /* Pick any. */
#elif defined(G_OS_WIN32)
if (iface)
mc_req.imr_interface.s_addr = g_socket_w32_get_adapter_ipv4_addr (iface);
else
mc_req.imr_interface.s_addr = g_htonl (INADDR_ANY);
#else
mc_req.imr_interface.s_addr = g_htonl (INADDR_ANY);
#endif
if (source_specific)
{
#ifdef IP_ADD_SOURCE_MEMBERSHIP
optname = join_group ? IP_ADD_SOURCE_MEMBERSHIP : IP_DROP_SOURCE_MEMBERSHIP;
#else
g_set_error (error, G_IO_ERROR, G_IO_ERROR_NOT_SUPPORTED,
join_group ?
_("Error joining multicast group: %s") :
_("Error leaving multicast group: %s"),
_("No support for source-specific multicast"));
return FALSE;
#endif
}
else
optname = join_group ? IP_ADD_MEMBERSHIP : IP_DROP_MEMBERSHIP;
result = setsockopt (socket->priv->fd, IPPROTO_IP, optname,
&mc_req, sizeof (mc_req));
}
else if (g_inet_address_get_family (group) == G_SOCKET_FAMILY_IPV6)
{
struct ipv6_mreq mc_req_ipv6;
memset (&mc_req_ipv6, 0, sizeof (mc_req_ipv6));
memcpy (&mc_req_ipv6.ipv6mr_multiaddr, native_addr, sizeof (struct in6_addr));
#ifdef HAVE_IF_NAMETOINDEX
if (iface)
mc_req_ipv6.ipv6mr_interface = if_nametoindex (iface);
else
#endif
mc_req_ipv6.ipv6mr_interface = 0;
optname = join_group ? IPV6_JOIN_GROUP : IPV6_LEAVE_GROUP;
result = setsockopt (socket->priv->fd, IPPROTO_IPV6, optname,
&mc_req_ipv6, sizeof (mc_req_ipv6));
}
else
g_return_val_if_reached (FALSE);
if (result < 0)
{
int errsv = get_socket_errno ();
g_set_error (error, G_IO_ERROR, socket_io_error_from_errno (errsv),
join_group ?
_("Error joining multicast group: %s") :
_("Error leaving multicast group: %s"),
socket_strerror (errsv));
return FALSE;
}
return TRUE;
}
/**
* g_socket_join_multicast_group:
* @socket: a #GSocket.
* @group: a #GInetAddress specifying the group address to join.
* @iface: (nullable): Name of the interface to use, or %NULL
* @source_specific: %TRUE if source-specific multicast should be used
* @error: #GError for error reporting, or %NULL to ignore.
*
* Registers @socket to receive multicast messages sent to @group.
* @socket must be a %G_SOCKET_TYPE_DATAGRAM socket, and must have
* been bound to an appropriate interface and port with
* g_socket_bind().
*
* If @iface is %NULL, the system will automatically pick an interface
* to bind to based on @group.
*
* If @source_specific is %TRUE, source-specific multicast as defined
* in RFC 4604 is used. Note that on older platforms this may fail
* with a %G_IO_ERROR_NOT_SUPPORTED error.
*
* To bind to a given source-specific multicast address, use
* g_socket_join_multicast_group_ssm() instead.
*
* Returns: %TRUE on success, %FALSE on error.
*
* Since: 2.32
*/
gboolean
g_socket_join_multicast_group (GSocket *socket,
GInetAddress *group,
gboolean source_specific,
const gchar *iface,
GError **error)
{
return g_socket_multicast_group_operation (socket, group, source_specific, iface, TRUE, error);
}
/**
* g_socket_leave_multicast_group:
* @socket: a #GSocket.
* @group: a #GInetAddress specifying the group address to leave.
* @iface: (nullable): Interface used
* @source_specific: %TRUE if source-specific multicast was used
* @error: #GError for error reporting, or %NULL to ignore.
*
* Removes @socket from the multicast group defined by @group, @iface,
* and @source_specific (which must all have the same values they had
* when you joined the group).
*
* @socket remains bound to its address and port, and can still receive
* unicast messages after calling this.
*
* To unbind to a given source-specific multicast address, use
* g_socket_leave_multicast_group_ssm() instead.
*
* Returns: %TRUE on success, %FALSE on error.
*
* Since: 2.32
*/
gboolean
g_socket_leave_multicast_group (GSocket *socket,
GInetAddress *group,
gboolean source_specific,
const gchar *iface,
GError **error)
{
return g_socket_multicast_group_operation (socket, group, source_specific, iface, FALSE, error);
}
static gboolean
g_socket_multicast_group_operation_ssm (GSocket *socket,
GInetAddress *group,
GInetAddress *source_specific,
const gchar *iface,
gboolean join_group,
GError **error)
{
gint result;
g_return_val_if_fail (G_IS_SOCKET (socket), FALSE);
g_return_val_if_fail (socket->priv->type == G_SOCKET_TYPE_DATAGRAM, FALSE);
g_return_val_if_fail (G_IS_INET_ADDRESS (group), FALSE);
g_return_val_if_fail (iface == NULL || *iface != '\0', FALSE);
g_return_val_if_fail (error == NULL || *error == NULL, FALSE);
if (!source_specific)
{
return g_socket_multicast_group_operation (socket, group, FALSE, iface,
join_group, error);
}
if (!check_socket (socket, error))
return FALSE;
switch (g_inet_address_get_family (group))
{
case G_SOCKET_FAMILY_INVALID:
case G_SOCKET_FAMILY_UNIX:
{
g_set_error (error, G_IO_ERROR, G_IO_ERROR_NOT_SUPPORTED,
join_group ?
_("Error joining multicast group: %s") :
_("Error leaving multicast group: %s"),
_("Unsupported socket family"));
return FALSE;
}
break;
case G_SOCKET_FAMILY_IPV4:
{
#ifdef IP_ADD_SOURCE_MEMBERSHIP
#ifdef BROKEN_IP_MREQ_SOURCE_STRUCT
#define S_ADDR_FIELD(src) src.imr_interface
#else
#define S_ADDR_FIELD(src) src.imr_interface.s_addr
#endif
gint optname;
struct ip_mreq_source mc_req_src;
if (g_inet_address_get_family (source_specific) !=
G_SOCKET_FAMILY_IPV4)
{
g_set_error (error, G_IO_ERROR, G_IO_ERROR_NOT_SUPPORTED,
join_group ?
_("Error joining multicast group: %s") :
_("Error leaving multicast group: %s"),
_("source-specific not an IPv4 address"));
return FALSE;
}
memset (&mc_req_src, 0, sizeof (mc_req_src));
/* By default use the default IPv4 multicast interface. */
S_ADDR_FIELD(mc_req_src) = g_htonl (INADDR_ANY);
if (iface)
{
#if defined(G_OS_WIN32)
S_ADDR_FIELD(mc_req_src) = g_socket_w32_get_adapter_ipv4_addr (iface);
#elif defined (HAVE_SIOCGIFADDR)
int ret;
struct ifreq ifr;
struct sockaddr_in *iface_addr;
size_t if_name_len = strlen (iface);
memset (&ifr, 0, sizeof (ifr));
if (if_name_len >= sizeof (ifr.ifr_name))
{
g_set_error (error, G_IO_ERROR, G_IO_ERROR_FILENAME_TOO_LONG,
_("Interface name too long"));
return FALSE;
}
memcpy (ifr.ifr_name, iface, if_name_len);
/* Get the IPv4 address of the given network interface name. */
ret = ioctl (socket->priv->fd, SIOCGIFADDR, &ifr);
if (ret < 0)
{
int errsv = errno;
g_set_error (error, G_IO_ERROR, g_io_error_from_errno (errsv),
_("Interface not found: %s"), g_strerror (errsv));
return FALSE;
}
iface_addr = (struct sockaddr_in *) &ifr.ifr_addr;
S_ADDR_FIELD(mc_req_src) = iface_addr->sin_addr.s_addr;
#endif /* defined(G_OS_WIN32) && defined (HAVE_IF_NAMETOINDEX) */
}
g_assert (g_inet_address_get_native_size (group) == sizeof (mc_req_src.imr_multiaddr));
memcpy (&mc_req_src.imr_multiaddr, g_inet_address_to_bytes (group),
g_inet_address_get_native_size (group));
g_assert (g_inet_address_get_native_size (source_specific) == sizeof (mc_req_src.imr_sourceaddr));
memcpy (&mc_req_src.imr_sourceaddr,
g_inet_address_to_bytes (source_specific),
g_inet_address_get_native_size (source_specific));
optname =
join_group ? IP_ADD_SOURCE_MEMBERSHIP : IP_DROP_SOURCE_MEMBERSHIP;
result = setsockopt (socket->priv->fd, IPPROTO_IP, optname,
&mc_req_src, sizeof (mc_req_src));
#undef S_ADDR_FIELD
#else
g_set_error (error, G_IO_ERROR, G_IO_ERROR_NOT_SUPPORTED,
join_group ?
_("Error joining multicast group: %s") :
_("Error leaving multicast group: %s"),
_("No support for IPv4 source-specific multicast"));
return FALSE;
#endif /* IP_ADD_SOURCE_MEMBERSHIP */
}
break;
case G_SOCKET_FAMILY_IPV6:
{
#ifdef MCAST_JOIN_SOURCE_GROUP
gboolean res;
gint optname;
struct group_source_req mc_req_src;
GSocketAddress *saddr_group, *saddr_source_specific;
guint iface_index = 0;
#if defined (HAVE_IF_NAMETOINDEX)
if (iface)
{
iface_index = if_nametoindex (iface);
if (iface_index == 0)
{
int errsv = errno;
g_set_error (error, G_IO_ERROR, g_io_error_from_errno (errsv),
_("Interface not found: %s"), g_strerror (errsv));
return FALSE;
}
}
#endif /* defined (HAVE_IF_NAMETOINDEX) */
mc_req_src.gsr_interface = iface_index;
saddr_group = g_inet_socket_address_new (group, 0);
res = g_socket_address_to_native (saddr_group, &mc_req_src.gsr_group,
sizeof (mc_req_src.gsr_group),
error);
g_object_unref (saddr_group);
if (!res)
return FALSE;
saddr_source_specific = g_inet_socket_address_new (source_specific, 0);
res = g_socket_address_to_native (saddr_source_specific,
&mc_req_src.gsr_source,
sizeof (mc_req_src.gsr_source),
error);
g_object_unref (saddr_source_specific);
if (!res)
return FALSE;
optname =
join_group ? MCAST_JOIN_SOURCE_GROUP : MCAST_LEAVE_SOURCE_GROUP;
result = setsockopt (socket->priv->fd, IPPROTO_IPV6, optname,
&mc_req_src, sizeof (mc_req_src));
#else
g_set_error (error, G_IO_ERROR, G_IO_ERROR_NOT_SUPPORTED,
join_group ?
_("Error joining multicast group: %s") :
_("Error leaving multicast group: %s"),
_("No support for IPv6 source-specific multicast"));
return FALSE;
#endif /* MCAST_JOIN_SOURCE_GROUP */
}
break;
default:
g_return_val_if_reached (FALSE);
}
if (result < 0)
{
int errsv = get_socket_errno ();
g_set_error (error, G_IO_ERROR, socket_io_error_from_errno (errsv),
join_group ?
_("Error joining multicast group: %s") :
_("Error leaving multicast group: %s"),
socket_strerror (errsv));
return FALSE;
}
return TRUE;
}
/**
* g_socket_join_multicast_group_ssm:
* @socket: a #GSocket.
* @group: a #GInetAddress specifying the group address to join.
* @source_specific: (nullable): a #GInetAddress specifying the
* source-specific multicast address or %NULL to ignore.
* @iface: (nullable): Name of the interface to use, or %NULL
* @error: #GError for error reporting, or %NULL to ignore.
*
* Registers @socket to receive multicast messages sent to @group.
* @socket must be a %G_SOCKET_TYPE_DATAGRAM socket, and must have
* been bound to an appropriate interface and port with
* g_socket_bind().
*
* If @iface is %NULL, the system will automatically pick an interface
* to bind to based on @group.
*
* If @source_specific is not %NULL, use source-specific multicast as
* defined in RFC 4604. Note that on older platforms this may fail
* with a %G_IO_ERROR_NOT_SUPPORTED error.
*
* Note that this function can be called multiple times for the same
* @group with different @source_specific in order to receive multicast
* packets from more than one source.
*
* Returns: %TRUE on success, %FALSE on error.
*
* Since: 2.56
*/
gboolean
g_socket_join_multicast_group_ssm (GSocket *socket,
GInetAddress *group,
GInetAddress *source_specific,
const gchar *iface,
GError **error)
{
return g_socket_multicast_group_operation_ssm (socket, group,
source_specific, iface, TRUE, error);
}
/**
* g_socket_leave_multicast_group_ssm:
* @socket: a #GSocket.
* @group: a #GInetAddress specifying the group address to leave.
* @source_specific: (nullable): a #GInetAddress specifying the
* source-specific multicast address or %NULL to ignore.
* @iface: (nullable): Name of the interface to use, or %NULL
* @error: #GError for error reporting, or %NULL to ignore.
*
* Removes @socket from the multicast group defined by @group, @iface,
* and @source_specific (which must all have the same values they had
* when you joined the group).
*
* @socket remains bound to its address and port, and can still receive
* unicast messages after calling this.
*
* Returns: %TRUE on success, %FALSE on error.
*
* Since: 2.56
*/
gboolean
g_socket_leave_multicast_group_ssm (GSocket *socket,
GInetAddress *group,
GInetAddress *source_specific,
const gchar *iface,
GError **error)
{
return g_socket_multicast_group_operation_ssm (socket, group,
source_specific, iface, FALSE, error);
}
/**
* g_socket_speaks_ipv4:
* @socket: a #GSocket
*
* Checks if a socket is capable of speaking IPv4.
*
* IPv4 sockets are capable of speaking IPv4. On some operating systems
* and under some combinations of circumstances IPv6 sockets are also
* capable of speaking IPv4. See RFC 3493 section 3.7 for more
* information.
*
* No other types of sockets are currently considered as being capable
* of speaking IPv4.
*
* Returns: %TRUE if this socket can be used with IPv4.
