/* GIO - GLib Input, Output and Streaming Library * * Copyright (C) 2008 Christian Kellner, Samuel Cormier-Iijima * Copyright © 2009 Codethink Limited * Copyright © 2009 Red Hat, Inc * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General * Public License along with this library; if not, see . * * Authors: Christian Kellner * Samuel Cormier-Iijima * Ryan Lortie * Alexander Larsson */ #include "config.h" #include "gsocket.h" #ifdef G_OS_UNIX #include "glib-unix.h" #endif #include #include #include #include #ifndef G_OS_WIN32 # include # include # include #endif #ifdef HAVE_SYS_FILIO_H # include #endif #ifdef G_OS_UNIX #include #endif #include "gcancellable.h" #include "gioenumtypes.h" #include "ginetaddress.h" #include "ginitable.h" #include "gioerror.h" #include "gioenums.h" #include "gioerror.h" #include "gnetworkingprivate.h" #include "gsocketaddress.h" #include "gsocketcontrolmessage.h" #include "gcredentials.h" #include "gcredentialsprivate.h" #include "glibintl.h" #ifdef G_OS_WIN32 /* For Windows XP runtime compatibility, but use the system's if_nametoindex() if available */ #include "gwin32networking.h" #endif /** * SECTION:gsocket * @short_description: Low-level socket object * @include: gio/gio.h * @see_also: #GInitable, [][gio-gnetworking.h] * * A #GSocket is a low-level networking primitive. It is a more or less * direct mapping of the BSD socket API in a portable GObject based API. * It supports both the UNIX socket implementations and winsock2 on Windows. * * #GSocket is the platform independent base upon which the higher level * network primitives are based. Applications are not typically meant to * use it directly, but rather through classes like #GSocketClient, * #GSocketService and #GSocketConnection. However there may be cases where * direct use of #GSocket is useful. * * #GSocket implements the #GInitable interface, so if it is manually constructed * by e.g. g_object_new() you must call g_initable_init() and check the * results before using the object. This is done automatically in * g_socket_new() and g_socket_new_from_fd(), so these functions can return * %NULL. * * Sockets operate in two general modes, blocking or non-blocking. When * in blocking mode all operations (which don’t take an explicit blocking * parameter) block until the requested operation * is finished or there is an error. In non-blocking mode all calls that * would block return immediately with a %G_IO_ERROR_WOULD_BLOCK error. * To know when a call would successfully run you can call g_socket_condition_check(), * or g_socket_condition_wait(). You can also use g_socket_create_source() and * attach it to a #GMainContext to get callbacks when I/O is possible. * Note that all sockets are always set to non blocking mode in the system, and * blocking mode is emulated in GSocket. * * When working in non-blocking mode applications should always be able to * handle getting a %G_IO_ERROR_WOULD_BLOCK error even when some other * function said that I/O was possible. This can easily happen in case * of a race condition in the application, but it can also happen for other * reasons. For instance, on Windows a socket is always seen as writable * until a write returns %G_IO_ERROR_WOULD_BLOCK. * * #GSockets can be either connection oriented or datagram based. * For connection oriented types you must first establish a connection by * either connecting to an address or accepting a connection from another * address. For connectionless socket types the target/source address is * specified or received in each I/O operation. * * All socket file descriptors are set to be close-on-exec. * * Note that creating a #GSocket causes the signal %SIGPIPE to be * ignored for the remainder of the program. If you are writing a * command-line utility that uses #GSocket, you may need to take into * account the fact that your program will not automatically be killed * if it tries to write to %stdout after it has been closed. * * Like most other APIs in GLib, #GSocket is not inherently thread safe. To use * a #GSocket concurrently from multiple threads, you must implement your own * locking. * * Since: 2.22 */ static void g_socket_initable_iface_init (GInitableIface *iface); static gboolean g_socket_initable_init (GInitable *initable, GCancellable *cancellable, GError **error); static gint g_socket_send_messages_with_blocking (GSocket *socket, GOutputMessage *messages, guint num_messages, gint flags, gboolean blocking, GCancellable *cancellable, GError **error); enum { PROP_0, PROP_FAMILY, PROP_TYPE, PROP_PROTOCOL, PROP_FD, PROP_BLOCKING, PROP_LISTEN_BACKLOG, PROP_KEEPALIVE, PROP_LOCAL_ADDRESS, PROP_REMOTE_ADDRESS, PROP_TIMEOUT, PROP_TTL, PROP_BROADCAST, PROP_MULTICAST_LOOPBACK, PROP_MULTICAST_TTL }; /* Size of the receiver cache for g_socket_receive_from() */ #define RECV_ADDR_CACHE_SIZE 8 struct _GSocketPrivate { GSocketFamily family; GSocketType type; GSocketProtocol protocol; gint fd; gint listen_backlog; guint timeout; GError *construct_error; GSocketAddress *remote_address; guint inited : 1; guint blocking : 1; guint keepalive : 1; guint closed : 1; guint connected : 1; guint listening : 1; guint timed_out : 1; guint connect_pending : 1; #ifdef G_OS_WIN32 WSAEVENT event; int current_events; int current_errors; int selected_events; GList *requested_conditions; /* list of requested GIOCondition * */ GMutex win32_source_lock; #endif struct { GSocketAddress *addr; struct sockaddr *native; gint native_len; guint64 last_used; } recv_addr_cache[RECV_ADDR_CACHE_SIZE]; }; G_DEFINE_TYPE_WITH_CODE (GSocket, g_socket, G_TYPE_OBJECT, G_ADD_PRIVATE (GSocket) g_networking_init (); G_IMPLEMENT_INTERFACE (G_TYPE_INITABLE, g_socket_initable_iface_init)); static int get_socket_errno (void) { #ifndef G_OS_WIN32 return errno; #else return WSAGetLastError (); #endif } static GIOErrorEnum socket_io_error_from_errno (int err) { #ifdef G_OS_WIN32 return g_io_error_from_win32_error (err); #else return g_io_error_from_errno (err); #endif } static const char * socket_strerror (int err) { #ifndef G_OS_WIN32 return g_strerror (err); #else const char *msg_ret; char *msg; msg = g_win32_error_message (err); msg_ret = g_intern_string (msg); g_free (msg); return msg_ret; #endif } /* Wrapper around g_set_error() to avoid doing excess work */ #define socket_set_error_lazy(err, errsv, fmt) \ G_STMT_START { \ GError **__err = (err); \ int __errsv = (errsv); \ \ if (__err) \ { \ int __code = socket_io_error_from_errno (__errsv); \ const char *__strerr = socket_strerror (__errsv); \ \ if (__code == G_IO_ERROR_WOULD_BLOCK) \ g_set_error_literal (__err, G_IO_ERROR, __code, __strerr); \ else \ g_set_error (__err, G_IO_ERROR, __code, fmt, __strerr); \ } \ } G_STMT_END #ifdef G_OS_WIN32 #define win32_unset_event_mask(_socket, _mask) _win32_unset_event_mask (_socket, _mask) static void _win32_unset_event_mask (GSocket *socket, int mask) { socket->priv->current_events &= ~mask; socket->priv->current_errors &= ~mask; } #else #define win32_unset_event_mask(_socket, _mask) #endif /* Windows has broken prototypes... */ #ifdef G_OS_WIN32 #define getsockopt(sockfd, level, optname, optval, optlen) \ getsockopt (sockfd, level, optname, (gpointer) optval, (int*) optlen) #define setsockopt(sockfd, level, optname, optval, optlen) \ setsockopt (sockfd, level, optname, (gpointer) optval, optlen) #define getsockname(sockfd, addr, addrlen) \ getsockname (sockfd, addr, (int *)addrlen) #define getpeername(sockfd, addr, addrlen) \ getpeername (sockfd, addr, (int *)addrlen) #define recv(sockfd, buf, len, flags) \ recv (sockfd, (gpointer)buf, len, flags) #endif static gboolean check_socket (GSocket *socket, GError **error) { if (!socket->priv->inited) { g_set_error_literal (error, G_IO_ERROR, G_IO_ERROR_NOT_INITIALIZED, _("Invalid socket, not initialized")); return FALSE; } if (socket->priv->construct_error) { g_set_error (error, G_IO_ERROR, G_IO_ERROR_NOT_INITIALIZED, _("Invalid socket, initialization failed due to: %s"), socket->priv->construct_error->message); return FALSE; } if (socket->priv->closed) { g_set_error_literal (error, G_IO_ERROR, G_IO_ERROR_CLOSED, _("Socket is already closed")); return FALSE; } return TRUE; } static gboolean check_timeout (GSocket *socket, GError **error) { if (socket->priv->timed_out) { socket->priv->timed_out = FALSE; g_set_error_literal (error, G_IO_ERROR, G_IO_ERROR_TIMED_OUT, _("Socket I/O timed out")); return FALSE; } return TRUE; } static void g_socket_details_from_fd (GSocket *socket) { struct sockaddr_storage address; gint fd; guint addrlen; int value, family; int errsv; fd = socket->priv->fd; if (!g_socket_get_option (socket, SOL_SOCKET, SO_TYPE, &value, NULL)) { errsv = get_socket_errno (); goto err; } switch (value) { case SOCK_STREAM: socket->priv->type = G_SOCKET_TYPE_STREAM; break; case SOCK_DGRAM: socket->priv->type = G_SOCKET_TYPE_DATAGRAM; break; case SOCK_SEQPACKET: socket->priv->type = G_SOCKET_TYPE_SEQPACKET; break; default: socket->priv->type = G_SOCKET_TYPE_INVALID; break; } addrlen = sizeof address; if (getsockname (fd, (struct sockaddr *) &address, &addrlen) != 0) { errsv = get_socket_errno (); goto err; } if (addrlen > 0) { g_assert (G_STRUCT_OFFSET (struct sockaddr, sa_family) + sizeof address.ss_family <= addrlen); family = address.ss_family; } else { /* On Solaris, this happens if the socket is not yet connected. * But we can use SO_DOMAIN as a workaround there. */ #ifdef SO_DOMAIN if (!g_socket_get_option (socket, SOL_SOCKET, SO_DOMAIN, &family, NULL)) { errsv = get_socket_errno (); goto err; } #else /* This will translate to G_IO_ERROR_FAILED on either unix or windows */ errsv = -1; goto err; #endif } switch (family) { case G_SOCKET_FAMILY_IPV4: case G_SOCKET_FAMILY_IPV6: socket->priv->family = address.ss_family; switch (socket->priv->type) { case G_SOCKET_TYPE_STREAM: socket->priv->protocol = G_SOCKET_PROTOCOL_TCP; break; case G_SOCKET_TYPE_DATAGRAM: socket->priv->protocol = G_SOCKET_PROTOCOL_UDP; break; case G_SOCKET_TYPE_SEQPACKET: socket->priv->protocol = G_SOCKET_PROTOCOL_SCTP; break; default: break; } break; case G_SOCKET_FAMILY_UNIX: socket->priv->family = G_SOCKET_FAMILY_UNIX; socket->priv->protocol = G_SOCKET_PROTOCOL_DEFAULT; break; default: socket->priv->family = G_SOCKET_FAMILY_INVALID; break; } if (socket->priv->family != G_SOCKET_FAMILY_INVALID) { addrlen = sizeof address; if (getpeername (fd, (struct sockaddr *) &address, &addrlen) >= 0) socket->priv->connected = TRUE; } if (g_socket_get_option (socket, SOL_SOCKET, SO_KEEPALIVE, &value, NULL)) { socket->priv->keepalive = !!value; } else { /* Can't read, maybe not supported, assume FALSE */ socket->priv->keepalive = FALSE; } return; err: g_set_error (&socket->priv->construct_error, G_IO_ERROR, socket_io_error_from_errno (errsv), _("creating GSocket from fd: %s"), socket_strerror (errsv)); } /* Wrapper around socket() that is shared with gnetworkmonitornetlink.c */ gint g_socket (gint domain, gint type, gint protocol, GError **error) { int fd; #ifdef SOCK_CLOEXEC fd = socket (domain, type | SOCK_CLOEXEC, protocol); if (fd != -1) return fd; /* It's possible that libc has SOCK_CLOEXEC but the kernel does not */ if (fd < 0 && (errno == EINVAL || errno == EPROTOTYPE)) #endif fd = socket (domain, type, protocol); if (fd < 0) { int errsv = get_socket_errno (); g_set_error (error, G_IO_ERROR, socket_io_error_from_errno (errsv), _("Unable to create socket: %s"), socket_strerror (errsv)); errno = errsv; return -1; } #ifndef G_OS_WIN32 { int flags; /* We always want to set close-on-exec to protect users. If you need to so some weird inheritance to exec you can re-enable this using lower level hacks with g_socket_get_fd(). */ flags = fcntl (fd, F_GETFD, 0); if (flags != -1 && (flags & FD_CLOEXEC) == 0) { flags |= FD_CLOEXEC; fcntl (fd, F_SETFD, flags); } } #endif return fd; } static gint g_socket_create_socket (GSocketFamily family, GSocketType type, int protocol, GError **error) { gint native_type; switch (type) { case G_SOCKET_TYPE_STREAM: native_type = SOCK_STREAM; break; case G_SOCKET_TYPE_DATAGRAM: native_type = SOCK_DGRAM; break; case G_SOCKET_TYPE_SEQPACKET: native_type = SOCK_SEQPACKET; break; default: g_assert_not_reached (); } if (family <= 0) { g_set_error (error, G_IO_ERROR, G_IO_ERROR_INVALID_ARGUMENT, _("Unable to create socket: %s"), _("Unknown family was specified")); return -1; } if (protocol == -1) { g_set_error (error, G_IO_ERROR, G_IO_ERROR_INVALID_ARGUMENT, _("Unable to create socket: %s"), _("Unknown protocol was specified")); return -1; } return g_socket (family, native_type, protocol, error); } static void g_socket_constructed (GObject *object) { GSocket *socket = G_SOCKET (object); if (socket->priv->fd >= 0) /* create socket->priv info from the fd */ g_socket_details_from_fd (socket); else /* create the fd from socket->priv info */ socket->priv->fd = g_socket_create_socket (socket->priv->family, socket->priv->type, socket->priv->protocol, &socket->priv->construct_error); if (socket->priv->fd != -1) { #ifndef G_OS_WIN32 GError *error = NULL; #else gulong arg; #endif /* Always use native nonblocking sockets, as Windows sets sockets to * nonblocking automatically in certain operations. This way we make * things work the same on all platforms. */ #ifndef G_OS_WIN32 if (!g_unix_set_fd_nonblocking (socket->priv->fd, TRUE, &error)) { g_warning ("Error setting socket nonblocking: %s", error->message); g_clear_error (&error); } #else arg = TRUE; if (ioctlsocket (socket->priv->fd, FIONBIO, &arg) == SOCKET_ERROR) { int errsv = get_socket_errno (); g_warning ("Error setting socket status flags: %s", socket_strerror (errsv)); } #endif #ifdef SO_NOSIGPIPE /* See note about SIGPIPE below. */ g_socket_set_option (socket, SOL_SOCKET, SO_NOSIGPIPE, TRUE, NULL); #endif } } static void g_socket_get_property (GObject *object, guint prop_id, GValue *value, GParamSpec *pspec) { GSocket *socket = G_SOCKET (object); GSocketAddress *address; switch (prop_id) { case PROP_FAMILY: g_value_set_enum (value, socket->priv->family); break; case PROP_TYPE: g_value_set_enum (value, socket->priv->type); break; case PROP_PROTOCOL: g_value_set_enum (value, socket->priv->protocol); break; case PROP_FD: g_value_set_int (value, socket->priv->fd); break; case PROP_BLOCKING: g_value_set_boolean (value, socket->priv->blocking); break; case PROP_LISTEN_BACKLOG: g_value_set_int (value, socket->priv->listen_backlog); break; case PROP_KEEPALIVE: g_value_set_boolean (value, socket->priv->keepalive); break; case PROP_LOCAL_ADDRESS: address = g_socket_get_local_address (socket, NULL); g_value_take_object (value, address); break; case PROP_REMOTE_ADDRESS: address = g_socket_get_remote_address (socket, NULL); g_value_take_object (value, address); break; case PROP_TIMEOUT: g_value_set_uint (value, socket->priv->timeout); break; case PROP_TTL: g_value_set_uint (value, g_socket_get_ttl (socket)); break; case PROP_BROADCAST: g_value_set_boolean (value, g_socket_get_broadcast (socket)); break; case PROP_MULTICAST_LOOPBACK: g_value_set_boolean (value, g_socket_get_multicast_loopback (socket)); break; case PROP_MULTICAST_TTL: g_value_set_uint (value, g_socket_get_multicast_ttl (socket)); break; default: G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); } } static void g_socket_set_property (GObject *object, guint prop_id, const GValue *value, GParamSpec *pspec) { GSocket *socket = G_SOCKET (object); switch (prop_id) { case PROP_FAMILY: socket->priv->family = g_value_get_enum (value); break; case PROP_TYPE: socket->priv->type = g_value_get_enum (value); break; case PROP_PROTOCOL: socket->priv->protocol = g_value_get_enum (value); break; case PROP_FD: socket->priv->fd = g_value_get_int (value); break; case PROP_BLOCKING: g_socket_set_blocking (socket, g_value_get_boolean (value)); break; case PROP_LISTEN_BACKLOG: g_socket_set_listen_backlog (socket, g_value_get_int (value)); break; case PROP_KEEPALIVE: g_socket_set_keepalive (socket, g_value_get_boolean (value)); break; case PROP_TIMEOUT: g_socket_set_timeout (socket, g_value_get_uint (value)); break; case PROP_TTL: g_socket_set_ttl (socket, g_value_get_uint (value)); break; case PROP_BROADCAST: g_socket_set_broadcast (socket, g_value_get_boolean (value)); break; case PROP_MULTICAST_LOOPBACK: g_socket_set_multicast_loopback (socket, g_value_get_boolean (value)); break; case PROP_MULTICAST_TTL: g_socket_set_multicast_ttl (socket, g_value_get_uint (value)); break; default: G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec); } } static void g_socket_finalize (GObject *object) { GSocket *socket = G_SOCKET (object); gint i; g_clear_error (&socket->priv->construct_error); if (socket->priv->fd != -1 && !socket->priv->closed) g_socket_close (socket, NULL); if (socket->priv->remote_address) g_object_unref (socket->priv->remote_address); #ifdef G_OS_WIN32 if (socket->priv->event != WSA_INVALID_EVENT) { WSACloseEvent (socket->priv->event); socket->priv->event = WSA_INVALID_EVENT; } g_assert (socket->priv->requested_conditions == NULL); g_mutex_clear (&socket->priv->win32_source_lock); #endif for (i = 0; i < RECV_ADDR_CACHE_SIZE; i++) { if (socket->priv->recv_addr_cache[i].addr) { g_object_unref (socket->priv->recv_addr_cache[i].addr); g_free (socket->priv->recv_addr_cache[i].native); } } if (G_OBJECT_CLASS (g_socket_parent_class)->finalize) (*G_OBJECT_CLASS (g_socket_parent_class)->finalize) (object); } static void g_socket_class_init (GSocketClass *klass) { GObjectClass *gobject_class G_GNUC_UNUSED = G_OBJECT_CLASS (klass); #ifdef SIGPIPE /* There is no portable, thread-safe way to avoid having the process * be killed by SIGPIPE when calling send() or sendmsg(), so we are * forced to simply ignore the signal process-wide. * * Even if we ignore it though, gdb will still stop if the app * receives a SIGPIPE, which can be confusing and annoying. So when * possible, we also use MSG_NOSIGNAL / SO_NOSIGPIPE elsewhere to * prevent the signal from occurring at all. */ signal (SIGPIPE, SIG_IGN); #endif gobject_class->finalize = g_socket_finalize; gobject_class->constructed = g_socket_constructed; gobject_class->set_property = g_socket_set_property; gobject_class->get_property = g_socket_get_property; g_object_class_install_property (gobject_class, PROP_FAMILY, g_param_spec_enum ("family", P_("Socket family"), P_("The sockets address family"), G_TYPE_SOCKET_FAMILY, G_SOCKET_FAMILY_INVALID, G_PARAM_CONSTRUCT_ONLY | G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_TYPE, g_param_spec_enum ("type", P_("Socket type"), P_("The sockets type"), G_TYPE_SOCKET_TYPE, G_SOCKET_TYPE_STREAM, G_PARAM_CONSTRUCT_ONLY | G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_PROTOCOL, g_param_spec_enum ("protocol", P_("Socket protocol"), P_("The id of the protocol to use, or -1 for unknown"), G_TYPE_SOCKET_PROTOCOL, G_SOCKET_PROTOCOL_UNKNOWN, G_PARAM_CONSTRUCT_ONLY | G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_FD, g_param_spec_int ("fd", P_("File descriptor"), P_("The sockets file descriptor"), G_MININT, G_MAXINT, -1, G_PARAM_CONSTRUCT_ONLY | G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_BLOCKING, g_param_spec_boolean ("blocking", P_("blocking"), P_("Whether or not I/O on this socket is blocking"), TRUE, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_LISTEN_BACKLOG, g_param_spec_int ("listen-backlog", P_("Listen backlog"), P_("Outstanding connections in the listen queue"), 0, SOMAXCONN, 10, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_KEEPALIVE, g_param_spec_boolean ("keepalive", P_("Keep connection alive"), P_("Keep connection alive by sending periodic pings"), FALSE, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_LOCAL_ADDRESS, g_param_spec_object ("local-address", P_("Local address"), P_("The local address the socket is bound to"), G_TYPE_SOCKET_ADDRESS, G_PARAM_READABLE | G_PARAM_STATIC_STRINGS)); g_object_class_install_property (gobject_class, PROP_REMOTE_ADDRESS, g_param_spec_object ("remote-address", P_("Remote address"), P_("The remote address the socket is connected to"), G_TYPE_SOCKET_ADDRESS, G_PARAM_READABLE | G_PARAM_STATIC_STRINGS)); /** * GSocket:timeout: * * The timeout in seconds on socket I/O * * Since: 2.26 */ g_object_class_install_property (gobject_class, PROP_TIMEOUT, g_param_spec_uint ("timeout", P_("Timeout"), P_("The timeout in seconds on socket I/O"), 0, G_MAXUINT, 0, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); /** * GSocket:broadcast: * * Whether the socket should allow sending to broadcast addresses. * * Since: 2.32 */ g_object_class_install_property (gobject_class, PROP_BROADCAST, g_param_spec_boolean ("broadcast", P_("Broadcast"), P_("Whether to allow sending to broadcast addresses"), FALSE, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); /** * GSocket:ttl: * * Time-to-live for outgoing unicast packets * * Since: 2.32 */ g_object_class_install_property (gobject_class, PROP_TTL, g_param_spec_uint ("ttl", P_("TTL"), P_("Time-to-live of outgoing unicast packets"), 0, G_MAXUINT, 0, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); /** * GSocket:multicast-loopback: * * Whether outgoing multicast packets loop back to the local host. * * Since: 2.32 */ g_object_class_install_property (gobject_class, PROP_MULTICAST_LOOPBACK, g_param_spec_boolean ("multicast-loopback", P_("Multicast loopback"), P_("Whether outgoing multicast packets loop back to the local host"), TRUE, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); /** * GSocket:multicast-ttl: * * Time-to-live out outgoing multicast packets * * Since: 2.32 */ g_object_class_install_property (gobject_class, PROP_MULTICAST_TTL, g_param_spec_uint ("multicast-ttl", P_("Multicast TTL"), P_("Time-to-live of outgoing multicast packets"), 0, G_MAXUINT, 1, G_PARAM_READWRITE | G_PARAM_STATIC_STRINGS)); } static void g_socket_initable_iface_init (GInitableIface *iface) { iface->init = g_socket_initable_init; } static void g_socket_init (GSocket *socket) { socket->priv = g_socket_get_instance_private (socket); socket->priv->fd = -1; socket->priv->blocking = TRUE; socket->priv->listen_backlog = 10; socket->priv->construct_error = NULL; #ifdef G_OS_WIN32 socket->priv->event = WSA_INVALID_EVENT; g_mutex_init (&socket->priv->win32_source_lock); #endif } static gboolean g_socket_initable_init (GInitable *initable, GCancellable *cancellable, GError **error) { GSocket *socket; g_return_val_if_fail (G_IS_SOCKET (initable), FALSE); socket = G_SOCKET (initable); if (cancellable != NULL) { g_set_error_literal (error, G_IO_ERROR, G_IO_ERROR_NOT_SUPPORTED, _("Cancellable initialization not supported")); return FALSE; } socket->priv->inited = TRUE; if (socket->priv->construct_error) { if (error) *error = g_error_copy (socket->priv->construct_error); return FALSE; } return TRUE; } /** * g_socket_new: * @family: the socket family to use, e.g. %G_SOCKET_FAMILY_IPV4. * @type: the socket type to use. * @protocol: the id of the protocol to use, or 0 for default. * @error: #GError for error reporting, or %NULL to ignore. * * Creates a new #GSocket with the defined family, type and protocol. * If @protocol is 0 (%G_SOCKET_PROTOCOL_DEFAULT) the default protocol type * for the family and type is used. * * The @protocol is a family and type specific int that specifies what * kind of protocol to use. #GSocketProtocol lists several common ones. * Many families only support one protocol, and use 0 for this, others * support several and using 0 means to use the default protocol for * the family and type. * * The protocol id is passed directly to the operating * system, so you can use protocols not listed in #GSocketProtocol if you * know the protocol number used for it. * * Returns: a #GSocket or %NULL on error. * Free the returned object with g_object_unref(). * * Since: 2.22 */ GSocket * g_socket_new (GSocketFamily family, GSocketType type, GSocketProtocol protocol, GError **error) { return G_SOCKET (g_initable_new (G_TYPE_SOCKET, NULL, error, "family", family, "type", type, "protocol", protocol, NULL)); } /** * g_socket_new_from_fd: * @fd: a native socket file descriptor. * @error: #GError for error reporting, or %NULL to ignore. * * Creates a new #GSocket from a native file descriptor * or winsock SOCKET handle. * * This reads all the settings from the file descriptor so that * all properties should work. Note that the file descriptor * will be set to non-blocking mode, independent on the blocking * mode of the #GSocket. * * On success, the returned #GSocket takes ownership of @fd. On failure, the * caller must close @fd themselves. * * Since GLib 2.46, it is no longer a fatal error to call this on a non-socket * descriptor. Instead, a GError will be set with code %G_IO_ERROR_FAILED * * Returns: a #GSocket or %NULL on error. * Free the returned object with g_object_unref(). * * Since: 2.22 */ GSocket * g_socket_new_from_fd (gint fd, GError **error) { return G_SOCKET (g_initable_new (G_TYPE_SOCKET, NULL, error, "fd", fd, NULL)); } /** * g_socket_set_blocking: * @socket: a #GSocket. * @blocking: Whether to use blocking I/O or not. * * Sets the blocking mode of the socket. In blocking mode * all operations (which don’t take an explicit blocking parameter) block until * they succeed or there is an error. In * non-blocking mode all functions return results immediately or * with a %G_IO_ERROR_WOULD_BLOCK error. * * All sockets are created in blocking mode. However, note that the * platform level socket is always non-blocking, and blocking mode * is a GSocket level feature. * * Since: 2.22 */ void g_socket_set_blocking (GSocket *socket, gboolean blocking) { g_return_if_fail (G_IS_SOCKET (socket)); blocking = !!blocking; if (socket->priv->blocking == blocking) return; socket->priv->blocking = blocking; g_object_notify (G_OBJECT (socket), "blocking"); } /** * g_socket_get_blocking: * @socket: a #GSocket. * * Gets the blocking mode of the socket. For details on blocking I/O, * see g_socket_set_blocking(). * * Returns: %TRUE if blocking I/O is used, %FALSE otherwise. * * Since: 2.22 */ gboolean g_socket_get_blocking (GSocket *socket) { g_return_val_if_fail (G_IS_SOCKET (socket), FALSE); return socket->priv->blocking; } /** * g_socket_set_keepalive: * @socket: a #GSocket. * @keepalive: Value for the keepalive flag * * Sets or unsets the %SO_KEEPALIVE flag on the underlying socket. When * this flag is set on a socket, the system will attempt to verify that the * remote socket endpoint is still present if a sufficiently long period of * time passes with no data being exchanged. If the system is unable to * verify the presence of the remote endpoint, it will automatically close * the connection. * * This option is only functional on certain kinds of sockets. (Notably, * %G_SOCKET_PROTOCOL_TCP sockets.) * * The exact time between pings is system- and protocol-dependent, but will * normally be at least two hours. Most commonly, you would set this flag * on a server socket if you want to allow clients to remain idle for long * periods of time, but also want to ensure that connections are eventually * garbage-collected if clients crash or become unreachable. * * Since: 2.22 */ void g_socket_set_keepalive (GSocket *socket, gboolean keepalive) { GError *error = NULL; g_return_if_fail (G_IS_SOCKET (socket)); keepalive = !!keepalive; if (socket->priv->keepalive == keepalive) return; if (!g_socket_set_option (socket, SOL_SOCKET, SO_KEEPALIVE, keepalive, &error)) { g_warning ("error setting keepalive: %s", error->message); g_error_free (error); return; } socket->priv->keepalive = keepalive; g_object_notify (G_OBJECT (socket), "keepalive"); } /** * g_socket_get_keepalive: * @socket: a #GSocket. * * Gets the keepalive mode of the socket. For details on this, * see g_socket_set_keepalive(). * * Returns: %TRUE if keepalive is active, %FALSE otherwise. * * Since: 2.22 */ gboolean g_socket_get_keepalive (GSocket *socket) { g_return_val_if_fail (G_IS_SOCKET (socket), FALSE); return socket->priv->keepalive; } /** * g_socket_get_listen_backlog: * @socket: a #GSocket. * * Gets the listen backlog setting of the socket. For details on this, * see g_socket_set_listen_backlog(). * * Returns: the maximum number of pending connections. * * Since: 2.22 */ gint g_socket_get_listen_backlog (GSocket *socket) { g_return_val_if_fail (G_IS_SOCKET (socket), 0); return socket->priv->listen_backlog; } /** * g_socket_set_listen_backlog: * @socket: a #GSocket. * @backlog: the maximum number of pending connections. * * Sets the maximum number of outstanding connections allowed * when listening on this socket. If more clients than this are * connecting to the socket and the application is not handling them * on time then the new connections will be refused. * * Note that this must be called before g_socket_listen() and has no * effect if called after that. * * Since: 2.22 */ void g_socket_set_listen_backlog (GSocket *socket, gint backlog) { g_return_if_fail (G_IS_SOCKET (socket)); g_return_if_fail (!socket->priv->listening); if (backlog != socket->priv->listen_backlog) { socket->priv->listen_backlog = backlog; g_object_notify (G_OBJECT (socket), "listen-backlog"); } } /** * g_socket_get_timeout: * @socket: a #GSocket. * * Gets the timeout setting of the socket. For details on this, see * g_socket_set_timeout(). * * Returns: the timeout in seconds * * Since: 2.26 */ guint g_socket_get_timeout (GSocket *socket) { g_return_val_if_fail (G_IS_SOCKET (socket), 0); return socket->priv->timeout; } /** * g_socket_set_timeout: * @socket: a #GSocket. * @timeout: the timeout for @socket, in seconds, or 0 for none * * Sets the time in seconds after which I/O operations on @socket will * time out if they have not yet completed. * * On a blocking socket, this means that any blocking #GSocket * operation will time out after @timeout seconds of inactivity, * returning %G_IO_ERROR_TIMED_OUT. * * On a non-blocking socket, calls to g_socket_condition_wait() will * also fail with %G_IO_ERROR_TIMED_OUT after the given time. Sources * created with g_socket_create_source() will trigger after * @timeout seconds of inactivity, with the requested condition * set, at which point calling g_socket_receive(), g_socket_send(), * g_socket_check_connect_result(), etc, will fail with * %G_IO_ERROR_TIMED_OUT. * * If @timeout is 0 (the default), operations will never time out * on their own. * * Note that if an I/O operation is interrupted by a signal, this may * cause the timeout to be reset. * * Since: 2.26 */ void g_socket_set_timeout (GSocket *socket, guint timeout) { g_return_if_fail (G_IS_SOCKET (socket)); if (timeout != socket->priv->timeout) { socket->priv->timeout = timeout; g_object_notify (G_OBJECT (socket), "timeout"); } } /** * g_socket_get_ttl: * @socket: a #GSocket. * * Gets the unicast time-to-live setting on @socket; see * g_socket_set_ttl() for more details. * * Returns: the time-to-live setting on @socket * * Since: 2.32 */ guint g_socket_get_ttl (GSocket *socket) { GError *error = NULL; gint value; g_return_val_if_fail (G_IS_SOCKET (socket), 0); if (socket->priv->family == G_SOCKET_FAMILY_IPV4) { g_socket_get_option (socket, IPPROTO_IP, IP_TTL, &value, &error); } else if (socket->priv->family == G_SOCKET_FAMILY_IPV6) { g_socket_get_option (socket, IPPROTO_IPV6, IPV6_UNICAST_HOPS, &value, &error); } else g_return_val_if_reached (0); if (error) { g_warning ("error getting unicast ttl: %s", error->message); g_error_free (error); return 0; } return value; } /** * g_socket_set_ttl: * @socket: a #GSocket. * @ttl: the time-to-live value for all unicast packets on @socket * * Sets the time-to-live for outgoing unicast packets on @socket. * By default the platform-specific default value is used. * * Since: 2.32 */ void g_socket_set_ttl (GSocket *socket, guint ttl) { GError *error = NULL; g_return_if_fail (G_IS_SOCKET (socket)); if (socket->priv->family == G_SOCKET_FAMILY_IPV4) { g_socket_set_option (socket, IPPROTO_IP, IP_TTL, ttl, &error); } else if (socket->priv->family == G_SOCKET_FAMILY_IPV6) { g_socket_set_option (socket, IPPROTO_IP, IP_TTL, ttl, NULL); g_socket_set_option (socket, IPPROTO_IPV6, IPV6_UNICAST_HOPS, ttl, &error); } else g_return_if_reached (); if (error) { g_warning ("error setting unicast ttl: %s", error->message); g_error_free (error); return; } g_object_notify (G_OBJECT (socket), "ttl"); } /** * g_socket_get_broadcast: * @socket: a #GSocket. * * Gets the broadcast setting on @socket; if %TRUE, * it is possible to send packets to broadcast * addresses. * * Returns: the broadcast setting on @socket * * Since: 2.32 */ gboolean g_socket_get_broadcast (GSocket *socket) { GError *error = NULL; gint value; g_return_val_if_fail (G_IS_SOCKET (socket), FALSE); if (!g_socket_get_option (socket, SOL_SOCKET, SO_BROADCAST, &value, &error)) { g_warning ("error getting broadcast: %s", error->message); g_error_free (error); return FALSE; } return !!value; } /** * g_socket_set_broadcast: * @socket: a #GSocket. * @broadcast: whether @socket should allow sending to broadcast * addresses * * Sets whether @socket should allow sending to broadcast addresses. * This is %FALSE by default. * * Since: 2.32 */ void g_socket_set_broadcast (GSocket *socket, gboolean broadcast) { GError *error = NULL; g_return_if_fail (G_IS_SOCKET (socket)); broadcast = !!broadcast; if (!g_socket_set_option (socket, SOL_SOCKET, SO_BROADCAST, broadcast, &error)) { g_warning ("error setting broadcast: %s", error->message); g_error_free (error); return; } g_object_notify (G_OBJECT (socket), "broadcast"); } /** * g_socket_get_multicast_loopback: * @socket: a #GSocket. * * Gets the multicast loopback setting on @socket; if %TRUE (the * default), outgoing multicast packets will be looped back to * multicast listeners on the same host. * * Returns: the multicast loopback setting on @socket * * Since: 2.32 */ gboolean g_socket_get_multicast_loopback (GSocket *socket) { GError *error = NULL; gint value; g_return_val_if_fail (G_IS_SOCKET (socket), FALSE); if (socket->priv->family == G_SOCKET_FAMILY_IPV4) { g_socket_get_option (socket, IPPROTO_IP, IP_MULTICAST_LOOP, &value, &error); } else if (socket->priv->family == G_SOCKET_FAMILY_IPV6) { g_socket_get_option (socket, IPPROTO_IPV6, IPV6_MULTICAST_LOOP, &value, &error); } else