/* GLIB - Library of useful routines for C programming * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ /* * Modified by the GLib Team and others 1997-2000. See the AUTHORS * file for a list of people on the GLib Team. See the ChangeLog * files for a list of changes. These files are distributed with * GLib at ftp://ftp.gtk.org/pub/gtk/. */ /* * MT safe */ #include "config.h" #include "gmem.h" #include #include #include #include "gslice.h" #include "gbacktrace.h" #include "gtestutils.h" #include "gthread.h" #include "glib_trace.h" #define MEM_PROFILE_TABLE_SIZE 4096 /* notes on macros: * having G_DISABLE_CHECKS defined disables use of glib_mem_profiler_table and * g_mem_profile(). * If g_mem_gc_friendly is TRUE, freed memory should be 0-wiped. */ /* --- variables --- */ static GMemVTable glib_mem_vtable = { malloc, realloc, free, calloc, malloc, realloc, }; /** * SECTION:memory * @Short_Description: general memory-handling * @Title: Memory Allocation * * These functions provide support for allocating and freeing memory. * * * If any call to allocate memory fails, the application is terminated. * This also means that there is no need to check if the call succeeded. * * * * It's important to match g_malloc() with g_free(), plain malloc() with free(), * and (if you're using C++) new with delete and new[] with delete[]. Otherwise * bad things can happen, since these allocators may use different memory * pools (and new/delete call constructors and destructors). See also * g_mem_set_vtable(). * */ /* --- functions --- */ /** * g_malloc: * @n_bytes: the number of bytes to allocate * * Allocates @n_bytes bytes of memory. * If @n_bytes is 0 it returns %NULL. * * Returns: a pointer to the allocated memory */ gpointer g_malloc (gsize n_bytes) { if (G_LIKELY (n_bytes)) { gpointer mem; mem = glib_mem_vtable.malloc (n_bytes); TRACE (GLIB_MEM_ALLOC((void*) mem, (unsigned int) n_bytes, 0, 0)); if (mem) return mem; g_error ("%s: failed to allocate %"G_GSIZE_FORMAT" bytes", G_STRLOC, n_bytes); } TRACE(GLIB_MEM_ALLOC((void*) NULL, (int) n_bytes, 0, 0)); return NULL; } /** * g_malloc0: * @n_bytes: the number of bytes to allocate * * Allocates @n_bytes bytes of memory, initialized to 0's. * If @n_bytes is 0 it returns %NULL. * * Returns: a pointer to the allocated memory */ gpointer g_malloc0 (gsize n_bytes) { if (G_LIKELY (n_bytes)) { gpointer mem; mem = glib_mem_vtable.calloc (1, n_bytes); TRACE (GLIB_MEM_ALLOC((void*) mem, (unsigned int) n_bytes, 1, 0)); if (mem) return mem; g_error ("%s: failed to allocate %"G_GSIZE_FORMAT" bytes", G_STRLOC, n_bytes); } TRACE(GLIB_MEM_ALLOC((void*) NULL, (int) n_bytes, 1, 0)); return NULL; } /** * g_realloc: * @mem: the memory to reallocate * @n_bytes: new size of the memory in bytes * * Reallocates the memory pointed to by @mem, so that it now has space for * @n_bytes bytes of memory. It returns the new address of the memory, which may * have been moved. @mem may be %NULL, in which case it's considered to * have zero-length. @n_bytes may be 0, in which case %NULL will be returned * and @mem will be freed unless it is %NULL. * * Returns: the new address of the allocated memory */ gpointer g_realloc (gpointer mem, gsize n_bytes) { gpointer newmem; if (G_LIKELY (n_bytes)) { newmem = glib_mem_vtable.realloc (mem, n_bytes); TRACE (GLIB_MEM_REALLOC((void*) newmem, (void*)mem, (unsigned int) n_bytes, 0)); if (newmem) return newmem; g_error ("%s: failed to allocate %"G_GSIZE_FORMAT" bytes", G_STRLOC, n_bytes); } if (mem) glib_mem_vtable.free (mem); TRACE (GLIB_MEM_REALLOC((void*) NULL, (void*)mem, 0, 0)); return NULL; } /** * g_free: * @mem: the memory to free * * Frees the memory pointed to by @mem. * If @mem is %NULL it simply returns. */ void g_free (gpointer mem) { if (G_LIKELY (mem)) glib_mem_vtable.free (mem); TRACE(GLIB_MEM_FREE((void*) mem)); } /** * g_clear_pointer: (skip) * @pp: a pointer to a variable, struct member etc. holding a pointer * @destroy: a function to which a gpointer can be passed, to destroy *@pp * * Clears a reference to a variable. * * @pp must not be %NULL. * * If the reference is %NULL then this function does nothing. * Otherwise, the variable is destroyed using @destroy and the * pointer is set to %NULL. * * This function is threadsafe and modifies the pointer atomically, * using memory barriers where needed. * * A macro is also included that allows this function to be used without * pointer casts. * * Since: 2.34 **/ #undef g_clear_pointer void g_clear_pointer (gpointer *pp, GDestroyNotify destroy) { gpointer _p; /* This is a little frustrating. * Would be nice to have an atomic exchange (with no compare). */ do _p = g_atomic_pointer_get (pp); while G_UNLIKELY (!g_atomic_pointer_compare_and_exchange (pp, _p, NULL)); if (_p) destroy (_p); } /** * g_try_malloc: * @n_bytes: number of bytes to allocate. * * Attempts to allocate @n_bytes, and returns %NULL on failure. * Contrast with g_malloc(), which aborts the program on failure. * * Returns: the allocated memory, or %NULL. */ gpointer g_try_malloc (gsize n_bytes) { gpointer mem; if (G_LIKELY (n_bytes)) mem = glib_mem_vtable.try_malloc (n_bytes); else mem = NULL; TRACE (GLIB_MEM_ALLOC((void*) mem, (unsigned int) n_bytes, 0, 1)); return mem; } /** * g_try_malloc0: * @n_bytes: number of bytes to allocate * * Attempts to allocate @n_bytes, initialized to 0's, and returns %NULL on * failure. Contrast with g_malloc0(), which aborts the program on failure. * * Since: 2.8 * Returns: the allocated memory, or %NULL */ gpointer g_try_malloc0 (gsize n_bytes) { gpointer mem; if (G_LIKELY (n_bytes)) mem = glib_mem_vtable.try_malloc (n_bytes); else mem = NULL; if (mem) memset (mem, 0, n_bytes); return mem; } /** * g_try_realloc: * @mem: (allow-none): previously-allocated memory, or %NULL. * @n_bytes: number of bytes to allocate. * * Attempts to realloc @mem to a new size, @n_bytes, and returns %NULL * on failure. Contrast with g_realloc(), which aborts the program * on failure. If @mem is %NULL, behaves the same as g_try_malloc(). * * Returns: the allocated memory, or %NULL. */ gpointer g_try_realloc (gpointer mem, gsize n_bytes) { gpointer newmem; if (G_LIKELY (n_bytes)) newmem = glib_mem_vtable.try_realloc (mem, n_bytes); else { newmem = NULL; if (mem) glib_mem_vtable.free (mem); } TRACE (GLIB_MEM_REALLOC((void*) newmem, (void*)mem, (unsigned int) n_bytes, 1)); return newmem; } #define SIZE_OVERFLOWS(a,b) (G_UNLIKELY ((b) > 0 && (a) > G_MAXSIZE / (b))) /** * g_malloc_n: * @n_blocks: the number of blocks to allocate * @n_block_bytes: the size of each block in bytes * * This function is similar to g_malloc(), allocating (@n_blocks * @n_block_bytes) bytes, * but care is taken to detect possible overflow during multiplication. * * Since: 2.24 * Returns: a pointer to the allocated memory */ gpointer g_malloc_n (gsize n_blocks, gsize n_block_bytes) { if (SIZE_OVERFLOWS (n_blocks, n_block_bytes)) { g_error ("%s: overflow allocating %"G_GSIZE_FORMAT"*%"G_GSIZE_FORMAT" bytes", G_STRLOC, n_blocks, n_block_bytes); } return g_malloc (n_blocks * n_block_bytes); } /** * g_malloc0_n: * @n_blocks: the number of blocks to allocate * @n_block_bytes: the size of each block in bytes * * This function is similar to g_malloc0(), allocating (@n_blocks * @n_block_bytes) bytes, * but care is taken to detect possible overflow during multiplication. * * Since: 2.24 * Returns: a pointer to the allocated memory */ gpointer g_malloc0_n (gsize n_blocks, gsize n_block_bytes) { if (SIZE_OVERFLOWS (n_blocks, n_block_bytes)) { g_error ("%s: overflow allocating %"G_GSIZE_FORMAT"*%"G_GSIZE_FORMAT" bytes", G_STRLOC, n_blocks, n_block_bytes); } return g_malloc0 (n_blocks * n_block_bytes); } /** * g_realloc_n: * @mem: the memory to reallocate * @n_blocks: the number of blocks to allocate * @n_block_bytes: the size of each block in bytes * * This function is similar to g_realloc(), allocating (@n_blocks * @n_block_bytes) bytes, * but care is taken to detect possible overflow during multiplication. * * Since: 2.24 * Returns: the new address of the allocated memory */ gpointer g_realloc_n (gpointer mem, gsize n_blocks, gsize n_block_bytes) { if (SIZE_OVERFLOWS (n_blocks, n_block_bytes)) { g_error ("%s: overflow allocating %"G_GSIZE_FORMAT"*%"G_GSIZE_FORMAT" bytes", G_STRLOC, n_blocks, n_block_bytes); } return g_realloc (mem, n_blocks * n_block_bytes); } /** * g_try_malloc_n: * @n_blocks: the number of blocks to allocate * @n_block_bytes: the size of each block in bytes * * This function is similar to g_try_malloc(), allocating (@n_blocks * @n_block_bytes) bytes, * but care is taken to detect possible overflow during multiplication. * * Since: 2.24 * Returns: the allocated memory, or %NULL. */ gpointer g_try_malloc_n (gsize n_blocks, gsize n_block_bytes) { if (SIZE_OVERFLOWS (n_blocks, n_block_bytes)) return NULL; return g_try_malloc (n_blocks * n_block_bytes); } /** * g_try_malloc0_n: * @n_blocks: the number of blocks to allocate * @n_block_bytes: the size of each block in bytes * * This function is similar to g_try_malloc0(), allocating (@n_blocks * @n_block_bytes) bytes, * but care is taken to detect possible overflow during multiplication. * * Since: 2.24 * Returns: the allocated memory, or %NULL */ gpointer g_try_malloc0_n (gsize n_blocks, gsize n_block_bytes) { if (SIZE_OVERFLOWS (n_blocks, n_block_bytes)) return NULL; return g_try_malloc0 (n_blocks * n_block_bytes); } /** * g_try_realloc_n: * @mem: (allow-none): previously-allocated memory, or %NULL. * @n_blocks: the number of blocks to allocate * @n_block_bytes: the size of each block in bytes * * This function is similar to g_try_realloc(), allocating (@n_blocks * @n_block_bytes) bytes, * but care is taken to detect possible overflow during multiplication. * * Since: 2.24 * Returns: the allocated memory, or %NULL. */ gpointer g_try_realloc_n (gpointer mem, gsize n_blocks, gsize n_block_bytes) { if (SIZE_OVERFLOWS (n_blocks, n_block_bytes)) return NULL; return g_try_realloc (mem, n_blocks * n_block_bytes); } static gpointer fallback_calloc (gsize n_blocks, gsize n_block_bytes) { gsize l = n_blocks * n_block_bytes; gpointer mem = glib_mem_vtable.malloc (l); if (mem) memset (mem, 0, l); return mem; } static gboolean vtable_set = FALSE; /** * g_mem_is_system_malloc: * * Checks whether the allocator used by g_malloc() is the system's * malloc implementation. If it returns %TRUE memory allocated with * malloc() can be used interchangeable with memory allocated using g_malloc(). * This function is useful for avoiding an extra copy of allocated memory returned * by a non-GLib-based API. * * A different allocator can be set using g_mem_set_vtable(). * * Return value: if %TRUE, malloc() and g_malloc() can be mixed. **/ gboolean g_mem_is_system_malloc (void) { return !vtable_set; } /** * g_mem_set_vtable: * @vtable: table of memory allocation routines. * * Sets the #GMemVTable to use for memory allocation. You can use this to provide * custom memory allocation routines. This function must be called * before using any other GLib functions. The @vtable only needs to * provide malloc(), realloc(), and free() functions; GLib can provide default * implementations of the others. The malloc() and realloc() implementations * should return %NULL on failure, GLib will handle error-checking