*
* Since: 2.22
**/
gboolean
g_socket_speaks_ipv4 (GSocket *socket)
{
switch (socket->priv->family)
{
case G_SOCKET_FAMILY_IPV4:
return TRUE;
case G_SOCKET_FAMILY_IPV6:
#if defined (IPPROTO_IPV6) && defined (IPV6_V6ONLY)
{
gint v6_only;
if (!g_socket_get_option (socket,
IPPROTO_IPV6, IPV6_V6ONLY,
&v6_only, NULL))
return FALSE;
return !v6_only;
}
#else
return FALSE;
#endif
default:
return FALSE;
}
}
/**
* g_socket_accept:
* @socket: a #GSocket.
* @cancellable: (nullable): a %GCancellable or %NULL
* @error: #GError for error reporting, or %NULL to ignore.
*
* Accept incoming connections on a connection-based socket. This removes
* the first outstanding connection request from the listening socket and
* creates a #GSocket object for it.
*
* The @socket must be bound to a local address with g_socket_bind() and
* must be listening for incoming connections (g_socket_listen()).
*
* If there are no outstanding connections then the operation will block
* or return %G_IO_ERROR_WOULD_BLOCK if non-blocking I/O is enabled.
* To be notified of an incoming connection, wait for the %G_IO_IN condition.
*
* Returns: (transfer full): a new #GSocket, or %NULL on error.
* Free the returned object with g_object_unref().
*
* Since: 2.22
*/
GSocket *
g_socket_accept (GSocket *socket,
GCancellable *cancellable,
GError **error)
{
#ifdef HAVE_ACCEPT4
gboolean try_accept4 = TRUE;
#endif
GSocket *new_socket;
gint ret;
g_return_val_if_fail (G_IS_SOCKET (socket), NULL);
if (!check_socket (socket, error))
return NULL;
if (!check_timeout (socket, error))
return NULL;
while (TRUE)
{
gboolean try_accept = TRUE;
#ifdef HAVE_ACCEPT4
if (try_accept4)
{
ret = accept4 (socket->priv->fd, NULL, 0, SOCK_CLOEXEC);
if (ret < 0 && errno == ENOSYS)
{
try_accept4 = FALSE;
}
else
{
try_accept = FALSE;
}
}
g_assert (try_accept4 || try_accept);
#endif
if (try_accept)
ret = accept (socket->priv->fd, NULL, 0);
if (ret < 0)
{
int errsv = get_socket_errno ();
if (errsv == EINTR)
continue;
#ifdef WSAEWOULDBLOCK
if (errsv == WSAEWOULDBLOCK)
#else
if (errsv == EWOULDBLOCK ||
errsv == EAGAIN)
#endif
{
win32_unset_event_mask (socket, FD_ACCEPT);
if (socket->priv->blocking)
{
if (!g_socket_condition_wait (socket,
G_IO_IN, cancellable, error))
return NULL;
continue;
}
}
socket_set_error_lazy (error, errsv, _("Error accepting connection: %s"));
return NULL;
}
break;
}
win32_unset_event_mask (socket, FD_ACCEPT);
#ifdef G_OS_WIN32
{
/* The socket inherits the accepting sockets event mask and even object,
we need to remove that */
WSAEventSelect (ret, NULL, 0);
}
#else
{
int flags;
/* We always want to set close-on-exec to protect users. If you
need to so some weird inheritance to exec you can re-enable this
using lower level hacks with g_socket_get_fd(). */
flags = fcntl (ret, F_GETFD, 0);
if (flags != -1 &&
(flags & FD_CLOEXEC) == 0)
{
flags |= FD_CLOEXEC;
fcntl (ret, F_SETFD, flags);
}
}
#endif
new_socket = g_socket_new_from_fd (ret, error);
if (new_socket == NULL)
{
#ifdef G_OS_WIN32
closesocket (ret);
#else
close (ret);
#endif
}
else
new_socket->priv->protocol = socket->priv->protocol;
return new_socket;
}
/**
* g_socket_connect:
* @socket: a #GSocket.
* @address: a #GSocketAddress specifying the remote address.
* @cancellable: (nullable): a %GCancellable or %NULL
* @error: #GError for error reporting, or %NULL to ignore.
*
* Connect the socket to the specified remote address.
*
* For connection oriented socket this generally means we attempt to make
* a connection to the @address. For a connection-less socket it sets
* the default address for g_socket_send() and discards all incoming datagrams
* from other sources.
*
* Generally connection oriented sockets can only connect once, but
* connection-less sockets can connect multiple times to change the
* default address.
*
* If the connect call needs to do network I/O it will block, unless
* non-blocking I/O is enabled. Then %G_IO_ERROR_PENDING is returned
* and the user can be notified of the connection finishing by waiting
* for the G_IO_OUT condition. The result of the connection must then be
* checked with g_socket_check_connect_result().
*
* Returns: %TRUE if connected, %FALSE on error.
*
* Since: 2.22
*/
gboolean
g_socket_connect (GSocket *socket,
GSocketAddress *address,
GCancellable *cancellable,
GError **error)
{
union {
struct sockaddr_storage storage;
struct sockaddr sa;
} buffer;
g_return_val_if_fail (G_IS_SOCKET (socket) && G_IS_SOCKET_ADDRESS (address), FALSE);
if (!check_socket (socket, error))
return FALSE;
if (!g_socket_address_to_native (address, &buffer.storage, sizeof buffer, error))
return FALSE;
if (socket->priv->remote_address)
g_object_unref (socket->priv->remote_address);
socket->priv->remote_address = g_object_ref (address);
while (1)
{
if (connect (socket->priv->fd, &buffer.sa,
g_socket_address_get_native_size (address)) < 0)
{
int errsv = get_socket_errno ();
if (errsv == EINTR)
continue;
#ifndef G_OS_WIN32
if (errsv == EINPROGRESS)
#else
if (errsv == WSAEWOULDBLOCK)
#endif
{
win32_unset_event_mask (socket, FD_CONNECT);
if (socket->priv->blocking)
{
if (g_socket_condition_wait (socket, G_IO_OUT, cancellable, error))
{
if (g_socket_check_connect_result (socket, error))
break;
}
}
else
{
g_set_error_literal (error, G_IO_ERROR, G_IO_ERROR_PENDING,
_("Connection in progress"));
socket->priv->connect_pending = TRUE;
}
}
else
g_set_error_literal (error, G_IO_ERROR,
socket_io_error_from_errno (errsv),
socket_strerror (errsv));
return FALSE;
}
break;
}
win32_unset_event_mask (socket, FD_CONNECT);
socket->priv->connected_read = TRUE;
socket->priv->connected_write = TRUE;
return TRUE;
}
/**
* g_socket_check_connect_result:
* @socket: a #GSocket
* @error: #GError for error reporting, or %NULL to ignore.
*
* Checks and resets the pending connect error for the socket.
* This is used to check for errors when g_socket_connect() is
* used in non-blocking mode.
*
* Returns: %TRUE if no error, %FALSE otherwise, setting @error to the error
*
* Since: 2.22
*/
gboolean
g_socket_check_connect_result (GSocket *socket,
GError **error)
{
int value;
g_return_val_if_fail (G_IS_SOCKET (socket), FALSE);
if (!check_socket (socket, error))
return FALSE;
if (!check_timeout (socket, error))
return FALSE;
if (!g_socket_get_option (socket, SOL_SOCKET, SO_ERROR, &value, error))
{
g_prefix_error (error, _("Unable to get pending error: "));
return FALSE;
}
if (value != 0)
{
g_set_error_literal (error, G_IO_ERROR, socket_io_error_from_errno (value),
socket_strerror (value));
if (socket->priv->remote_address)
{
g_object_unref (socket->priv->remote_address);
socket->priv->remote_address = NULL;
}
return FALSE;
}
socket->priv->connected_read = TRUE;
socket->priv->connected_write = TRUE;
return TRUE;
}
/**
* g_socket_get_available_bytes:
* @socket: a #GSocket
*
* Get the amount of data pending in the OS input buffer, without blocking.
*
* If @socket is a UDP or SCTP socket, this will return the size of
* just the next packet, even if additional packets are buffered after
* that one.
*
* Note that on Windows, this function is rather inefficient in the
* UDP case, and so if you know any plausible upper bound on the size
* of the incoming packet, it is better to just do a
* g_socket_receive() with a buffer of that size, rather than calling
* g_socket_get_available_bytes() first and then doing a receive of
* exactly the right size.
*
* Returns: the number of bytes that can be read from the socket
* without blocking or truncating, or -1 on error.
*
* Since: 2.32
*/
gssize
g_socket_get_available_bytes (GSocket *socket)
{
#ifndef SO_NREAD
const gint bufsize = 64 * 1024;
static guchar *buf = NULL;
#endif
#ifdef G_OS_WIN32
u_long avail;
#else
gint avail;
#endif
g_return_val_if_fail (G_IS_SOCKET (socket), -1);
if (!check_socket (socket, NULL))
return -1;
#ifdef SO_NREAD
if (!g_socket_get_option (socket, SOL_SOCKET, SO_NREAD, &avail, NULL))
return -1;
#else
if (socket->priv->type == G_SOCKET_TYPE_DATAGRAM)
{
if (G_UNLIKELY (g_once_init_enter_pointer (&buf)))
g_once_init_leave_pointer (&buf, g_malloc (bufsize));
/* On datagram sockets, FIONREAD ioctl is not reliable because many
* systems add internal header size to the reported size, making it
* unusable for this function. */
avail = recv (socket->priv->fd, buf, bufsize, MSG_PEEK);
if ((gint) avail == -1)
{
int errsv = get_socket_errno ();
#ifdef G_OS_WIN32
if (errsv == WSAEWOULDBLOCK)
#else
if (errsv == EWOULDBLOCK || errsv == EAGAIN)
#endif
avail = 0;
}
}
else
{
#ifdef G_OS_WIN32
if (ioctlsocket (socket->priv->fd, FIONREAD, &avail) < 0)
#else
if (ioctl (socket->priv->fd, FIONREAD, &avail) < 0)
#endif
avail = -1;
}
#endif
return avail;
}
/* Block on a timed wait for @condition until (@start_time + @timeout).
* Return %G_IO_ERROR_TIMED_OUT if the timeout is reached; otherwise %TRUE.
*/
static gboolean
block_on_timeout (GSocket *socket,
GIOCondition condition,
gint64 timeout_us,
gint64 start_time,
GCancellable *cancellable,
GError **error)
{
gint64 wait_timeout = -1;
g_return_val_if_fail (timeout_us != 0, TRUE);
/* check if we've timed out or how much time to wait at most */
if (timeout_us >= 0)
{
gint64 elapsed = g_get_monotonic_time () - start_time;
if (elapsed >= timeout_us)
{
g_set_error_literal (error,
G_IO_ERROR, G_IO_ERROR_TIMED_OUT,
_("Socket I/O timed out"));
return FALSE;
}
wait_timeout = timeout_us - elapsed;
}
return g_socket_condition_timed_wait (socket, condition, wait_timeout,
cancellable, error);
}
static gssize
g_socket_receive_with_timeout (GSocket *socket,
guint8 *buffer,
gsize size,
gint64 timeout_us,
GCancellable *cancellable,
GError **error)
{
gssize ret;
gint64 start_time;
g_return_val_if_fail (G_IS_SOCKET (socket) && buffer != NULL, -1);
start_time = g_get_monotonic_time ();
if (!check_socket (socket, error))
return -1;
if (!check_timeout (socket, error))
return -1;
if (g_cancellable_set_error_if_cancelled (cancellable, error))
return -1;
while (1)
{
if ((ret = recv (socket->priv->fd, buffer, size, 0)) < 0)
{
int errsv = get_socket_errno ();
if (errsv == EINTR)
continue;
#ifdef WSAEWOULDBLOCK
if (errsv == WSAEWOULDBLOCK)
#else
if (errsv == EWOULDBLOCK ||
errsv == EAGAIN)
#endif
{
win32_unset_event_mask (socket, FD_READ);
if (timeout_us != 0)
{
if (!block_on_timeout (socket, G_IO_IN, timeout_us, start_time,
cancellable, error))
return -1;
continue;
}
}
win32_unset_event_mask (socket, FD_READ);
socket_set_error_lazy (error, errsv, _("Error receiving data: %s"));
return -1;
}
win32_unset_event_mask (socket, FD_READ);
break;
}
return ret;
}
/**
* g_socket_receive:
* @socket: a #GSocket
* @buffer: (array length=size) (element-type guint8) (out caller-allocates):
* a buffer to read data into (which should be at least @size bytes long).
* @size: (in): the number of bytes you want to read from the socket
* @cancellable: (nullable): a %GCancellable or %NULL
* @error: #GError for error reporting, or %NULL to ignore.
*
* Receive data (up to @size bytes) from a socket. This is mainly used by
* connection-oriented sockets; it is identical to g_socket_receive_from()
* with @address set to %NULL.
*
* For %G_SOCKET_TYPE_DATAGRAM and %G_SOCKET_TYPE_SEQPACKET sockets,
* g_socket_receive() will always read either 0 or 1 complete messages from
* the socket. If the received message is too large to fit in @buffer, then
* the data beyond @size bytes will be discarded, without any explicit
* indication that this has occurred.
*
* For %G_SOCKET_TYPE_STREAM sockets, g_socket_receive() can return any
* number of bytes, up to @size. If more than @size bytes have been
* received, the additional data will be returned in future calls to
* g_socket_receive().
*
* If the socket is in blocking mode the call will block until there
* is some data to receive, the connection is closed, or there is an
* error. If there is no data available and the socket is in
* non-blocking mode, a %G_IO_ERROR_WOULD_BLOCK error will be
* returned. To be notified when data is available, wait for the
* %G_IO_IN condition.
*
* On error -1 is returned and @error is set accordingly.
*
* Returns: Number of bytes read, or 0 if the connection was closed by
* the peer, or -1 on error
*
* Since: 2.22
*/
gssize
g_socket_receive (GSocket *socket,
gchar *buffer,
gsize size,
GCancellable *cancellable,
GError **error)
{
return g_socket_receive_with_timeout (socket, (guint8 *) buffer, size,
socket->priv->blocking ? -1 : 0,
cancellable, error);
}
/**
* g_socket_receive_with_blocking:
* @socket: a #GSocket
* @buffer: (array length=size) (element-type guint8) (out caller-allocates):
* a buffer to read data into (which should be at least @size bytes long).
* @size: (in): the number of bytes you want to read from the socket
* @blocking: whether to do blocking or non-blocking I/O
* @cancellable: (nullable): a %GCancellable or %NULL
* @error: #GError for error reporting, or %NULL to ignore.