g_return_val_if_reached (FALSE); if (error) { g_warning ("error getting multicast loopback: %s", error->message); g_error_free (error); return FALSE; } return !!value; } /** * g_socket_set_multicast_loopback: * @socket: a #GSocket. * @loopback: whether @socket should receive messages sent to its * multicast groups from the local host * * Sets whether outgoing multicast packets will be received by sockets * listening on that multicast address on the same host. This is %TRUE * by default. * * Since: 2.32 */ void g_socket_set_multicast_loopback (GSocket *socket, gboolean loopback) { GError *error = NULL; g_return_if_fail (G_IS_SOCKET (socket)); loopback = !!loopback; if (socket->priv->family == G_SOCKET_FAMILY_IPV4) { g_socket_set_option (socket, IPPROTO_IP, IP_MULTICAST_LOOP, loopback, &error); } else if (socket->priv->family == G_SOCKET_FAMILY_IPV6) { g_socket_set_option (socket, IPPROTO_IP, IP_MULTICAST_LOOP, loopback, NULL); g_socket_set_option (socket, IPPROTO_IPV6, IPV6_MULTICAST_LOOP, loopback, &error); } else g_return_if_reached (); if (error) { g_warning ("error setting multicast loopback: %s", error->message); g_error_free (error); return; } g_object_notify (G_OBJECT (socket), "multicast-loopback"); } /** * g_socket_get_multicast_ttl: * @socket: a #GSocket. * * Gets the multicast time-to-live setting on @socket; see * g_socket_set_multicast_ttl() for more details. * * Returns: the multicast time-to-live setting on @socket * * Since: 2.32 */ guint g_socket_get_multicast_ttl (GSocket *socket) { GError *error = NULL; gint value; g_return_val_if_fail (G_IS_SOCKET (socket), 0); if (socket->priv->family == G_SOCKET_FAMILY_IPV4) { g_socket_get_option (socket, IPPROTO_IP, IP_MULTICAST_TTL, &value, &error); } else if (socket->priv->family == G_SOCKET_FAMILY_IPV6) { g_socket_get_option (socket, IPPROTO_IPV6, IPV6_MULTICAST_HOPS, &value, &error); } else g_return_val_if_reached (FALSE); if (error) { g_warning ("error getting multicast ttl: %s", error->message); g_error_free (error); return FALSE; } return value; } /** * g_socket_set_multicast_ttl: * @socket: a #GSocket. * @ttl: the time-to-live value for all multicast datagrams on @socket * * Sets the time-to-live for outgoing multicast datagrams on @socket. * By default, this is 1, meaning that multicast packets will not leave * the local network. * * Since: 2.32 */ void g_socket_set_multicast_ttl (GSocket *socket, guint ttl) { GError *error = NULL; g_return_if_fail (G_IS_SOCKET (socket)); if (socket->priv->family == G_SOCKET_FAMILY_IPV4) { g_socket_set_option (socket, IPPROTO_IP, IP_MULTICAST_TTL, ttl, &error); } else if (socket->priv->family == G_SOCKET_FAMILY_IPV6) { g_socket_set_option (socket, IPPROTO_IP, IP_MULTICAST_TTL, ttl, NULL); g_socket_set_option (socket, IPPROTO_IPV6, IPV6_MULTICAST_HOPS, ttl, &error); } else g_return_if_reached (); if (error) { g_warning ("error setting multicast ttl: %s", error->message); g_error_free (error); return; } g_object_notify (G_OBJECT (socket), "multicast-ttl"); } /** * g_socket_get_family: * @socket: a #GSocket. * * Gets the socket family of the socket. * * Returns: a #GSocketFamily * * Since: 2.22 */ GSocketFamily g_socket_get_family (GSocket *socket) { g_return_val_if_fail (G_IS_SOCKET (socket), G_SOCKET_FAMILY_INVALID); return socket->priv->family; } /** * g_socket_get_socket_type: * @socket: a #GSocket. * * Gets the socket type of the socket. * * Returns: a #GSocketType * * Since: 2.22 */ GSocketType g_socket_get_socket_type (GSocket *socket) { g_return_val_if_fail (G_IS_SOCKET (socket), G_SOCKET_TYPE_INVALID); return socket->priv->type; } /** * g_socket_get_protocol: * @socket: a #GSocket. * * Gets the socket protocol id the socket was created with. * In case the protocol is unknown, -1 is returned. * * Returns: a protocol id, or -1 if unknown * * Since: 2.22 */ GSocketProtocol g_socket_get_protocol (GSocket *socket) { g_return_val_if_fail (G_IS_SOCKET (socket), -1); return socket->priv->protocol; } /** * g_socket_get_fd: * @socket: a #GSocket. * * Returns the underlying OS socket object. On unix this * is a socket file descriptor, and on Windows this is * a Winsock2 SOCKET handle. This may be useful for * doing platform specific or otherwise unusual operations * on the socket. * * Returns: the file descriptor of the socket. * * Since: 2.22 */ int g_socket_get_fd (GSocket *socket) { g_return_val_if_fail (G_IS_SOCKET (socket), -1); return socket->priv->fd; } /** * g_socket_get_local_address: * @socket: a #GSocket. * @error: #GError for error reporting, or %NULL to ignore. * * Try to get the local address of a bound socket. This is only * useful if the socket has been bound to a local address, * either explicitly or implicitly when connecting. * * Returns: (transfer full): a #GSocketAddress or %NULL on error. * Free the returned object with g_object_unref(). * * Since: 2.22 */ GSocketAddress * g_socket_get_local_address (GSocket *socket, GError **error) { struct sockaddr_storage buffer; guint len = sizeof (buffer); g_return_val_if_fail (G_IS_SOCKET (socket), NULL); if (getsockname (socket->priv->fd, (struct sockaddr *) &buffer, &len) < 0) { int errsv = get_socket_errno (); g_set_error (error, G_IO_ERROR, socket_io_error_from_errno (errsv), _("could not get local address: %s"), socket_strerror (errsv)); return NULL; } return g_socket_address_new_from_native (&buffer, len); } /** * g_socket_get_remote_address: * @socket: a #GSocket. * @error: #GError for error reporting, or %NULL to ignore. * * Try to get the remove address of a connected socket. This is only * useful for connection oriented sockets that have been connected. * * Returns: (transfer full): a #GSocketAddress or %NULL on error. * Free the returned object with g_object_unref(). * * Since: 2.22 */ GSocketAddress * g_socket_get_remote_address (GSocket *socket, GError **error) { struct sockaddr_storage buffer; guint len = sizeof (buffer); g_return_val_if_fail (G_IS_SOCKET (socket), NULL); if (socket->priv->connect_pending) { if (!g_socket_check_connect_result (socket, error)) return NULL; else socket->priv->connect_pending = FALSE; } if (!socket->priv->remote_address) { if (getpeername (socket->priv->fd, (struct sockaddr *) &buffer, &len) < 0) { int errsv = get_socket_errno (); g_set_error (error, G_IO_ERROR, socket_io_error_from_errno (errsv), _("could not get remote address: %s"), socket_strerror (errsv)); return NULL; } socket->priv->remote_address = g_socket_address_new_from_native (&buffer, len); } return g_object_ref (socket->priv->remote_address); } /** * g_socket_is_connected: * @socket: a #GSocket. * * Check whether the socket is connected. This is only useful for * connection-oriented sockets. * * Returns: %TRUE if socket is connected, %FALSE otherwise. * * Since: 2.22 */ gboolean g_socket_is_connected (GSocket *socket) { g_return_val_if_fail (G_IS_SOCKET (socket), FALSE); return socket->priv->connected; } /** * g_socket_listen: * @socket: a #GSocket. * @error: #GError for error reporting, or %NULL to ignore. * * Marks the socket as a server socket, i.e. a socket that is used * to accept incoming requests using g_socket_accept(). * * Before calling this the socket must be bound to a local address using * g_socket_bind(). * * To set the maximum amount of outstanding clients, use * g_socket_set_listen_backlog(). * * Returns: %TRUE on success, %FALSE on error. * * Since: 2.22 */ gboolean g_socket_listen (GSocket *socket, GError **error) { g_return_val_if_fail (G_IS_SOCKET (socket), FALSE); if (!check_socket (socket, error)) return FALSE; if (listen (socket->priv->fd, socket->priv->listen_backlog) < 0) { int errsv = get_socket_errno (); g_set_error (error, G_IO_ERROR, socket_io_error_from_errno (errsv), _("could not listen: %s"), socket_strerror (errsv)); return FALSE; } socket->priv->listening = TRUE; return TRUE; } /** * g_socket_bind: * @socket: a #GSocket. * @address: a #GSocketAddress specifying the local address. * @allow_reuse: whether to allow reusing this address * @error: #GError for error reporting, or %NULL to ignore. * * When a socket is created it is attached to an address family, but it * doesn't have an address in this family. g_socket_bind() assigns the * address (sometimes called name) of the socket. * * It is generally required to bind to a local address before you can * receive connections. (See g_socket_listen() and g_socket_accept() ). * In certain situations, you may also want to bind a socket that will be * used to initiate connections, though this is not normally required. * * If @socket is a TCP socket, then @allow_reuse controls the setting * of the `SO_REUSEADDR` socket option; normally it should be %TRUE for * server sockets (sockets that you will eventually call * g_socket_accept() on), and %FALSE for client sockets. (Failing to * set this flag on a server socket may cause g_socket_bind() to return * %G_IO_ERROR_ADDRESS_IN_USE if the server program is stopped and then * immediately restarted.) * * If @socket is a UDP socket, then @allow_reuse determines whether or * not other UDP sockets can be bound to the same address at the same * time. In particular, you can have several UDP sockets bound to the * same address, and they will all receive all of the multicast and * broadcast packets sent to that address. (The behavior of unicast * UDP packets to an address with multiple listeners is not defined.) * * Returns: %TRUE on success, %FALSE on error. * * Since: 2.22 */ gboolean g_socket_bind (GSocket *socket, GSocketAddress *address, gboolean reuse_address, GError **error) { struct sockaddr_storage addr; gboolean so_reuseaddr; #ifdef SO_REUSEPORT gboolean so_reuseport; #endif g_return_val_if_fail (G_IS_SOCKET (socket) && G_IS_SOCKET_ADDRESS (address), FALSE); if (!check_socket (socket, error)) return FALSE; if (!g_socket_address_to_native (address, &addr, sizeof addr, error)) return FALSE; /* On Windows, SO_REUSEADDR has the semantics we want for UDP * sockets, but has nasty side effects we don't want for TCP * sockets. * * On other platforms, we set SO_REUSEPORT, if it exists, for * UDP sockets, and SO_REUSEADDR for all sockets, hoping that * if SO_REUSEPORT doesn't exist, then SO_REUSEADDR will have * the desired semantics on UDP (as it does on Linux, although * Linux has SO_REUSEPORT too as of 3.9). */ #ifdef G_OS_WIN32 so_reuseaddr = reuse_address && (socket->priv->type == G_SOCKET_TYPE_DATAGRAM); #else so_reuseaddr = !!reuse_address; #endif #ifdef SO_REUSEPORT so_reuseport = reuse_address && (socket->priv->type == G_SOCKET_TYPE_DATAGRAM); #endif /* Ignore errors here, the only likely error is "not supported", and * this is a "best effort" thing mainly. */ g_socket_set_option (socket, SOL_SOCKET, SO_REUSEADDR, so_reuseaddr, NULL); #ifdef SO_REUSEPORT g_socket_set_option (socket, SOL_SOCKET, SO_REUSEPORT, so_reuseport, NULL); #endif if (bind (socket->priv->fd, (struct sockaddr *) &addr, g_socket_address_get_native_size (address)) < 0) { int errsv = get_socket_errno (); g_set_error (error, G_IO_ERROR, socket_io_error_from_errno (errsv), _("Error binding to address: %s"), socket_strerror (errsv)); return FALSE; } return TRUE; } #if !defined(HAVE_IF_NAMETOINDEX) && defined(G_OS_WIN32) static guint if_nametoindex (const gchar *iface) { PIP_ADAPTER_ADDRESSES addresses = NULL, p; gulong addresses_len = 0; guint idx = 0; DWORD res; if (ws2funcs.pIfNameToIndex != NULL) return ws2funcs.pIfNameToIndex (iface); res = GetAdaptersAddresses (AF_UNSPEC, 0, NULL, NULL, &addresses_len); if (res != NO_ERROR && res != ERROR_BUFFER_OVERFLOW) { if (res == ERROR_NO_DATA) errno = ENXIO; else errno = EINVAL; return 0; } addresses = g_malloc (addresses_len); res = GetAdaptersAddresses (AF_UNSPEC, 0, NULL, addresses, &addresses_len); if (res != NO_ERROR) { g_free (addresses); if (res == ERROR_NO_DATA) errno = ENXIO; else errno = EINVAL; return 0; } p = addresses; while (p) { if (strcmp (p->AdapterName, iface) == 0) { idx = p->IfIndex; break; } p = p->Next; } if (p == NULL) errno = ENXIO; g_free (addresses); return idx; } #define HAVE_IF_NAMETOINDEX 1 #endif static gboolean g_socket_multicast_group_operation (GSocket *socket, GInetAddress *group, gboolean source_specific, const gchar *iface, gboolean join_group, GError **error) { const guint8 *native_addr; gint optname, result; g_return_val_if_fail (G_IS_SOCKET (socket), FALSE); g_return_val_if_fail (socket->priv->type == G_SOCKET_TYPE_DATAGRAM, FALSE); g_return_val_if_fail (G_IS_INET_ADDRESS (group), FALSE); if (!check_socket (socket, error)) return FALSE; native_addr = g_inet_address_to_bytes (group); if (g_inet_address_get_family (group) == G_SOCKET_FAMILY_IPV4) { #ifdef HAVE_IP_MREQN struct ip_mreqn mc_req; #else struct ip_mreq mc_req; #endif memset (&mc_req, 0, sizeof (mc_req)); memcpy (&mc_req.imr_multiaddr, native_addr, sizeof (struct in_addr)); #ifdef HAVE_IP_MREQN if (iface) mc_req.imr_ifindex = if_nametoindex (iface); else mc_req.imr_ifindex = 0; /* Pick any. */ #elif defined(G_OS_WIN32) if (iface) mc_req.imr_interface.s_addr = g_htonl (if_nametoindex (iface)); else mc_req.imr_interface.s_addr = g_htonl (INADDR_ANY); #else mc_req.imr_interface.s_addr = g_htonl (INADDR_ANY); #endif if (source_specific) { #ifdef IP_ADD_SOURCE_MEMBERSHIP optname = join_group ? IP_ADD_SOURCE_MEMBERSHIP : IP_DROP_SOURCE_MEMBERSHIP; #else g_set_error (error, G_IO_ERROR, G_IO_ERROR_NOT_SUPPORTED, join_group ? _("Error joining multicast group: %s") : _("Error leaving multicast group: %s"), _("No support for source-specific multicast")); return FALSE; #endif } else optname = join_group ? IP_ADD_MEMBERSHIP : IP_DROP_MEMBERSHIP; result = setsockopt (socket->priv->fd, IPPROTO_IP, optname, &mc_req, sizeof (mc_req)); } else