for you. * @vtable is copied, so need not persist after this function has been called. */ void g_mem_set_vtable (GMemVTable *vtable) { if (!vtable_set) { if (vtable->malloc && vtable->realloc && vtable->free) { glib_mem_vtable.malloc = vtable->malloc; glib_mem_vtable.realloc = vtable->realloc; glib_mem_vtable.free = vtable->free; glib_mem_vtable.calloc = vtable->calloc ? vtable->calloc : fallback_calloc; glib_mem_vtable.try_malloc = vtable->try_malloc ? vtable->try_malloc : glib_mem_vtable.malloc; glib_mem_vtable.try_realloc = vtable->try_realloc ? vtable->try_realloc : glib_mem_vtable.realloc; vtable_set = TRUE; } else g_warning (G_STRLOC ": memory allocation vtable lacks one of malloc(), realloc() or free()"); } else g_warning (G_STRLOC ": memory allocation vtable can only be set once at startup"); } /* --- memory profiling and checking --- */ #ifdef G_DISABLE_CHECKS /** * glib_mem_profiler_table: * * A #GMemVTable containing profiling variants of the memory * allocation functions. Use them together with g_mem_profile() * in order to get information about the memory allocation pattern * of your program. */ GMemVTable *glib_mem_profiler_table = &glib_mem_vtable; void g_mem_profile (void) { } #else /* !G_DISABLE_CHECKS */ typedef enum { PROFILER_FREE = 0, PROFILER_ALLOC = 1, PROFILER_RELOC = 2, PROFILER_ZINIT = 4 } ProfilerJob; static guint *profile_data = NULL; static gsize profile_allocs = 0; static gsize profile_zinit = 0; static gsize profile_frees = 0; static GMutex gmem_profile_mutex; #define PROFILE_TABLE(f1,f2,f3) ( ( ((f3) << 2) | ((f2) << 1) | (f1) ) * (MEM_PROFILE_TABLE_SIZE + 1)) static void profiler_log (ProfilerJob job, gsize n_bytes, gboolean success) { g_mutex_lock (&gmem_profile_mutex); if (!profile_data) { profile_data = calloc ((MEM_PROFILE_TABLE_SIZE + 1) * 8, sizeof (profile_data[0])); if (!profile_data) /* memory system kiddin' me, eh? */ { g_mutex_unlock (&gmem_profile_mutex); return; } } if (n_bytes < MEM_PROFILE_TABLE_SIZE) profile_data[n_bytes + PROFILE_TABLE ((job & PROFILER_ALLOC) != 0, (job & PROFILER_RELOC) != 0, success != 0)] += 1; else profile_data[MEM_PROFILE_TABLE_SIZE + PROFILE_TABLE ((job & PROFILER_ALLOC) != 0, (job & PROFILER_RELOC) != 0, success != 0)] += 1; if (success) { if (job & PROFILER_ALLOC) { profile_allocs += n_bytes; if (job & PROFILER_ZINIT) profile_zinit += n_bytes; } else profile_frees += n_bytes; } g_mutex_unlock (&gmem_profile_mutex); } static void profile_print_locked (guint *local_data, gboolean success) { gboolean need_header = TRUE; guint i; for (i = 0; i <= MEM_PROFILE_TABLE_SIZE; i++) { glong t_malloc = local_data[i + PROFILE_TABLE (1, 0, success)]; glong t_realloc = local_data[i + PROFILE_TABLE (1, 1, success)]; glong t_free = local_data[i + PROFILE_TABLE (0, 0, success)]; glong t_refree = local_data[i + PROFILE_TABLE (0, 1, success)]; if (!t_malloc && !t_realloc && !t_free && !t_refree) continue; else if (need_header) { need_header = FALSE; g_print (" blocks of | allocated | freed | allocated | freed | n_bytes \n"); g_print (" n_bytes | n_times by | n_times by | n_times by | n_times by | remaining \n"); g_print (" | malloc() | free() | realloc() | realloc() | \n"); g_print ("===========|============|============|============|============|===========\n"); } if (i < MEM_PROFILE_TABLE_SIZE) g_print ("%10u | %10ld | %10ld | %10ld | %10ld |%+11ld\n", i, t_malloc, t_free, t_realloc, t_refree, (t_malloc - t_free + t_realloc - t_refree) * i); else if (i >= MEM_PROFILE_TABLE_SIZE) g_print (" >%6u | %10ld | %10ld | %10ld | %10ld | ***\n", i, t_malloc, t_free, t_realloc, t_refree); } if (need_header) g_print (" --- none ---\n"); } /** * g_mem_profile: * * Outputs a summary of memory usage. * * It outputs the frequency of allocations of different