*
* This behaves exactly the same as g_socket_receive(), except that
* the choice of blocking or non-blocking behavior is determined by
* the @blocking argument rather than by @socket's properties.
*
* Returns: Number of bytes read, or 0 if the connection was closed by
* the peer, or -1 on error
*
* Since: 2.26
*/
gssize
g_socket_receive_with_blocking (GSocket *socket,
gchar *buffer,
gsize size,
gboolean blocking,
GCancellable *cancellable,
GError **error)
{
return g_socket_receive_with_timeout (socket, (guint8 *) buffer, size,
blocking ? -1 : 0, cancellable, error);
}
/**
* g_socket_receive_from:
* @socket: a #GSocket
* @address: (out) (optional): a pointer to a #GSocketAddress
* pointer, or %NULL
* @buffer: (array length=size) (element-type guint8) (out caller-allocates):
* a buffer to read data into (which should be at least @size bytes long).
* @size: (in): the number of bytes you want to read from the socket
* @cancellable: (nullable): a %GCancellable or %NULL
* @error: #GError for error reporting, or %NULL to ignore.
*
* Receive data (up to @size bytes) from a socket.
*
* If @address is non-%NULL then @address will be set equal to the
* source address of the received packet.
* @address is owned by the caller.
*
* See g_socket_receive() for additional information.
*
* Returns: Number of bytes read, or 0 if the connection was closed by
* the peer, or -1 on error
*
* Since: 2.22
*/
gssize
g_socket_receive_from (GSocket *socket,
GSocketAddress **address,
gchar *buffer,
gsize size,
GCancellable *cancellable,
GError **error)
{
GInputVector v;
v.buffer = buffer;
v.size = size;
return g_socket_receive_message (socket,
address,
&v, 1,
NULL, 0, NULL,
cancellable,
error);
}
/* See the comment about SIGPIPE above. */
#ifdef MSG_NOSIGNAL
#define G_SOCKET_DEFAULT_SEND_FLAGS MSG_NOSIGNAL
#else
#define G_SOCKET_DEFAULT_SEND_FLAGS 0
#endif
static gssize
g_socket_send_with_timeout (GSocket *socket,
const guint8 *buffer,
gsize size,
gint64 timeout_us,
GCancellable *cancellable,
GError **error)
{
gssize ret;
gint64 start_time;
g_return_val_if_fail (G_IS_SOCKET (socket) && buffer != NULL, -1);
start_time = g_get_monotonic_time ();
if (!check_socket (socket, error))
return -1;
if (!check_timeout (socket, error))
return -1;
if (g_cancellable_set_error_if_cancelled (cancellable, error))
return -1;
while (1)
{
if ((ret = send (socket->priv->fd, (const char *)buffer, size, G_SOCKET_DEFAULT_SEND_FLAGS)) < 0)
{
int errsv = get_socket_errno ();
if (errsv == EINTR)
continue;
#ifdef WSAEWOULDBLOCK
if (errsv == WSAEWOULDBLOCK)
#else
if (errsv == EWOULDBLOCK ||
errsv == EAGAIN)
#endif
{
win32_unset_event_mask (socket, FD_WRITE);
if (timeout_us != 0)
{
if (!block_on_timeout (socket, G_IO_OUT, timeout_us, start_time,
cancellable, error))
return -1;
continue;
}
}
socket_set_error_lazy (error, errsv, _("Error sending data: %s"));
return -1;
}
break;
}
return ret;
}
/**
* g_socket_send:
* @socket: a #GSocket
* @buffer: (array length=size) (element-type guint8): the buffer
* containing the data to send.
* @size: the number of bytes to send
* @cancellable: (nullable): a %GCancellable or %NULL
* @error: #GError for error reporting, or %NULL to ignore.
*
* Tries to send @size bytes from @buffer on the socket. This is
* mainly used by connection-oriented sockets; it is identical to
* g_socket_send_to() with @address set to %NULL.
*
* If the socket is in blocking mode the call will block until there is
* space for the data in the socket queue. If there is no space available
* and the socket is in non-blocking mode a %G_IO_ERROR_WOULD_BLOCK error
* will be returned. To be notified when space is available, wait for the
* %G_IO_OUT condition. Note though that you may still receive
* %G_IO_ERROR_WOULD_BLOCK from g_socket_send() even if you were previously
* notified of a %G_IO_OUT condition. (On Windows in particular, this is
* very common due to the way the underlying APIs work.)
*
* On error -1 is returned and @error is set accordingly.
*
* Returns: Number of bytes written (which may be less than @size), or -1
* on error
*
* Since: 2.22
*/
gssize
g_socket_send (GSocket *socket,
const gchar *buffer,
gsize size,
GCancellable *cancellable,
GError **error)
{
return g_socket_send_with_blocking (socket, buffer, size,
socket->priv->blocking,
cancellable, error);
}
/**
* g_socket_send_with_blocking:
* @socket: a #GSocket
* @buffer: (array length=size) (element-type guint8): the buffer
* containing the data to send.
* @size: the number of bytes to send
* @blocking: whether to do blocking or non-blocking I/O
* @cancellable: (nullable): a %GCancellable or %NULL
* @error: #GError for error reporting, or %NULL to ignore.
*
* This behaves exactly the same as g_socket_send(), except that
* the choice of blocking or non-blocking behavior is determined by
* the @blocking argument rather than by @socket's properties.
*
* Returns: Number of bytes written (which may be less than @size), or -1
* on error
*
* Since: 2.26
*/
gssize
g_socket_send_with_blocking (GSocket *socket,
const gchar *buffer,
gsize size,
gboolean blocking,
GCancellable *cancellable,
GError **error)
{
return g_socket_send_with_timeout (socket, (const guint8 *) buffer, size,
blocking ? -1 : 0, cancellable, error);
}
/**
* g_socket_send_to:
* @socket: a #GSocket
* @address: (nullable): a #GSocketAddress, or %NULL
* @buffer: (array length=size) (element-type guint8): the buffer
* containing the data to send.
* @size: the number of bytes to send
* @cancellable: (nullable): a %GCancellable or %NULL
* @error: #GError for error reporting, or %NULL to ignore.
*
* Tries to send @size bytes from @buffer to @address. If @address is
* %NULL then the message is sent to the default receiver (set by
* g_socket_connect()).
*
* See g_socket_send() for additional information.
*
* Returns: Number of bytes written (which may be less than @size), or -1
* on error
*
* Since: 2.22
*/
gssize
g_socket_send_to (GSocket *socket,
GSocketAddress *address,
const gchar *buffer,
gsize size,
GCancellable *cancellable,
GError **error)
{
GOutputVector v;
v.buffer = buffer;
v.size = size;
return g_socket_send_message (socket,
address,
&v, 1,
NULL, 0,
0,
cancellable,
error);
}
/**
* g_socket_shutdown:
* @socket: a #GSocket
* @shutdown_read: whether to shut down the read side
* @shutdown_write: whether to shut down the write side
* @error: #GError for error reporting, or %NULL to ignore.
*
* Shut down part or all of a full-duplex connection.
*
* If @shutdown_read is %TRUE then the receiving side of the connection
* is shut down, and further reading is disallowed.
*
* If @shutdown_write is %TRUE then the sending side of the connection
* is shut down, and further writing is disallowed.
*
* It is allowed for both @shutdown_read and @shutdown_write to be %TRUE.
*
* One example where it is useful to shut down only one side of a connection is
* graceful disconnect for TCP connections where you close the sending side,
* then wait for the other side to close the connection, thus ensuring that the
* other side saw all sent data.
*
* Returns: %TRUE on success, %FALSE on error
*
* Since: 2.22
*/
gboolean
g_socket_shutdown (GSocket *socket,
gboolean shutdown_read,
gboolean shutdown_write,
GError **error)
{
int how;
g_return_val_if_fail (G_IS_SOCKET (socket), TRUE);
if (!check_socket (socket, error))
return FALSE;
/* Do nothing? */
if (!shutdown_read && !shutdown_write)
return TRUE;
#ifndef G_OS_WIN32
if (shutdown_read && shutdown_write)
how = SHUT_RDWR;
else if (shutdown_read)
how = SHUT_RD;
else
how = SHUT_WR;
#else
if (shutdown_read && shutdown_write)
how = SD_BOTH;
else if (shutdown_read)
how = SD_RECEIVE;
else
how = SD_SEND;
#endif
if (shutdown (socket->priv->fd, how) != 0)
{
int errsv = get_socket_errno ();
g_set_error (error, G_IO_ERROR, socket_io_error_from_errno (errsv),
_("Unable to shutdown socket: %s"), socket_strerror (errsv));
return FALSE;
}
if (shutdown_read)
socket->priv->connected_read = FALSE;
if (shutdown_write)
socket->priv->connected_write = FALSE;
return TRUE;
}
/**
* g_socket_close:
* @socket: a #GSocket
* @error: #GError for error reporting, or %NULL to ignore.
*
* Closes the socket, shutting down any active connection.
*
* Closing a socket does not wait for all outstanding I/O operations
* to finish, so the caller should not rely on them to be guaranteed
* to complete even if the close returns with no error.
*
* Once the socket is closed, all other operations will return
* %G_IO_ERROR_CLOSED. Closing a socket multiple times will not
* return an error.
*
* Sockets will be automatically closed when the last reference
* is dropped, but you might want to call this function to make sure
* resources are released as early as possible.
*
* Beware that due to the way that TCP works, it is possible for
* recently-sent data to be lost if either you close a socket while the
* %G_IO_IN condition is set, or else if the remote connection tries to
* send something to you after you close the socket but before it has
* finished reading all of the data you sent. There is no easy generic
* way to avoid this problem; the easiest fix is to design the network
* protocol such that the client will never send data "out of turn".
* Another solution is for the server to half-close the connection by
* calling g_socket_shutdown() with only the @shutdown_write flag set,
* and then wait for the client to notice this and close its side of the
* connection, after which the server can safely call g_socket_close().
* (This is what #GTcpConnection does if you call
* g_tcp_connection_set_graceful_disconnect(). But of course, this
* only works if the client will close its connection after the server
* does.)
*
* Returns: %TRUE on success, %FALSE on error
*
* Since: 2.22
*/
gboolean
g_socket_close (GSocket *socket,
GError **error)
{
int res;
g_return_val_if_fail (G_IS_SOCKET (socket), TRUE);
if (socket->priv->closed)
return TRUE; /* Multiple close not an error */
if (!check_socket (socket, error))
return FALSE;
while (1)
{
#ifdef G_OS_WIN32
res = closesocket (socket->priv->fd);
#else
res = close (socket->priv->fd);
#endif
if (res == -1)
{
int errsv = get_socket_errno ();
if (errsv == EINTR)
continue;
g_set_error (error, G_IO_ERROR,
socket_io_error_from_errno (errsv),
_("Error closing socket: %s"),
socket_strerror (errsv));
return FALSE;
}
break;
}
socket->priv->fd = -1;
socket->priv->connected_read = FALSE;
socket->priv->connected_write = FALSE;
socket->priv->closed = TRUE;
if (socket->priv->remote_address)
{
g_object_unref (socket->priv->remote_address);
socket->priv->remote_address = NULL;
}
return TRUE;
}
/**
* g_socket_is_closed:
* @socket: a #GSocket
*
* Checks whether a socket is closed.
*
* Returns: %TRUE if socket is closed, %FALSE otherwise
*
* Since: 2.22
*/
gboolean
g_socket_is_closed (GSocket *socket)
{
return socket->priv->closed;
}
/* Broken source, used on errors */
static gboolean
broken_dispatch (GSource *source,
GSourceFunc callback,
gpointer user_data)
{
return TRUE;
}
static GSourceFuncs broken_funcs =
{
NULL,
NULL,
broken_dispatch,
NULL,
NULL,
NULL,
};
#ifdef G_OS_WIN32
static gint
network_events_for_condition (GIOCondition condition)
{
int event_mask = 0;
if (condition & G_IO_IN)
event_mask |= (FD_READ | FD_ACCEPT);
if (condition & G_IO_OUT)
event_mask |= (FD_WRITE | FD_CONNECT);
event_mask |= FD_CLOSE;
return event_mask;
}
static void
ensure_event (GSocket *socket)
{
if (socket->priv->event == WSA_INVALID_EVENT)
socket->priv->event = WSACreateEvent();
}
static void
update_select_events (GSocket *socket)
{
int event_mask;
GIOCondition *ptr;
GList *l;
WSAEVENT event;
if (socket->priv->closed)
return;
ensure_event (socket);
event_mask = 0;
for (l = socket->priv->requested_conditions; l != NULL; l = l->next)
{
ptr = l->data;
event_mask |= network_events_for_condition (*ptr);
}
if (event_mask != socket->priv->selected_events)
{
/* If no events selected, disable event so we can unset
nonblocking mode */
if (event_mask == 0)
event = NULL;
else
event = socket->priv->event;
if (WSAEventSelect (socket->priv->fd, event, event_mask) == 0)
socket->priv->selected_events = event_mask;
}
}
static void
add_condition_watch (GSocket *socket,
GIOCondition *condition)
{
g_mutex_lock (&socket->priv->win32_source_lock);
g_assert (g_list_find (socket->priv->requested_conditions, condition) == NULL);
socket->priv->requested_conditions =
g_list_prepend (socket->priv->requested_conditions, condition);
update_select_events (socket);
g_mutex_unlock (&socket->priv->win32_source_lock);
}
static void
remove_condition_watch (GSocket *socket,
GIOCondition *condition)
{
g_mutex_lock (&socket->priv->win32_source_lock);
g_assert (g_list_find (socket->priv->requested_conditions, condition) != NULL);
socket->priv->requested_conditions =
g_list_remove (socket->priv->requested_conditions, condition);
update_select_events (socket);
g_mutex_unlock (&socket->priv->win32_source_lock);
}
static GIOCondition
update_condition_unlocked (GSocket *socket)
{
WSANETWORKEVENTS events;
GIOCondition condition;
if (!socket->priv->closed &&
WSAEnumNetworkEvents (socket->priv->fd,
socket->priv->event,
&events) == 0)
{
socket->priv->current_events |= events.lNetworkEvents;
if (events.lNetworkEvents & FD_WRITE &&
events.iErrorCode[FD_WRITE_BIT] != 0)
socket->priv->current_errors |= FD_WRITE;
if (events.lNetworkEvents & FD_CONNECT &&
events.iErrorCode[FD_CONNECT_BIT] != 0)
socket->priv->current_errors |= FD_CONNECT;
}
condition = 0;
if (socket->priv->current_events & (FD_READ | FD_ACCEPT))
condition |= G_IO_IN;
if (socket->priv->current_events & FD_CLOSE)
{
int r, errsv = NO_ERROR, buffer;
r = recv (socket->priv->fd, &buffer, sizeof (buffer), MSG_PEEK);
if (r < 0)
errsv = get_socket_errno ();
if (r > 0 ||
(r < 0 && errsv == WSAENOTCONN))
condition |= G_IO_IN;
else if (r == 0 ||
(r < 0 && (errsv == WSAESHUTDOWN || errsv == WSAECONNRESET ||
errsv == WSAECONNABORTED || errsv == WSAENETRESET)))
condition |= G_IO_HUP;
else
condition |= G_IO_ERR;
}
if (socket->priv->closed)
condition |= G_IO_HUP;
/* Never report both G_IO_OUT and HUP, these are
mutually exclusive (can't write to a closed socket) */
if ((condition & G_IO_HUP) == 0 &&
socket->priv->current_events & FD_WRITE)
{
if (socket->priv->current_errors & FD_WRITE)
condition |= G_IO_ERR;
else
condition |= G_IO_OUT;
}
else
{
if (socket->priv->current_events & FD_CONNECT)
{
if (socket->priv->current_errors & FD_CONNECT)
condition |= (G_IO_HUP | G_IO_ERR);
else
condition |= G_IO_OUT;
}
}
return condition;
}
static GIOCondition
update_condition (GSocket *socket)
{
GIOCondition res;
g_mutex_lock (&socket->priv->win32_source_lock);
res = update_condition_unlocked (socket);
g_mutex_unlock (&socket->priv->win32_source_lock);
return res;
}
#endif
typedef struct {
GSource source;
#ifdef G_OS_WIN32
GPollFD pollfd;
#else
gpointer fd_tag;
#endif
GSocket *socket;
GIOCondition condition;
} GSocketSource;
static gboolean
socket_source_prepare (GSource *source,
gint *timeout)
{
GSocketSource *socket_source = (GSocketSource *)source;
#ifdef G_OS_WIN32
if ((socket_source->pollfd.revents & G_IO_NVAL) != 0)
return TRUE;
if (g_socket_is_closed (socket_source->socket))
{
g_source_remove_poll (source, &socket_source->pollfd);
socket_source->pollfd.revents = G_IO_NVAL;
return TRUE;
}
return (update_condition (socket_source->socket) & socket_source->condition) != 0;
#else
return g_socket_is_closed (socket_source->socket) && socket_source->fd_tag != NULL;
#endif
}
#ifdef G_OS_WIN32
static gboolean
socket_source_check_win32 (GSource *source)
{
int timeout;
return socket_source_prepare (source, &timeout);
}
#endif
static gboolean
socket_source_dispatch (GSource *source,
GSourceFunc callback,
gpointer user_data)
{
GSocketSourceFunc func = (GSocketSourceFunc)callback;
GSocketSource *socket_source = (GSocketSource *)source;
GSocket *socket = socket_source->socket;
gint64 timeout;
guint events;
gboolean ret;
#ifdef G_OS_WIN32
if ((socket_source->pollfd.revents & G_IO_NVAL) != 0)
events = G_IO_NVAL;
else
events = update_condition (socket_source->socket);
#else
if (g_socket_is_closed (socket_source->socket))
{
if (socket_source->fd_tag)
g_source_remove_unix_fd (source, socket_source->fd_tag);
socket_source->fd_tag = NULL;
events = G_IO_NVAL;
}
else
{
events = g_source_query_unix_fd (source, socket_source->fd_tag);
}
#endif
timeout = g_source_get_ready_time (source);
if (timeout >= 0 && timeout < g_source_get_time (source) &&
!g_socket_is_closed (socket_source->socket))
{
socket->priv->timed_out = TRUE;
events |= (G_IO_IN | G_IO_OUT);
}
ret = (*func) (socket, events & socket_source->condition, user_data);
if (socket->priv->timeout && !g_socket_is_closed (socket_source->socket))
g_source_set_ready_time (source, g_get_monotonic_time () + socket->priv->timeout * 1000000);
else
g_source_set_ready_time (source, -1);
return ret;
}
static void
socket_source_finalize (GSource *source)
{
GSocketSource *socket_source = (GSocketSource *)source;
GSocket *socket;
socket = socket_source->socket;
#ifdef G_OS_WIN32
remove_condition_watch (socket, &socket_source->condition);
#endif
g_object_unref (socket);
}
static gboolean
socket_source_closure_callback (GSocket *socket,
GIOCondition condition,
gpointer data)
{
GClosure *closure = data;
GValue params[2] = { G_VALUE_INIT, G_VALUE_INIT };
GValue result_value = G_VALUE_INIT;
gboolean result;
g_value_init (&result_value, G_TYPE_BOOLEAN);
g_value_init (¶ms[0], G_TYPE_SOCKET);
g_value_set_object (¶ms[0], socket);
g_value_init (¶ms[1], G_TYPE_IO_CONDITION);
g_value_set_flags (¶ms[1], condition);
g_closure_invoke (closure, &result_value, 2, params, NULL);
result = g_value_get_boolean (&result_value);
g_value_unset (&result_value);
g_value_unset (¶ms[0]);
g_value_unset (¶ms[1]);
return result;
}
static GSourceFuncs socket_source_funcs =
{
socket_source_prepare,
#ifdef G_OS_WIN32
socket_source_check_win32,
#else
NULL,
#endif
socket_source_dispatch,
socket_source_finalize,
(GSourceFunc)socket_source_closure_callback,
NULL,
};
static GSource *
socket_source_new (GSocket *socket,
GIOCondition condition,
GCancellable *cancellable)
{
GSource *source;
GSocketSource *socket_source;
#ifdef G_OS_WIN32
ensure_event (socket);
if (socket->priv->event == WSA_INVALID_EVENT)
{
g_warning ("Failed to create WSAEvent");
return g_source_new (&broken_funcs, sizeof (GSource));
}
#endif
if (!check_socket (socket, NULL))
{
g_warning ("Socket check failed");
return g_source_new (&broken_funcs, sizeof (GSource));
}
condition |= G_IO_HUP | G_IO_ERR | G_IO_NVAL;
source = g_source_new (&socket_source_funcs, sizeof (GSocketSource));
g_source_set_static_name (source, "GSocket");
socket_source = (GSocketSource *)source;
socket_source->socket = g_object_ref (socket);
socket_source->condition = condition;
if (cancellable)
{
GSource *cancellable_source;
cancellable_source = g_cancellable_source_new (cancellable);
g_source_add_child_source (source, cancellable_source);
g_source_set_dummy_callback (cancellable_source);
g_source_unref (cancellable_source);
}
#ifdef G_OS_WIN32
add_condition_watch (socket, &socket_source->condition);
socket_source->pollfd.fd = (gintptr) socket->priv->event;
socket_source->pollfd.events = condition;
socket_source->pollfd.revents = 0;
g_source_add_poll (source, &socket_source->pollfd);
#else
socket_source->fd_tag = g_source_add_unix_fd (source, socket->priv->fd, condition);
#endif
if (socket->priv->timeout)
g_source_set_ready_time (source, g_get_monotonic_time () + socket->priv->timeout * 1000000);
else
g_source_set_ready_time (source, -1);
return source;
}
/**
* g_socket_create_source: (skip)
* @socket: a #GSocket
* @condition: a #GIOCondition mask to monitor
* @cancellable: (nullable): a %GCancellable or %NULL
*
* Creates a #GSource that can be attached to a %GMainContext to monitor
* for the availability of the specified @condition on the socket. The #GSource
* keeps a reference to the @socket.
*
* The callback on the source is of the #GSocketSourceFunc type.
*
* It is meaningless to specify %G_IO_ERR or %G_IO_HUP in @condition;
* these conditions will always be reported output if they are true.
*
* @cancellable if not %NULL can be used to cancel the source, which will
* cause the source to trigger, reporting the current condition (which
* is likely 0 unless cancellation happened at the same time as a
* condition change). You can check for this in the callback using
* g_cancellable_is_cancelled().
*
* If @socket has a timeout set, and it is reached before @condition
* occurs, the source will then trigger anyway, reporting %G_IO_IN or
* %G_IO_OUT depending on @condition. However, @socket will have been
* marked as having had a timeout, and so the next #GSocket I/O method
* you call will then fail with a %G_IO_ERROR_TIMED_OUT.
*
* Returns: (transfer full): a newly allocated %GSource, free with g_source_unref().
*
* Since: 2.22
*/
GSource *
g_socket_create_source (GSocket *socket,
GIOCondition condition,
GCancellable *cancellable)
{
g_return_val_if_fail (G_IS_SOCKET (socket) && (cancellable == NULL || G_IS_CANCELLABLE (cancellable)), NULL);
return socket_source_new (socket, condition, cancellable);
}
/**
* g_socket_condition_check:
* @socket: a #GSocket
* @condition: a #GIOCondition mask to check
*
* Checks on the readiness of @socket to perform operations.
* The operations specified in @condition are checked for and masked
* against the currently-satisfied conditions on @socket. The result
* is returned.
*
* Note that on Windows, it is possible for an operation to return
* %G_IO_ERROR_WOULD_BLOCK even immediately after
* g_socket_condition_check() has claimed that the socket is ready for
* writing. Rather than calling g_socket_condition_check() and then
* writing to the socket if it succeeds, it is generally better to
* simply try writing to the socket right away, and try again later if
* the initial attempt returns %G_IO_ERROR_WOULD_BLOCK.
*
* It is meaningless to specify %G_IO_ERR or %G_IO_HUP in condition;
* these conditions will always be set in the output if they are true.
*
* This call never blocks.
*
* Returns: the @GIOCondition mask of the current state
*
* Since: 2.22
*/
GIOCondition
g_socket_condition_check (GSocket *socket,
GIOCondition condition)
{
g_return_val_if_fail (G_IS_SOCKET (socket), 0);
if (!check_socket (socket, NULL))
return 0;
#ifdef G_OS_WIN32
{
GIOCondition current_condition;
condition |= G_IO_ERR | G_IO_HUP;
add_condition_watch (socket, &condition);
current_condition = update_condition (socket);
remove_condition_watch (socket, &condition);
return condition & current_condition;
}
#else
{
GPollFD poll_fd;
gint result;
poll_fd.fd = socket->priv->fd;
poll_fd.events = condition;
poll_fd.revents = 0;
do
result = g_poll (&poll_fd, 1, 0);
while (result == -1 && get_socket_errno () == EINTR);
return poll_fd.revents;
}
#endif
}
/**
* g_socket_condition_wait:
* @socket: a #GSocket
* @condition: a #GIOCondition mask to wait for
* @cancellable: (nullable): a #GCancellable, or %NULL
* @error: a #GError pointer, or %NULL
*
* Waits for @condition to become true on @socket. When the condition
* is met, %TRUE is returned.
*
* If @cancellable is cancelled before the condition is met, or if the
* socket has a timeout set and it is reached before the condition is
* met, then %FALSE is returned and @error, if non-%NULL, is set to
* the appropriate value (%G_IO_ERROR_CANCELLED or
* %G_IO_ERROR_TIMED_OUT).
*
* See also g_socket_condition_timed_wait().
*
* Returns: %TRUE if the condition was met, %FALSE otherwise
*
* Since: 2.22
*/
gboolean
g_socket_condition_wait (GSocket *socket,
GIOCondition condition,
GCancellable *cancellable,
GError **error)
{
g_return_val_if_fail (G_IS_SOCKET (socket), FALSE);
return g_socket_condition_timed_wait (socket, condition, -1,
cancellable, error);
}
/**
* g_socket_condition_timed_wait:
* @socket: a #GSocket
* @condition: a #GIOCondition mask to wait for
* @timeout_us: the maximum time (in microseconds) to wait, or -1
* @cancellable: (nullable): a #GCancellable, or %NULL
* @error: a #GError pointer, or %NULL
*
* Waits for up to @timeout_us microseconds for @condition to become true
* on @socket. If the condition is met, %TRUE is returned.
*
* If @cancellable is cancelled before the condition is met, or if
* @timeout_us (or the socket's #GSocket:timeout) is reached before the
* condition is met, then %FALSE is returned and @error, if non-%NULL,
* is set to the appropriate value (%G_IO_ERROR_CANCELLED or
* %G_IO_ERROR_TIMED_OUT).
*
* If you don't want a timeout, use g_socket_condition_wait().
* (Alternatively, you can pass -1 for @timeout_us.)
*
* Note that although @timeout_us is in microseconds for consistency with
* other GLib APIs, this function actually only has millisecond
* resolution, and the behavior is undefined if @timeout_us is not an
* exact number of milliseconds.