sizes, * the total number of bytes which have been allocated, * the total number of bytes which have been freed, * and the difference between the previous two values, i.e. the number of bytes * still in use. * * Note that this function will not output anything unless you have * previously installed the #glib_mem_profiler_table with g_mem_set_vtable(). */ void g_mem_profile (void) { guint local_data[(MEM_PROFILE_TABLE_SIZE + 1) * 8]; gsize local_allocs; gsize local_zinit; gsize local_frees; g_mutex_lock (&gmem_profile_mutex); local_allocs = profile_allocs; local_zinit = profile_zinit; local_frees = profile_frees; if (!profile_data) { g_mutex_unlock (&gmem_profile_mutex); return; } memcpy (local_data, profile_data, (MEM_PROFILE_TABLE_SIZE + 1) * 8 * sizeof (profile_data[0])); g_mutex_unlock (&gmem_profile_mutex); g_print ("GLib Memory statistics (successful operations):\n"); profile_print_locked (local_data, TRUE); g_print ("GLib Memory statistics (failing operations):\n"); profile_print_locked (local_data, FALSE); g_print ("Total bytes: allocated=%"G_GSIZE_FORMAT", " "zero-initialized=%"G_GSIZE_FORMAT" (%.2f%%), " "freed=%"G_GSIZE_FORMAT" (%.2f%%), " "remaining=%"G_GSIZE_FORMAT"\n", local_allocs, local_zinit, ((gdouble) local_zinit) / local_allocs * 100.0, local_frees, ((gdouble) local_frees) / local_allocs * 100.0, local_allocs - local_frees); } static gpointer profiler_try_malloc (gsize n_bytes) { gsize *p; p = malloc (sizeof (gsize) * 2 + n_bytes); if (p) { p[0] = 0; /* free count */ p[1] = n_bytes; /* length */ profiler_log (PROFILER_ALLOC, n_bytes, TRUE); p += 2; } else profiler_log (PROFILER_ALLOC, n_bytes, FALSE); return p; } static gpointer profiler_malloc (gsize n_bytes) { gpointer mem = profiler_try_malloc (n_bytes); if (!mem) g_mem_profile (); return mem; } static gpointer profiler_calloc (gsize n_blocks, gsize n_block_bytes) { gsize l = n_blocks * n_block_bytes; gsize *p; p = calloc (1, sizeof (gsize) * 2 + l); if (p) { p[0] = 0; /* free count */ p[1] = l; /* length */ profiler_log (PROFILER_ALLOC | PROFILER_ZINIT, l, TRUE); p += 2; } else { profiler_log (PROFILER_ALLOC | PROFILER_ZINIT, l, FALSE); g_mem_profile (); } return p; } static void profiler_free (gpointer mem) { gsize *p = mem; p -= 2; if (p[0]) /* free count */ { g_warning ("free(%p): memory has been freed %"G_GSIZE_FORMAT" times already", p + 2, p[0]); profiler_log (PROFILER_FREE, p[1], /* length */ FALSE); } else { profiler_log (PROFILER_FREE, p[1], /* length */ TRUE); memset (p + 2, 0xaa, p[1]); /* for all those that miss free (p); in this place, yes, * we do leak all memory when profiling, and that is intentional * to catch double frees. patch submissions are futile. */ } p[0] += 1; } static gpointer profiler_try_realloc (gpointer mem, gsize n_bytes) { gsize *p = mem; p -= 2; if (mem && p[0]) /* free count */ { g_warning ("realloc(%p, %"G_GSIZE_FORMAT"): " "memory has been freed %"G_GSIZE_FORMAT" times already", p + 2, (gsize) n_bytes, p[0]); profiler_log (PROFILER_ALLOC | PROFILER_RELOC, n_bytes, FALSE); return NULL; } else { p = realloc (mem ? p : NULL, sizeof (gsize) * 2 + n_bytes); if (p) { if (mem) profiler_log (PROFILER_FREE | PROFILER_RELOC, p[1], TRUE); p[0] = 0; p[1] = n_bytes; profiler_log (PROFILER_ALLOC | PROFILER_RELOC, p[1], TRUE); p += 2; } else profiler_log (PROFILER_ALLOC | PROFILER_RELOC, n_bytes, FALSE); return p; } } static gpointer profiler_realloc (gpointer mem, gsize n_bytes) { mem = profiler_try_realloc (mem, n_bytes); if (!mem) g_mem_profile (); return mem; } static GMemVTable profiler_table = { profiler_malloc, profiler_realloc, profiler_free, profiler_calloc, profiler_try_malloc, profiler_try_realloc, }; GMemVTable *glib_mem_profiler_table = &profiler_table; #endif /* !G_DISABLE_CHECKS */