*
* Returns: %TRUE if the condition was met, %FALSE otherwise
*
* Since: 2.32
*/
gboolean
g_socket_condition_timed_wait (GSocket *socket,
GIOCondition condition,
gint64 timeout_us,
GCancellable *cancellable,
GError **error)
{
gint64 start_time;
gint64 timeout_ms;
g_return_val_if_fail (G_IS_SOCKET (socket), FALSE);
if (!check_socket (socket, error))
return FALSE;
if (g_cancellable_set_error_if_cancelled (cancellable, error))
return FALSE;
if (socket->priv->timeout &&
(timeout_us < 0 || socket->priv->timeout < timeout_us / G_USEC_PER_SEC))
timeout_ms = (gint64) socket->priv->timeout * 1000;
else if (timeout_us != -1)
timeout_ms = timeout_us / 1000;
else
timeout_ms = -1;
start_time = g_get_monotonic_time ();
#ifdef G_OS_WIN32
{
GIOCondition current_condition;
WSAEVENT events[2];
DWORD res;
GPollFD cancel_fd;
int num_events;
/* Always check these */
condition |= G_IO_ERR | G_IO_HUP;
add_condition_watch (socket, &condition);
num_events = 0;
events[num_events++] = socket->priv->event;
if (g_cancellable_make_pollfd (cancellable, &cancel_fd))
events[num_events++] = (WSAEVENT)cancel_fd.fd;
if (timeout_ms == -1)
timeout_ms = WSA_INFINITE;
g_mutex_lock (&socket->priv->win32_source_lock);
current_condition = update_condition_unlocked (socket);
while ((condition & current_condition) == 0)
{
if (!socket->priv->waiting)
{
socket->priv->waiting = TRUE;
socket->priv->waiting_result = 0;
g_mutex_unlock (&socket->priv->win32_source_lock);
res = WSAWaitForMultipleEvents (num_events, events, FALSE, timeout_ms, FALSE);
g_mutex_lock (&socket->priv->win32_source_lock);
socket->priv->waiting = FALSE;
socket->priv->waiting_result = res;
g_cond_broadcast (&socket->priv->win32_source_cond);
}
else
{
if (timeout_ms != WSA_INFINITE)
{
if (!g_cond_wait_until (&socket->priv->win32_source_cond, &socket->priv->win32_source_lock, timeout_ms))
{
res = WSA_WAIT_TIMEOUT;
break;
}
else
{
res = socket->priv->waiting_result;
}
}
else
{
g_cond_wait (&socket->priv->win32_source_cond, &socket->priv->win32_source_lock);
res = socket->priv->waiting_result;
}
}
if (res == WSA_WAIT_FAILED)
{
int errsv = get_socket_errno ();
g_set_error (error, G_IO_ERROR,
socket_io_error_from_errno (errsv),
_("Waiting for socket condition: %s"),
socket_strerror (errsv));
break;
}
else if (res == WSA_WAIT_TIMEOUT)
{
g_set_error_literal (error, G_IO_ERROR, G_IO_ERROR_TIMED_OUT,
_("Socket I/O timed out"));
break;
}
if (g_cancellable_set_error_if_cancelled (cancellable, error))
break;
current_condition = update_condition_unlocked (socket);
if (timeout_ms != WSA_INFINITE)
{
timeout_ms -= (g_get_monotonic_time () - start_time) * 1000;
if (timeout_ms < 0)
timeout_ms = 0;
}
}
g_mutex_unlock (&socket->priv->win32_source_lock);
remove_condition_watch (socket, &condition);
if (num_events > 1)
g_cancellable_release_fd (cancellable);
return (condition & current_condition) != 0;
}
#else
{
GPollFD poll_fd[2];
gint result;
gint num;
poll_fd[0].fd = socket->priv->fd;
poll_fd[0].events = condition;
num = 1;
if (g_cancellable_make_pollfd (cancellable, &poll_fd[1]))
num++;
while (TRUE)
{
int errsv;
result = g_poll (poll_fd, num, timeout_ms);
errsv = errno;
if (result != -1 || errsv != EINTR)
break;
if (timeout_ms != -1)
{
timeout_ms -= (g_get_monotonic_time () - start_time) / 1000;
if (timeout_ms < 0)
timeout_ms = 0;
}
}
if (num > 1)
g_cancellable_release_fd (cancellable);
if (result == 0)
{
g_set_error_literal (error, G_IO_ERROR, G_IO_ERROR_TIMED_OUT,
_("Socket I/O timed out"));
return FALSE;
}
return !g_cancellable_set_error_if_cancelled (cancellable, error);
}
#endif
}
#ifndef G_OS_WIN32
#ifdef HAVE_QNX
/* QNX has this weird upper limit, or at least used to back in the 6.x days.
* This was discovered empirically and doesn't appear to be mentioned in any
* of the official documentation. */
# define G_SOCKET_CONTROL_BUFFER_SIZE_BYTES 2016
#else
# define G_SOCKET_CONTROL_BUFFER_SIZE_BYTES 2048
#endif
/* Unfortunately these have to be macros rather than inline functions due to
* using alloca(). */
#define output_message_to_msghdr(message, prev_message, msg, prev_msg, error) \
G_STMT_START { \
const GOutputMessage *_message = (message); \
const GOutputMessage *_prev_message = (prev_message); \
struct msghdr *_msg = (msg); \
const struct msghdr *_prev_msg = (prev_msg); \
GError **_error = (error); \
\
_msg->msg_flags = 0; \
\
/* name */ \
if (_prev_message != NULL && _prev_message->address == _message->address) \
{ \
_msg->msg_name = _prev_msg->msg_name; \
_msg->msg_namelen = _prev_msg->msg_namelen; \
} \
else if (_message->address != NULL) \
{ \
_msg->msg_namelen = g_socket_address_get_native_size (_message->address); \
_msg->msg_name = g_alloca (_msg->msg_namelen); \
if (!g_socket_address_to_native (_message->address, _msg->msg_name, \
_msg->msg_namelen, _error)) \
break; \
} \
else \
{ \
_msg->msg_name = NULL; \
_msg->msg_namelen = 0; \
} \
\
/* iov */ \
{ \
/* this entire expression will be evaluated at compile time */ \
if (sizeof *_msg->msg_iov == sizeof *_message->vectors && \
sizeof _msg->msg_iov->iov_base == sizeof _message->vectors->buffer && \
G_STRUCT_OFFSET (struct iovec, iov_base) == \
G_STRUCT_OFFSET (GOutputVector, buffer) && \
sizeof _msg->msg_iov->iov_len == sizeof _message->vectors->size && \
G_STRUCT_OFFSET (struct iovec, iov_len) == \
G_STRUCT_OFFSET (GOutputVector, size)) \
/* ABI is compatible */ \
{ \
_msg->msg_iov = (struct iovec *) _message->vectors; \
_msg->msg_iovlen = _message->num_vectors; \
} \
else \
/* ABI is incompatible */ \
{ \
guint i; \
\
_msg->msg_iov = g_newa (struct iovec, _message->num_vectors); \
for (i = 0; i < _message->num_vectors; i++) \
{ \
_msg->msg_iov[i].iov_base = (void *) _message->vectors[i].buffer; \
_msg->msg_iov[i].iov_len = _message->vectors[i].size; \
} \
_msg->msg_iovlen = _message->num_vectors; \
} \
} \
\
/* control */ \
{ \
struct cmsghdr *cmsg; \
guint i; \
\
_msg->msg_controllen = 0; \
for (i = 0; i < _message->num_control_messages; i++) \
_msg->msg_controllen += CMSG_SPACE (g_socket_control_message_get_size (_message->control_messages[i])); \
\
if (_msg->msg_controllen == 0) \
_msg->msg_control = NULL; \
else \
{ \
_msg->msg_control = g_alloca0 (_msg->msg_controllen); \
} \
\
cmsg = CMSG_FIRSTHDR (_msg); \
for (i = 0; i < _message->num_control_messages; i++) \
{ \
cmsg->cmsg_level = g_socket_control_message_get_level (_message->control_messages[i]); \
cmsg->cmsg_type = g_socket_control_message_get_msg_type (_message->control_messages[i]); \
cmsg->cmsg_len = CMSG_LEN (g_socket_control_message_get_size (_message->control_messages[i])); \
g_socket_control_message_serialize (_message->control_messages[i], \
CMSG_DATA (cmsg)); \
cmsg = CMSG_NXTHDR (_msg, cmsg); \
} \
g_assert (cmsg == NULL); \
} \
} G_STMT_END
#define input_message_to_msghdr(message, msg) \
G_STMT_START { \
const GInputMessage *_message = (message); \
struct msghdr *_msg = (msg); \
\
/* name */ \
if (_message->address) \
{ \
_msg->msg_namelen = sizeof (struct sockaddr_storage); \
_msg->msg_name = g_alloca (_msg->msg_namelen); \
} \
else \
{ \
_msg->msg_name = NULL; \
_msg->msg_namelen = 0; \
} \
\
/* iov */ \
/* this entire expression will be evaluated at compile time */ \
if (sizeof *_msg->msg_iov == sizeof *_message->vectors && \
sizeof _msg->msg_iov->iov_base == sizeof _message->vectors->buffer && \
G_STRUCT_OFFSET (struct iovec, iov_base) == \
G_STRUCT_OFFSET (GInputVector, buffer) && \
sizeof _msg->msg_iov->iov_len == sizeof _message->vectors->size && \
G_STRUCT_OFFSET (struct iovec, iov_len) == \
G_STRUCT_OFFSET (GInputVector, size)) \
/* ABI is compatible */ \
{ \
_msg->msg_iov = (struct iovec *) _message->vectors; \
_msg->msg_iovlen = _message->num_vectors; \
} \
else \
/* ABI is incompatible */ \
{ \
guint i; \
\
_msg->msg_iov = g_newa (struct iovec, _message->num_vectors); \
for (i = 0; i < _message->num_vectors; i++) \
{ \
_msg->msg_iov[i].iov_base = _message->vectors[i].buffer; \
_msg->msg_iov[i].iov_len = _message->vectors[i].size; \
} \
_msg->msg_iovlen = _message->num_vectors; \
} \
\
/* control */ \
if (_message->control_messages == NULL) \
{ \
_msg->msg_controllen = 0; \
_msg->msg_control = NULL; \
} \
else \
{ \
_msg->msg_controllen = G_SOCKET_CONTROL_BUFFER_SIZE_BYTES; \
_msg->msg_control = g_alloca (_msg->msg_controllen); \
} \
\
/* flags */ \
_msg->msg_flags = _message->flags; \
} G_STMT_END
static void
input_message_from_msghdr (const struct msghdr *msg,
GInputMessage *message,
GSocket *socket)
{
/* decode address */
if (message->address != NULL)
{
*message->address = cache_recv_address (socket, msg->msg_name,
msg->msg_namelen);
}
/* decode control messages */
{
GPtrArray *my_messages = NULL;
struct cmsghdr *cmsg;
if (msg->msg_controllen >= (socklen_t) sizeof (struct cmsghdr))
{
g_assert (message->control_messages != NULL);
for (cmsg = CMSG_FIRSTHDR (msg);
cmsg != NULL;
cmsg = CMSG_NXTHDR ((struct msghdr *) msg, cmsg))
{
GSocketControlMessage *control_message;
control_message = g_socket_control_message_deserialize (cmsg->cmsg_level,
cmsg->cmsg_type,
cmsg->cmsg_len - ((char *)CMSG_DATA (cmsg) - (char *)cmsg),
CMSG_DATA (cmsg));
if (control_message == NULL)
/* We've already spewed about the problem in the
deserialization code, so just continue */
continue;
if (my_messages == NULL)
my_messages = g_ptr_array_new ();
g_ptr_array_add (my_messages, control_message);
}
}
if (message->num_control_messages)
*message->num_control_messages = my_messages != NULL ? my_messages->len : 0;
if (message->control_messages)
{
if (my_messages == NULL)
{
*message->control_messages = NULL;
}
else
{
g_ptr_array_add (my_messages, NULL);
*message->control_messages = (GSocketControlMessage **) g_ptr_array_free (my_messages, FALSE);
}
}
else
{
g_assert (my_messages == NULL);
}
}
/* capture the flags */
message->flags = msg->msg_flags;
}
#endif
/**
* g_socket_send_message:
* @socket: a #GSocket
* @address: (nullable): a #GSocketAddress, or %NULL
* @vectors: (array length=num_vectors): an array of #GOutputVector structs
* @num_vectors: the number of elements in @vectors, or -1
* @messages: (array length=num_messages) (nullable): a pointer to an
* array of #GSocketControlMessages, or %NULL.
* @num_messages: number of elements in @messages, or -1.
* @flags: an int containing #GSocketMsgFlags flags, which may additionally
* contain [other platform specific flags](http://man7.org/linux/man-pages/man2/recv.2.html)
* @cancellable: (nullable): a %GCancellable or %NULL
* @error: #GError for error reporting, or %NULL to ignore.
*
* Send data to @address on @socket. For sending multiple messages see
* g_socket_send_messages(); for easier use, see
* g_socket_send() and g_socket_send_to().
*
* If @address is %NULL then the message is sent to the default receiver
* (set by g_socket_connect()).
*
* @vectors must point to an array of #GOutputVector structs and
* @num_vectors must be the length of this array. (If @num_vectors is -1,
* then @vectors is assumed to be terminated by a #GOutputVector with a
* %NULL buffer pointer.) The #GOutputVector structs describe the buffers
* that the sent data will be gathered from. Using multiple
* #GOutputVectors is more memory-efficient than manually copying
* data from multiple sources into a single buffer, and more
* network-efficient than making multiple calls to g_socket_send().
*
* @messages, if non-%NULL, is taken to point to an array of @num_messages
* #GSocketControlMessage instances. These correspond to the control
* messages to be sent on the socket.
* If @num_messages is -1 then @messages is treated as a %NULL-terminated
* array.
*
* @flags modify how the message is sent. The commonly available arguments
* for this are available in the #GSocketMsgFlags enum, but the
* values there are the same as the system values, and the flags
* are passed in as-is, so you can pass in system-specific flags too.
*
* If the socket is in blocking mode the call will block until there is
* space for the data in the socket queue. If there is no space available
* and the socket is in non-blocking mode a %G_IO_ERROR_WOULD_BLOCK error
* will be returned. To be notified when space is available, wait for the
* %G_IO_OUT condition. Note though that you may still receive
* %G_IO_ERROR_WOULD_BLOCK from g_socket_send() even if you were previously
* notified of a %G_IO_OUT condition. (On Windows in particular, this is
* very common due to the way the underlying APIs work.)
*
* The sum of the sizes of each #GOutputVector in vectors must not be
* greater than %G_MAXSSIZE. If the message can be larger than this,
* then it is mandatory to use the g_socket_send_message_with_timeout()
* function.
*
* On error -1 is returned and @error is set accordingly.
*
* Returns: Number of bytes written (which may be less than @size), or -1
* on error
*
* Since: 2.22
*/
gssize
g_socket_send_message (GSocket *socket,
GSocketAddress *address,
GOutputVector *vectors,
gint num_vectors,
GSocketControlMessage **messages,
gint num_messages,
gint flags,
GCancellable *cancellable,
GError **error)
{
GPollableReturn res;
gsize bytes_written = 0;
gsize vectors_size = 0;
if (num_vectors != -1)
{
for (gint i = 0; i < num_vectors; i++)
{
/* No wrap-around for vectors_size */
if (vectors_size > vectors_size + vectors[i].size)
{
g_set_error (error, G_IO_ERROR, G_IO_ERROR_INVALID_ARGUMENT,
_("Unable to send message: %s"),
_("Message vectors too large"));
return -1;
}
vectors_size += vectors[i].size;
}
}
else
{
for (gsize i = 0; vectors[i].buffer != NULL; i++)
{
/* No wrap-around for vectors_size */
if (vectors_size > vectors_size + vectors[i].size)
{
g_set_error (error, G_IO_ERROR, G_IO_ERROR_INVALID_ARGUMENT,
_("Unable to send message: %s"),
_("Message vectors too large"));
return -1;
}
vectors_size += vectors[i].size;
}
}
/* Check if vector's buffers are too big for gssize */
if (vectors_size > G_MAXSSIZE)
{
g_set_error (error, G_IO_ERROR, G_IO_ERROR_INVALID_ARGUMENT,
_("Unable to send message: %s"),
_("Message vectors too large"));
return -1;
}
res = g_socket_send_message_with_timeout (socket, address,
vectors, num_vectors,
messages, num_messages, flags,
socket->priv->blocking ? -1 : 0,
&bytes_written,
cancellable, error);
g_assert (res != G_POLLABLE_RETURN_OK || bytes_written <= G_MAXSSIZE);
if (res == G_POLLABLE_RETURN_WOULD_BLOCK)
{
#ifndef G_OS_WIN32
socket_set_error_lazy (error, EWOULDBLOCK, _("Error sending message: %s"));
#else
socket_set_error_lazy (error, WSAEWOULDBLOCK, _("Error sending message: %s"));
#endif
}
return res == G_POLLABLE_RETURN_OK ? (gssize) bytes_written : -1;
}
/**
* g_socket_send_message_with_timeout:
* @socket: a #GSocket
* @address: (nullable): a #GSocketAddress, or %NULL
* @vectors: (array length=num_vectors): an array of #GOutputVector structs
* @num_vectors: the number of elements in @vectors, or -1
* @messages: (array length=num_messages) (nullable): a pointer to an
* array of #GSocketControlMessages, or %NULL.
* @num_messages: number of elements in @messages, or -1.
* @flags: an int containing #GSocketMsgFlags flags, which may additionally
* contain [other platform specific flags](http://man7.org/linux/man-pages/man2/recv.2.html)
* @timeout_us: the maximum time (in microseconds) to wait, or -1
* @bytes_written: (out) (optional): location to store the number of bytes that were written to the socket
* @cancellable: (nullable): a %GCancellable or %NULL
* @error: #GError for error reporting, or %NULL to ignore.
*
* This behaves exactly the same as g_socket_send_message(), except that
* the choice of timeout behavior is determined by the @timeout_us argument
* rather than by @socket's properties.
*
* On error %G_POLLABLE_RETURN_FAILED is returned and @error is set accordingly, or
* if the socket is currently not writable %G_POLLABLE_RETURN_WOULD_BLOCK is
* returned. @bytes_written will contain 0 in both cases.
*
* Returns: %G_POLLABLE_RETURN_OK if all data was successfully written,
* %G_POLLABLE_RETURN_WOULD_BLOCK if the socket is currently not writable, or
* %G_POLLABLE_RETURN_FAILED if an error happened and @error is set.
*
* Since: 2.60
*/
GPollableReturn
g_socket_send_message_with_timeout (GSocket *socket,
GSocketAddress *address,
const GOutputVector *vectors,
gint num_vectors,
GSocketControlMessage **messages,
gint num_messages,
gint flags,
gint64 timeout_us,
gsize *bytes_written,
GCancellable *cancellable,
GError **error)
{
GOutputVector one_vector;
char zero;
gint64 start_time;
if (bytes_written)
*bytes_written = 0;
g_return_val_if_fail (G_IS_SOCKET (socket), G_POLLABLE_RETURN_FAILED);
g_return_val_if_fail (address == NULL || G_IS_SOCKET_ADDRESS (address), G_POLLABLE_RETURN_FAILED);
g_return_val_if_fail (num_vectors == 0 || vectors != NULL, G_POLLABLE_RETURN_FAILED);
g_return_val_if_fail (num_messages == 0 || messages != NULL, G_POLLABLE_RETURN_FAILED);
g_return_val_if_fail (cancellable == NULL || G_IS_CANCELLABLE (cancellable), G_POLLABLE_RETURN_FAILED);
g_return_val_if_fail (error == NULL || *error == NULL, G_POLLABLE_RETURN_FAILED);
start_time = g_get_monotonic_time ();
if (!check_socket (socket, error))
return G_POLLABLE_RETURN_FAILED;
if (!check_timeout (socket, error))
return G_POLLABLE_RETURN_FAILED;
if (g_cancellable_set_error_if_cancelled (cancellable, error))
return G_POLLABLE_RETURN_FAILED;
if (num_vectors == -1)
{
for (num_vectors = 0;
vectors[num_vectors].buffer != NULL;
num_vectors++)
;
}
if (num_messages == -1)
{
for (num_messages = 0;
messages != NULL && messages[num_messages] != NULL;
num_messages++)
;
}
if (num_vectors == 0)
{
zero = '\0';
one_vector.buffer = &zero;
one_vector.size = 1;
num_vectors = 1;
vectors = &one_vector;
}
#ifndef G_OS_WIN32
{
GOutputMessage output_message;
struct msghdr msg;
gssize result;
GError *child_error = NULL;
output_message.address = address;
output_message.vectors = (GOutputVector *) vectors;
output_message.num_vectors = num_vectors;
output_message.bytes_sent = 0;
output_message.control_messages = messages;
output_message.num_control_messages = num_messages;
output_message_to_msghdr (&output_message, NULL, &msg, NULL, &child_error);
if (child_error != NULL)
{
g_propagate_error (error, child_error);
return G_POLLABLE_RETURN_FAILED;
}
while (1)
{
result = sendmsg (socket->priv->fd, &msg, flags | G_SOCKET_DEFAULT_SEND_FLAGS);
if (result < 0)
{
int errsv = get_socket_errno ();
if (errsv == EINTR)
continue;
if (errsv == EWOULDBLOCK || errsv == EAGAIN)
{
if (timeout_us != 0)
{
if (!block_on_timeout (socket, G_IO_OUT, timeout_us, start_time,
cancellable, error))
return G_POLLABLE_RETURN_FAILED;
continue;
}
return G_POLLABLE_RETURN_WOULD_BLOCK;
}
socket_set_error_lazy (error, errsv, _("Error sending message: %s"));
return G_POLLABLE_RETURN_FAILED;
}
break;
}
if (bytes_written)
*bytes_written = result;
return G_POLLABLE_RETURN_OK;
}
#else
{
struct sockaddr_storage addr;
guint addrlen;
DWORD bytes_sent;
int result;
WSABUF *bufs;
gint i;
/* Win32 doesn't support control messages.
Actually this is possible for raw and datagram sockets
via WSASendMessage on Vista or later, but that doesn't
seem very useful */
if (num_messages != 0)
{
g_set_error_literal (error, G_IO_ERROR, G_IO_ERROR_NOT_SUPPORTED,
_("GSocketControlMessage not supported on Windows"));
return G_POLLABLE_RETURN_FAILED;
}
/* iov */
bufs = g_newa (WSABUF, num_vectors);
for (i = 0; i < num_vectors; i++)
{
bufs[i].buf = (char *)vectors[i].buffer;
bufs[i].len = (gulong)vectors[i].size;
}
/* name */
addrlen = 0; /* Avoid warning */
if (address)
{
addrlen = g_socket_address_get_native_size (address);
if (!g_socket_address_to_native (address, &addr, sizeof addr, error))
return G_POLLABLE_RETURN_FAILED;
}
while (1)
{
if (address)
result = WSASendTo (socket->priv->fd,
bufs, num_vectors,
&bytes_sent, flags,
(const struct sockaddr *)&addr, addrlen,
NULL, NULL);
else
result = WSASend (socket->priv->fd,
bufs, num_vectors,
&bytes_sent, flags,
NULL, NULL);
if (result != 0)
{
int errsv = get_socket_errno ();
if (errsv == WSAEINTR)
continue;
if (errsv == WSAEWOULDBLOCK)
{
win32_unset_event_mask (socket, FD_WRITE);
if (timeout_us != 0)
{
if (!block_on_timeout (socket, G_IO_OUT, timeout_us,
start_time, cancellable, error))
return G_POLLABLE_RETURN_FAILED;
continue;
}
return G_POLLABLE_RETURN_WOULD_BLOCK;
}
socket_set_error_lazy (error, errsv, _("Error sending message: %s"));
return G_POLLABLE_RETURN_FAILED;
}
break;
}
if (bytes_written)
*bytes_written = bytes_sent;
return G_POLLABLE_RETURN_OK;
}
#endif
}
/**
* g_socket_send_messages:
* @socket: a #GSocket
* @messages: (array length=num_messages): an array of #GOutputMessage structs
* @num_messages: the number of elements in @messages
* @flags: an int containing #GSocketMsgFlags flags, which may additionally
* contain [other platform specific flags](http://man7.org/linux/man-pages/man2/recv.2.html)
* @cancellable: (nullable): a %GCancellable or %NULL
* @error: #GError for error reporting, or %NULL to ignore.
*
* Send multiple data messages from @socket in one go. This is the most
* complicated and fully-featured version of this call. For easier use, see
* g_socket_send(), g_socket_send_to(), and g_socket_send_message().
*
* @messages must point to an array of #GOutputMessage structs and
* @num_messages must be the length of this array. Each #GOutputMessage
* contains an address to send the data to, and a pointer to an array of
* #GOutputVector structs to describe the buffers that the data to be sent
* for each message will be gathered from. Using multiple #GOutputVectors is
* more memory-efficient than manually copying data from multiple sources
* into a single buffer, and more network-efficient than making multiple
* calls to g_socket_send(). Sending multiple messages in one go avoids the
* overhead of making a lot of syscalls in scenarios where a lot of data
* packets need to be sent (e.g. high-bandwidth video streaming over RTP/UDP),
* or where the same data needs to be sent to multiple recipients.
*
* @flags modify how the message is sent. The commonly available arguments
* for this are available in the #GSocketMsgFlags enum, but the
* values there are the same as the system values, and the flags
* are passed in as-is, so you can pass in system-specific flags too.
*
* If the socket is in blocking mode the call will block until there is
* space for all the data in the socket queue. If there is no space available
* and the socket is in non-blocking mode a %G_IO_ERROR_WOULD_BLOCK error
* will be returned if no data was written at all, otherwise the number of
* messages sent will be returned. To be notified when space is available,
* wait for the %G_IO_OUT condition. Note though that you may still receive
* %G_IO_ERROR_WOULD_BLOCK from g_socket_send() even if you were previously
* notified of a %G_IO_OUT condition. (On Windows in particular, this is
* very common due to the way the underlying APIs work.)
*
* On error -1 is returned and @error is set accordingly. An error will only
* be returned if zero messages could be sent; otherwise the number of messages
* successfully sent before the error will be returned.
*
* Returns: number of messages sent, or -1 on error. Note that the number of
* messages sent may be smaller than @num_messages if the socket is
* non-blocking or if @num_messages was larger than UIO_MAXIOV (1024),
* in which case the caller may re-try to send the remaining messages.
*
* Since: 2.44
*/
gint
g_socket_send_messages (GSocket *socket,
GOutputMessage *messages,
guint num_messages,
gint flags,
GCancellable *cancellable,
GError **error)
{
return g_socket_send_messages_with_timeout (socket, messages, num_messages,
flags,
socket->priv->blocking ? -1 : 0,
cancellable, error);
}
static gint
g_socket_send_messages_with_timeout (GSocket *socket,
GOutputMessage *messages,
guint num_messages,
gint flags,
gint64 timeout_us,
GCancellable *cancellable,
GError **error)
{
gint64 start_time;
g_return_val_if_fail (G_IS_SOCKET (socket), -1);
g_return_val_if_fail (num_messages == 0 || messages != NULL, -1);
g_return_val_if_fail (cancellable == NULL || G_IS_CANCELLABLE (cancellable), -1);
g_return_val_if_fail (error == NULL || *error == NULL, -1);
start_time = g_get_monotonic_time ();
if (!check_socket (socket, error))
return -1;
if (!check_timeout (socket, error))
return -1;
if (g_cancellable_set_error_if_cancelled (cancellable, error))
return -1;
if (num_messages == 0)
return 0;
#if !defined (G_OS_WIN32) && defined (HAVE_SENDMMSG)
{
struct mmsghdr *msgvec;
guint i, num_sent;
/* Clamp the number of vectors if more given than we can write in one go.
* The caller has to handle short writes anyway.
*/
if (num_messages > G_IOV_MAX)
num_messages = G_IOV_MAX;
msgvec = g_newa (struct mmsghdr, num_messages);
for (i = 0; i < num_messages; ++i)
{
GOutputMessage *msg = &messages[i];
struct msghdr *msg_hdr = &msgvec[i].msg_hdr;
GError *child_error = NULL;
msgvec[i].msg_len = 0;
output_message_to_msghdr (msg, (i > 0) ? &messages[i - 1] : NULL,
msg_hdr, (i > 0) ? &msgvec[i - 1].msg_hdr : NULL,
&child_error);
if (child_error != NULL)
{
g_propagate_error (error, child_error);
return -1;
}
}
for (num_sent = 0; num_sent < num_messages;)
{
gint ret;
ret = sendmmsg (socket->priv->fd, msgvec + num_sent, num_messages - num_sent,
flags | G_SOCKET_DEFAULT_SEND_FLAGS);
if (ret < 0)
{
int errsv = get_socket_errno ();
if (errsv == EINTR)
continue;
if (timeout_us != 0 &&
(errsv == EWOULDBLOCK ||
errsv == EAGAIN))
{
if (!block_on_timeout (socket, G_IO_OUT, timeout_us, start_time,
cancellable, error))
{
if (num_sent > 0)
{
g_clear_error (error);
break;
}
return -1;
}
continue;
}
/* If any messages were successfully sent, do not error. */
if (num_sent > 0)
break;
socket_set_error_lazy (error, errsv, _("Error sending message: %s"));
return -1;
}
num_sent += ret;
}
for (i = 0; i < num_sent; ++i)
messages[i].bytes_sent = msgvec[i].msg_len;
return num_sent;
}
#else
{
gssize result;
guint i;
gint64 wait_timeout;
wait_timeout = timeout_us;
for (i = 0; i < num_messages; ++i)
{
GOutputMessage *msg = &messages[i];
GError *msg_error = NULL;
GPollableReturn pollable_result;
gsize bytes_written = 0;
pollable_result = g_socket_send_message_with_timeout (socket, msg->address,
msg->vectors,
msg->num_vectors,
msg->control_messages,
msg->num_control_messages,
flags, wait_timeout,
&bytes_written,
cancellable, &msg_error);
if (pollable_result == G_POLLABLE_RETURN_WOULD_BLOCK)
{
#ifndef G_OS_WIN32
socket_set_error_lazy (&msg_error, EWOULDBLOCK, _("Error sending message: %s"));
#else
socket_set_error_lazy (&msg_error, WSAEWOULDBLOCK, _("Error sending message: %s"));
#endif
}
if (G_MAXSSIZE > bytes_written &&
pollable_result == G_POLLABLE_RETURN_OK)
result = (gssize) bytes_written;
else
result = -1;
/* check if we've timed out or how much time to wait at most */
if (timeout_us > 0)
{
gint64 elapsed = g_get_monotonic_time () - start_time;
wait_timeout = MAX (timeout_us - elapsed, 1);
}
if (result < 0)
{
/* if we couldn't send all messages, just return how many we did
* manage to send, provided we managed to send at least one */
if (i > 0)
{
g_error_free (msg_error);
return i;
}
else
{
g_propagate_error (error, msg_error);
return -1;
}
}
msg->bytes_sent = result;
}
return i;
}
#endif
}
static GSocketAddress *
cache_recv_address (GSocket *socket, struct sockaddr *native, size_t native_len)
{
GSocketAddress *saddr;
gint i;
guint64 oldest_time = G_MAXUINT64;
gint oldest_index = 0;
if (native_len == 0)
return NULL;
saddr = NULL;
for (i = 0; i < RECV_ADDR_CACHE_SIZE; i++)
{
GSocketAddress *tmp = socket->priv->recv_addr_cache[i].addr;
gpointer tmp_native = socket->priv->recv_addr_cache[i].native;
gsize tmp_native_len = socket->priv->recv_addr_cache[i].native_len;
if (!tmp)
continue;
if (tmp_native_len != native_len)
continue;
if (memcmp (tmp_native, native, native_len) == 0)
{
saddr = g_object_ref (tmp);
socket->priv->recv_addr_cache[i].last_used = g_get_monotonic_time ();
return saddr;
}
if (socket->priv->recv_addr_cache[i].last_used < oldest_time)
{
oldest_time = socket->priv->recv_addr_cache[i].last_used;
oldest_index = i;
}
}
saddr = g_socket_address_new_from_native (native, native_len);
if (socket->priv->recv_addr_cache[oldest_index].addr)
{
g_object_unref (socket->priv->recv_addr_cache[oldest_index].addr);
g_free (socket->priv->recv_addr_cache[oldest_index].native);
}
socket->priv->recv_addr_cache[oldest_index].native = g_memdup2 (native, native_len);
socket->priv->recv_addr_cache[oldest_index].native_len = native_len;
socket->priv->recv_addr_cache[oldest_index].addr = g_object_ref (saddr);
socket->priv->recv_addr_cache[oldest_index].last_used = g_get_monotonic_time ();
return saddr;
}
static gssize
g_socket_receive_message_with_timeout (GSocket *socket,
GSocketAddress **address,
GInputVector *vectors,
gint num_vectors,
GSocketControlMessage ***messages,
gint *num_messages,
gint *flags,
gint64 timeout_us,
GCancellable *cancellable,
GError **error)
{
GInputVector one_vector;
char one_byte;
gint64 start_time;
g_return_val_if_fail (G_IS_SOCKET (socket), -1);
start_time = g_get_monotonic_time ();
if (!check_socket (socket, error))
return -1;
if (!check_timeout (socket, error))
return -1;
if (g_cancellable_set_error_if_cancelled (cancellable, error))
return -1;
if (num_vectors == -1)
{
for (num_vectors = 0;
vectors[num_vectors].buffer != NULL;
num_vectors++)
;
}
if (num_vectors == 0)
{
one_vector.buffer = &one_byte;
one_vector.size = 1;
num_vectors = 1;
vectors = &one_vector;
}
#ifndef G_OS_WIN32
{
GInputMessage input_message;
struct msghdr msg;
gssize result;
input_message.address = address;
input_message.vectors = vectors;
input_message.num_vectors = num_vectors;
input_message.bytes_received = 0;
input_message.flags = (flags != NULL) ? *flags : 0;
input_message.control_messages = messages;
input_message.num_control_messages = (guint *) num_messages;
/* We always set the close-on-exec flag so we don't leak file
* descriptors into child processes. Note that gunixfdmessage.c
* will later call fcntl (fd, FD_CLOEXEC), but that isn't atomic.
*/
#ifdef MSG_CMSG_CLOEXEC
input_message.flags |= MSG_CMSG_CLOEXEC;
#endif
input_message_to_msghdr (&input_message, &msg);
/* do it */
while (1)
{
result = recvmsg (socket->priv->fd, &msg, msg.msg_flags);
#ifdef MSG_CMSG_CLOEXEC
if (result < 0 && get_socket_errno () == EINVAL)
{
/* We must be running on an old kernel. Call without the flag. */
msg.msg_flags &= ~(MSG_CMSG_CLOEXEC);
result = recvmsg (socket->priv->fd, &msg, msg.msg_flags);
}
#endif
if (result < 0)
{
int errsv = get_socket_errno ();
if (errsv == EINTR)
continue;
if (timeout_us != 0 &&
(errsv == EWOULDBLOCK ||
errsv == EAGAIN))
{
if (!block_on_timeout (socket, G_IO_IN, timeout_us, start_time,
cancellable, error))
return -1;
continue;
}
socket_set_error_lazy (error, errsv, _("Error receiving message: %s"));
return -1;
}
break;
}
input_message_from_msghdr (&msg, &input_message, socket);
if (flags != NULL)
*flags = input_message.flags;
return result;
}
#else
{
struct sockaddr_storage addr;
int addrlen;
DWORD bytes_received;
DWORD win_flags;
int result;
WSABUF *bufs;
gint i;
/* iov */
bufs = g_newa (WSABUF, num_vectors);
for (i = 0; i < num_vectors; i++)
{
bufs[i].buf = (char *)vectors[i].buffer;
bufs[i].len = (gulong)vectors[i].size;
}
/* flags */
if (flags != NULL)
win_flags = *flags;
else
win_flags = 0;
/* do it */
while (1)
{
/* addrlen has to be of type int because that’s how WSARecvFrom() is defined */
G_STATIC_ASSERT (sizeof addr <= G_MAXINT);
addrlen = sizeof addr;
if (address)
result = WSARecvFrom (socket->priv->fd,
bufs, num_vectors,
&bytes_received, &win_flags,
(struct sockaddr *)&addr, &addrlen,
NULL, NULL);
else
result = WSARecv (socket->priv->fd,
bufs, num_vectors,
&bytes_received, &win_flags,
NULL, NULL);
if (result != 0)
{
int errsv = get_socket_errno ();
if (errsv == WSAEINTR)
continue;
win32_unset_event_mask (socket, FD_READ);
if (errsv == WSAEWOULDBLOCK)
{
if (timeout_us != 0)
{
if (!block_on_timeout (socket, G_IO_IN, timeout_us,
start_time, cancellable, error))
return -1;
continue;
}
}
socket_set_error_lazy (error, errsv, _("Error receiving message: %s"));
return -1;
}
win32_unset_event_mask (socket, FD_READ);
break;
}
/* decode address */
if (address != NULL)
{
*address = cache_recv_address (socket, (struct sockaddr *)&addr, addrlen);
}
/* capture the flags */
if (flags != NULL)
*flags = win_flags;
if (messages != NULL)
*messages = NULL;
if (num_messages != NULL)
*num_messages = 0;
return bytes_received;
}
#endif
}
/**
* g_socket_receive_messages:
* @socket: a #GSocket
* @messages: (array length=num_messages): an array of #GInputMessage structs
* @num_messages: the number of elements in @messages
* @flags: an int containing #GSocketMsgFlags flags for the overall operation,
* which may additionally contain
* [other platform specific flags](http://man7.org/linux/man-pages/man2/recv.2.html)
* @cancellable: (nullable): a %GCancellable or %NULL
* @error: #GError for error reporting, or %NULL to ignore
*
* Receive multiple data messages from @socket in one go. This is the most
* complicated and fully-featured version of this call. For easier use, see
* g_socket_receive(), g_socket_receive_from(), and g_socket_receive_message().
*
* @messages must point to an array of #GInputMessage structs and
* @num_messages must be the length of this array. Each #GInputMessage
* contains a pointer to an array of #GInputVector structs describing the
* buffers that the data received in each message will be written to. Using
* multiple #GInputVectors is more memory-efficient than manually copying data
* out of a single buffer to multiple sources, and more system-call-efficient
* than making multiple calls to g_socket_receive(), such as in scenarios where
* a lot of data packets need to be received (e.g. high-bandwidth video
* streaming over RTP/UDP).
*
* @flags modify how all messages are received. The commonly available
* arguments for this are available in the #GSocketMsgFlags enum, but the
* values there are the same as the system values, and the flags
* are passed in as-is, so you can pass in system-specific flags too. These
* flags affect the overall receive operation. Flags affecting individual
* messages are returned in #GInputMessage.flags.
*
* The other members of #GInputMessage are treated as described in its
* documentation.
*
* If #GSocket:blocking is %TRUE the call will block until @num_messages have
* been received, or the end of the stream is reached.
*
* If #GSocket:blocking is %FALSE the call will return up to @num_messages
* without blocking, or %G_IO_ERROR_WOULD_BLOCK if no messages are queued in the
* operating system to be received.
*
* In blocking mode, if #GSocket:timeout is positive and is reached before any
* messages are received, %G_IO_ERROR_TIMED_OUT is returned, otherwise up to
* @num_messages are returned. (Note: This is effectively the
* behaviour of `MSG_WAITFORONE` with recvmmsg().)
*
* To be notified when messages are available, wait for the
* %G_IO_IN condition. Note though that you may still receive
* %G_IO_ERROR_WOULD_BLOCK from g_socket_receive_messages() even if you were
* previously notified of a %G_IO_IN condition.
*
* If the remote peer closes the connection, any messages queued in the
* operating system will be returned, and subsequent calls to
* g_socket_receive_messages() will return 0 (with no error set).
*
* On error -1 is returned and @error is set accordingly. An error will only
* be returned if zero messages could be received; otherwise the number of
* messages successfully received before the error will be returned.
*
* Returns: number of messages received, or -1 on error. Note that the number
* of messages received may be smaller than @num_messages if in non-blocking
* mode, if the peer closed the connection, or if @num_messages
* was larger than `UIO_MAXIOV` (1024), in which case the caller may re-try
* to receive the remaining messages.
*
* Since: 2.48
*/
gint
g_socket_receive_messages (GSocket *socket,
GInputMessage *messages,
guint num_messages,
gint flags,
GCancellable *cancellable,
GError **error)
{
if (!check_socket (socket, error) ||
!check_timeout (socket, error))
return -1;
return g_socket_receive_messages_with_timeout (socket, messages, num_messages,
flags,
socket->priv->blocking ? -1 : 0,
cancellable, error);
}
static gint
g_socket_receive_messages_with_timeout (GSocket *socket,
GInputMessage *messages,
guint num_messages,
gint flags,
gint64 timeout_us,
GCancellable *cancellable,
GError **error)
{
gint64 start_time;
g_return_val_if_fail (G_IS_SOCKET (socket), -1);
g_return_val_if_fail (num_messages == 0 || messages != NULL, -1);
g_return_val_if_fail (cancellable == NULL ||
G_IS_CANCELLABLE (cancellable), -1);
g_return_val_if_fail (error == NULL || *error == NULL, -1);
start_time = g_get_monotonic_time ();
if (!check_socket (socket, error))
return -1;
if (!check_timeout (socket, error))
return -1;
if (g_cancellable_set_error_if_cancelled (cancellable, error))
return -1;
if (num_messages == 0)
return 0;
#if !defined (G_OS_WIN32) && defined (HAVE_RECVMMSG)
{
struct mmsghdr *msgvec;
guint i, num_received;
/* Clamp the number of vectors if more given than we can write in one go.
* The caller has to handle short writes anyway.
*/
if (num_messages > G_IOV_MAX)
num_messages = G_IOV_MAX;
msgvec = g_newa (struct mmsghdr, num_messages);
for (i = 0; i < num_messages; ++i)
{
GInputMessage *msg = &messages[i];
struct msghdr *msg_hdr = &msgvec[i].msg_hdr;
input_message_to_msghdr (msg, msg_hdr);
msgvec[i].msg_len = 0;
}
/* We always set the close-on-exec flag so we don't leak file
* descriptors into child processes. Note that gunixfdmessage.c
* will later call fcntl (fd, FD_CLOEXEC), but that isn't atomic.
*/
#ifdef MSG_CMSG_CLOEXEC
flags |= MSG_CMSG_CLOEXEC;
#endif
for (num_received = 0; num_received < num_messages;)
{
gint ret;
/* We operate in non-blocking mode and handle the timeout ourselves. */
ret = recvmmsg (socket->priv->fd,
msgvec + num_received,
num_messages - num_received,
flags | G_SOCKET_DEFAULT_SEND_FLAGS, NULL);
#ifdef MSG_CMSG_CLOEXEC
if (ret < 0 && get_socket_errno () == EINVAL)
{
/* We must be running on an old kernel. Call without the flag. */
flags &= ~(MSG_CMSG_CLOEXEC);
ret = recvmmsg (socket->priv->fd,
msgvec + num_received,
num_messages - num_received,
flags | G_SOCKET_DEFAULT_SEND_FLAGS, NULL);
}
#endif
if (ret < 0)
{
int errsv = get_socket_errno ();
if (errsv == EINTR)
continue;
if (timeout_us != 0 &&
(errsv == EWOULDBLOCK ||
errsv == EAGAIN))
{
if (!block_on_timeout (socket, G_IO_IN, timeout_us, start_time,
cancellable, error))
{
if (num_received > 0)
{
g_clear_error (error);
break;
}
return -1;
}
continue;
}
/* If any messages were successfully received, do not error. */
if (num_received > 0)
break;
socket_set_error_lazy (error, errsv,
_("Error receiving message: %s"));
return -1;
}
else if (ret == 0)
{
/* EOS. */
break;
}
num_received += ret;
}
for (i = 0; i < num_received; ++i)
{
input_message_from_msghdr (&msgvec[i].msg_hdr, &messages[i], socket);
messages[i].bytes_received = msgvec[i].msg_len;
}
return num_received;
}
#else
{
guint i;
gint64 wait_timeout;
wait_timeout = timeout_us;
for (i = 0; i < num_messages; i++)
{
GInputMessage *msg = &messages[i];
gssize len;
GError *msg_error = NULL;
msg->flags = flags; /* in-out parameter */
len = g_socket_receive_message_with_timeout (socket,
msg->address,
msg->vectors,
msg->num_vectors,
msg->control_messages,
(gint *) msg->num_control_messages,
&msg->flags,
wait_timeout,
cancellable,
&msg_error);
/* check if we've timed out or how much time to wait at most */
if (timeout_us > 0)
{
gint64 elapsed = g_get_monotonic_time () - start_time;
wait_timeout = MAX (timeout_us - elapsed, 1);
}
if (len >= 0)
msg->bytes_received = len;
if (i != 0 &&
(g_error_matches (msg_error, G_IO_ERROR, G_IO_ERROR_WOULD_BLOCK) ||
g_error_matches (msg_error, G_IO_ERROR, G_IO_ERROR_TIMED_OUT)))
{
g_clear_error (&msg_error);
break;
}
if (msg_error != NULL)
{
g_propagate_error (error, msg_error);
return -1;
}
if (len == 0)
break;
}
return i;
}
#endif
}
/**
* g_socket_receive_message:
* @socket: a #GSocket
* @address: (out) (optional): a pointer to a #GSocketAddress
* pointer, or %NULL
* @vectors: (array length=num_vectors): an array of #GInputVector structs
* @num_vectors: the number of elements in @vectors, or -1
* @messages: (array length=num_messages) (out) (optional) (nullable): a pointer
* which may be filled with an array of #GSocketControlMessages, or %NULL
* @num_messages: (out): a pointer which will be filled with the number of
* elements in @messages, or %NULL
* @flags: (inout): a pointer to an int containing #GSocketMsgFlags flags,
* which may additionally contain
* [other platform specific flags](http://man7.org/linux/man-pages/man2/recv.2.html)
* @cancellable: a %GCancellable or %NULL
* @error: a #GError pointer, or %NULL
*
* Receive data from a socket. For receiving multiple messages, see
* g_socket_receive_messages(); for easier use, see
* g_socket_receive() and g_socket_receive_from().
*
* If @address is non-%NULL then @address will be set equal to the
* source address of the received packet.
* @address is owned by the caller.
*
* @vector must point to an array of #GInputVector structs and
* @num_vectors must be the length of this array. These structs
* describe the buffers that received data will be scattered into.
* If @num_vectors is -1, then @vectors is assumed to be terminated
* by a #GInputVector with a %NULL buffer pointer.
*
* As a special case, if @num_vectors is 0 (in which case, @vectors
* may of course be %NULL), then a single byte is received and
* discarded. This is to facilitate the common practice of sending a
* single '\0' byte for the purposes of transferring ancillary data.
*
* @messages, if non-%NULL, will be set to point to a newly-allocated
* array of #GSocketControlMessage instances or %NULL if no such
* messages was received. These correspond to the control messages
* received from the kernel, one #GSocketControlMessage per message
* from the kernel. This array is %NULL-terminated and must be freed
* by the caller using g_free() after calling g_object_unref() on each
* element. If @messages is %NULL, any control messages received will
* be discarded.
*
* @num_messages, if non-%NULL, will be set to the number of control
* messages received.
*
* If both @messages and @num_messages are non-%NULL, then
* @num_messages gives the number of #GSocketControlMessage instances
* in @messages (ie: not including the %NULL terminator).
*
* @flags is an in/out parameter. The commonly available arguments
* for this are available in the #GSocketMsgFlags enum, but the
* values there are the same as the system values, and the flags
* are passed in as-is, so you can pass in system-specific flags too
* (and g_socket_receive_message() may pass system-specific flags out).
* Flags passed in to the parameter affect the receive operation; flags returned
* out of it are relevant to the specific returned message.
*
* As with g_socket_receive(), data may be discarded if @socket is
* %G_SOCKET_TYPE_DATAGRAM or %G_SOCKET_TYPE_SEQPACKET and you do not
* provide enough buffer space to read a complete message. You can pass
* %G_SOCKET_MSG_PEEK in @flags to peek at the current message without
* removing it from the receive queue, but there is no portable way to find
* out the length of the message other than by reading it into a
* sufficiently-large buffer.
*
* If the socket is in blocking mode the call will block until there
* is some data to receive, the connection is closed, or there is an
* error. If there is no data available and the socket is in
* non-blocking mode, a %G_IO_ERROR_WOULD_BLOCK error will be
* returned. To be notified when data is available, wait for the
* %G_IO_IN condition.
*
* On error -1 is returned and @error is set accordingly.
*
* Returns: Number of bytes read, or 0 if the connection was closed by
* the peer, or -1 on error
*
* Since: 2.22
*/
gssize
g_socket_receive_message (GSocket *socket,
GSocketAddress **address,
GInputVector *vectors,
gint num_vectors,
GSocketControlMessage ***messages,
gint *num_messages,
gint *flags,
GCancellable *cancellable,
GError **error)
{
return g_socket_receive_message_with_timeout (socket, address, vectors,
num_vectors, messages,
num_messages, flags,
socket->priv->blocking ? -1 : 0,
cancellable, error);
}
/**
* g_socket_get_credentials:
* @socket: a #GSocket.
* @error: #GError for error reporting, or %NULL to ignore.
*
* Returns the credentials of the foreign process connected to this
* socket, if any (e.g. it is only supported for %G_SOCKET_FAMILY_UNIX
* sockets).
*
* If this operation isn't supported on the OS, the method fails with
* the %G_IO_ERROR_NOT_SUPPORTED error. On Linux this is implemented
* by reading the %SO_PEERCRED option on the underlying socket.
*
* This method can be expected to be available on the following platforms:
*
* - Linux since GLib 2.26
* - OpenBSD since GLib 2.30
* - Solaris, Illumos and OpenSolaris since GLib 2.40
* - NetBSD since GLib 2.42
* - macOS, tvOS, iOS since GLib 2.66
*
* Other ways to obtain credentials from a foreign peer includes the
* #GUnixCredentialsMessage type and
* g_unix_connection_send_credentials() /
* g_unix_connection_receive_credentials() functions.
*
* Returns: (transfer full): %NULL if @error is set, otherwise a #GCredentials object
* that must be freed with g_object_unref().
*
* Since: 2.26
*/
GCredentials *
g_socket_get_credentials (GSocket *socket,
GError **error)
{
GCredentials *ret;
g_return_val_if_fail (G_IS_SOCKET (socket), NULL);
g_return_val_if_fail (error == NULL || *error == NULL, NULL);
if (!check_socket (socket, error))
return NULL;
ret = NULL;
#if G_CREDENTIALS_SOCKET_GET_CREDENTIALS_SUPPORTED
#ifdef SO_PEERCRED
{
guint8 native_creds_buf[G_CREDENTIALS_NATIVE_SIZE];
socklen_t optlen = sizeof (native_creds_buf);
if (getsockopt (socket->priv->fd,
SOL_SOCKET,
SO_PEERCRED,
native_creds_buf,
&optlen) == 0)
{
ret = g_credentials_new ();
g_credentials_set_native (ret,
G_CREDENTIALS_NATIVE_TYPE,
native_creds_buf);
}
}
#elif G_CREDENTIALS_USE_APPLE_XUCRED
{
struct xucred cred;
socklen_t optlen = sizeof (cred);
if (getsockopt (socket->priv->fd,
SOL_LOCAL,
LOCAL_PEERCRED,
&cred,
&optlen) == 0
&& optlen != 0)
{
if (cred.cr_version == XUCRED_VERSION)
{
pid_t pid;
socklen_t optlen = sizeof (pid);
ret = g_credentials_new ();
g_credentials_set_native (ret,
G_CREDENTIALS_NATIVE_TYPE,
&cred);
#ifdef LOCAL_PEERPID
if (getsockopt (socket->priv->fd,
SOL_LOCAL,
LOCAL_PEERPID,
&pid,
&optlen) == 0)
_g_credentials_set_local_peerid (ret, pid);
#endif
}
else
{
g_set_error (error,
G_IO_ERROR,
G_IO_ERROR_NOT_SUPPORTED,
/* No point in translating this! */
"struct xucred cr_version %u != %u",
cred.cr_version, XUCRED_VERSION);
/* Reuse a translatable string we already have */
g_prefix_error (error,
_("Unable to read socket credentials: %s"),
"");
return NULL;
}
}
else if (optlen == 0 || errno == EINVAL)
{
g_set_error (error,
G_IO_ERROR,
G_IO_ERROR_NOT_SUPPORTED,
_("Unable to read socket credentials: %s"),
"unsupported socket type");
return NULL;
}
}
#elif G_CREDENTIALS_USE_NETBSD_UNPCBID
{
struct unpcbid cred;
socklen_t optlen = sizeof (cred);
if (getsockopt (socket->priv->fd,
0,
LOCAL_PEEREID,
&cred,
&optlen) == 0)
{
ret = g_credentials_new ();
g_credentials_set_native (ret,
G_CREDENTIALS_NATIVE_TYPE,
&cred);
}
}
#elif G_CREDENTIALS_USE_SOLARIS_UCRED
{
ucred_t *ucred = NULL;
if (getpeerucred (socket->priv->fd, &ucred) == 0)
{
ret = g_credentials_new ();
g_credentials_set_native (ret,
G_CREDENTIALS_TYPE_SOLARIS_UCRED,
ucred);
ucred_free (ucred);
}
}
#elif G_CREDENTIALS_USE_WIN32_PID
{
DWORD peerid, drc;
if (WSAIoctl (socket->priv->fd, SIO_AF_UNIX_GETPEERPID,
NULL, 0U,
&peerid, sizeof(peerid),
/* Windows bug: always 0 https://github.com/microsoft/WSL/issues/4676 */
&drc,
NULL, NULL) == 0)
{
ret = g_credentials_new ();
g_credentials_set_native (ret,
G_CREDENTIALS_TYPE_WIN32_PID,
&peerid);
}
}
#else
#error "G_CREDENTIALS_SOCKET_GET_CREDENTIALS_SUPPORTED is set but this is no code for this platform"
#endif
if (!ret)
{
int errsv = get_socket_errno ();
g_set_error (error,
G_IO_ERROR,
socket_io_error_from_errno (errsv),
_("Unable to read socket credentials: %s"),
socket_strerror (errsv));
}
#else
g_set_error_literal (error,
G_IO_ERROR,
G_IO_ERROR_NOT_SUPPORTED,
_("g_socket_get_credentials not implemented for this OS"));
#endif
return ret;
}
/**
* g_socket_get_option:
* @socket: a #GSocket
* @level: the "API level" of the option (eg, `SOL_SOCKET`)
* @optname: the "name" of the option (eg, `SO_BROADCAST`)
* @value: (out): return location for the option value
* @error: #GError for error reporting, or %NULL to ignore.
*
* Gets the value of an integer-valued option on @socket, as with
* getsockopt(). (If you need to fetch a non-integer-valued option,
* you will need to call getsockopt() directly.)
*
* The [][gio-gnetworking.h]
* header pulls in system headers that will define most of the
* standard/portable socket options. For unusual socket protocols or
* platform-dependent options, you may need to include additional
* headers.
*
* Note that even for socket options that are a single byte in size,
* @value is still a pointer to a #gint variable, not a #guchar;
* g_socket_get_option() will handle the conversion internally.
*
* Returns: success or failure. On failure, @error will be set, and
* the system error value (`errno` or WSAGetLastError()) will still
* be set to the result of the getsockopt() call.
*
* Since: 2.36
*/
gboolean
g_socket_get_option (GSocket *socket,
gint level,
gint optname,
gint *value,
GError **error)
{
socklen_t size;
g_return_val_if_fail (G_IS_SOCKET (socket), FALSE);
/* g_socket_get_option() is called during socket init, so skip the init checks
* in check_socket() */
if (socket->priv->inited && !check_socket (socket, error))
return FALSE;
*value = 0;
size = sizeof (gint);
if (getsockopt (socket->priv->fd, level, optname, value, &size) != 0)
{
int errsv = get_socket_errno ();
g_set_error_literal (error,
G_IO_ERROR,
socket_io_error_from_errno (errsv),
socket_strerror (errsv));
#ifndef G_OS_WIN32
/* Reset errno in case the caller wants to look at it */
errno = errsv;
#endif
return FALSE;
}
#if G_BYTE_ORDER == G_BIG_ENDIAN
/* If the returned value is smaller than an int then we need to
* slide it over into the low-order bytes of *value.
*/
if (size != sizeof (gint))
*value = *value >> (8 * (sizeof (gint) - size));
#endif
return TRUE;
}
/**
* g_socket_set_option:
* @socket: a #GSocket
* @level: the "API level" of the option (eg, `SOL_SOCKET`)
* @optname: the "name" of the option (eg, `SO_BROADCAST`)
* @value: the value to set the option to
* @error: #GError for error reporting, or %NULL to ignore.
*
* Sets the value of an integer-valued option on @socket, as with
* setsockopt(). (If you need to set a non-integer-valued option,
* you will need to call setsockopt() directly.)
*
* The [][gio-gnetworking.h]
* header pulls in system headers that will define most of the
* standard/portable socket options. For unusual socket protocols or
* platform-dependent options, you may need to include additional
* headers.
*
* Returns: success or failure. On failure, @error will be set, and
* the system error value (`errno` or WSAGetLastError()) will still
* be set to the result of the setsockopt() call.
*
* Since: 2.36
*/
gboolean
g_socket_set_option (GSocket *socket,
gint level,
gint optname,
gint value,
GError **error)
{
gint errsv;
g_return_val_if_fail (G_IS_SOCKET (socket), FALSE);
/* g_socket_set_option() is called during socket init, so skip the init checks
* in check_socket() */
if (socket->priv->inited && !check_socket (socket, error))
return FALSE;
if (setsockopt (socket->priv->fd, level, optname, &value, sizeof (gint)) == 0)
return TRUE;
#if !defined (__linux__) && !defined (G_OS_WIN32)
/* Linux and Windows let you set a single-byte value from an int,
* but most other platforms don't.
*/
if (errno == EINVAL && value >= SCHAR_MIN && value <= CHAR_MAX)
{
#if G_BYTE_ORDER == G_BIG_ENDIAN
value = value << (8 * (sizeof (gint) - 1));
#endif
if (setsockopt (socket->priv->fd, level, optname, &value, 1) == 0)
return TRUE;
}
#endif
errsv = get_socket_errno ();
g_set_error_literal (error,
G_IO_ERROR,
socket_io_error_from_errno (errsv),
socket_strerror (errsv));
#ifndef G_OS_WIN32
errno = errsv;
#endif
return FALSE;
}