if (g_inet_address_get_family (group) == G_SOCKET_FAMILY_IPV6) { struct ipv6_mreq mc_req_ipv6; memset (&mc_req_ipv6, 0, sizeof (mc_req_ipv6)); memcpy (&mc_req_ipv6.ipv6mr_multiaddr, native_addr, sizeof (struct in6_addr)); #ifdef HAVE_IF_NAMETOINDEX if (iface) mc_req_ipv6.ipv6mr_interface = if_nametoindex (iface); else #endif mc_req_ipv6.ipv6mr_interface = 0; optname = join_group ? IPV6_JOIN_GROUP : IPV6_LEAVE_GROUP; result = setsockopt (socket->priv->fd, IPPROTO_IPV6, optname, &mc_req_ipv6, sizeof (mc_req_ipv6)); } else g_return_val_if_reached (FALSE); if (result < 0) { int errsv = get_socket_errno (); g_set_error (error, G_IO_ERROR, socket_io_error_from_errno (errsv), join_group ? _("Error joining multicast group: %s") : _("Error leaving multicast group: %s"), socket_strerror (errsv)); return FALSE; } return TRUE; } /** * g_socket_join_multicast_group: * @socket: a #GSocket. * @group: a #GInetAddress specifying the group address to join. * @iface: (allow-none): Name of the interface to use, or %NULL * @source_specific: %TRUE if source-specific multicast should be used * @error: #GError for error reporting, or %NULL to ignore. * * Registers @socket to receive multicast messages sent to @group. * @socket must be a %G_SOCKET_TYPE_DATAGRAM socket, and must have * been bound to an appropriate interface and port with * g_socket_bind(). * * If @iface is %NULL, the system will automatically pick an interface * to bind to based on @group. * * If @source_specific is %TRUE, source-specific multicast as defined * in RFC 4604 is used. Note that on older platforms this may fail * with a %G_IO_ERROR_NOT_SUPPORTED error. * * Returns: %TRUE on success, %FALSE on error. * * Since: 2.32 */ gboolean g_socket_join_multicast_group (GSocket *socket, GInetAddress *group, gboolean source_specific, const gchar *iface, GError **error) { return g_socket_multicast_group_operation (socket, group, source_specific, iface, TRUE, error); } /** * g_socket_leave_multicast_group: * @socket: a #GSocket. * @group: a #GInetAddress specifying the group address to leave. * @iface: (allow-none): Interface used * @source_specific: %TRUE if source-specific multicast was used * @error: #GError for error reporting, or %NULL to ignore. * * Removes @socket from the multicast group defined by @group, @iface, * and @source_specific (which must all have the same values they had * when you joined the group). * * @socket remains bound to its address and port, and can still receive * unicast messages after calling this. * * Returns: %TRUE on success, %FALSE on error. * * Since: 2.32 */ gboolean g_socket_leave_multicast_group (GSocket *socket, GInetAddress *group, gboolean source_specific, const gchar *iface, GError **error) { return g_socket_multicast_group_operation (socket, group, source_specific, iface, FALSE, error); } /** * g_socket_speaks_ipv4: * @socket: a #GSocket * * Checks if a socket is capable of speaking IPv4. * * IPv4 sockets are capable of speaking IPv4. On some operating systems * and under some combinations of circumstances IPv6 sockets are also * capable of speaking IPv4. See RFC 3493 section 3.7 for more * information. * * No other types of sockets are currently considered as being capable * of speaking IPv4. * * Returns: %TRUE if this socket can be used with IPv4. * * Since: 2.22 **/ gboolean g_socket_speaks_ipv4 (GSocket *socket) { switch (socket->priv->family) { case G_SOCKET_FAMILY_IPV4: return TRUE; case G_SOCKET_FAMILY_IPV6: #if defined (IPPROTO_IPV6) && defined (IPV6_V6ONLY) { gint v6_only; if (!g_socket_get_option (socket, IPPROTO_IPV6, IPV6_V6ONLY, &v6_only, NULL)) return FALSE; return !v6_only; } #else return FALSE; #endif default: return FALSE; } } /** * g_socket_accept: * @socket: a #GSocket. * @cancellable: (allow-none): a %GCancellable or %NULL * @error: #GError for error reporting, or %NULL to ignore. * * Accept incoming connections on a connection-based socket. This removes * the first outstanding connection request from the listening socket and * creates a #GSocket object for it. * * The @socket must be bound to a local address with g_socket_bind() and * must be listening for incoming connections (g_socket_listen()). * * If there are no outstanding connections then the operation will block * or return %G_IO_ERROR_WOULD_BLOCK if non-blocking I/O is enabled. * To be notified of an incoming connection, wait for the %G_IO_IN condition. * * Returns: (transfer full): a new #GSocket, or %NULL on error. * Free the returned object with g_object_unref(). * * Since: 2.22 */ GSocket * g_socket_accept (GSocket *socket, GCancellable *cancellable, GError **error) { GSocket *new_socket; gint ret; g_return_val_if_fail (G_IS_SOCKET (socket), NULL); if (!check_socket (socket, error)) return NULL; if (!check_timeout (socket, error)) return NULL; while (TRUE) { if ((ret = accept (socket->priv->fd, NULL, 0)) < 0) { int errsv = get_socket_errno (); if (errsv == EINTR) continue; #ifdef WSAEWOULDBLOCK if (errsv == WSAEWOULDBLOCK) #else if (errsv == EWOULDBLOCK || errsv == EAGAIN) #endif { win32_unset_event_mask (socket, FD_ACCEPT); if (socket->priv->blocking) { if (!g_socket_condition_wait (socket, G_IO_IN, cancellable, error)) return NULL; continue; } } socket_set_error_lazy (error, errsv, _("Error accepting connection: %s")); return NULL; } break; } win32_unset_event_mask (socket, FD_ACCEPT); #ifdef G_OS_WIN32 { /* The socket inherits the accepting sockets event mask and even object, we need to remove that */ WSAEventSelect (ret, NULL, 0); } #else { int flags; /* We always want to set close-on-exec to protect users. If you need to so some weird inheritance to exec you can re-enable this using lower level hacks with g_socket_get_fd(). */ flags = fcntl (ret, F_GETFD, 0); if (flags != -1 && (flags & FD_CLOEXEC) == 0) { flags |= FD_CLOEXEC; fcntl (ret, F_SETFD, flags); } } #endif new_socket = g_socket_new_from_fd (ret, error); if (new_socket == NULL) { #ifdef G_OS_WIN32 closesocket (ret); #else close (ret); #endif } else new_socket->priv->protocol = socket->priv->protocol; return new_socket; } /** * g_socket_connect: * @socket: a #GSocket. * @address: a #GSocketAddress specifying the remote address. * @cancellable: (allow-none): a %GCancellable or %NULL * @error: #GError for error reporting, or %NULL to ignore. * * Connect the socket to the specified remote address. * * For connection oriented socket this generally means we attempt to make * a connection to the @address. For a connection-less socket it sets * the default address for g_socket_send() and discards all incoming datagrams * from other sources. * * Generally connection oriented sockets can only connect once, but * connection-less sockets can connect multiple times to change the * default address. * * If the connect call needs to do network I/O it will block, unless * non-blocking I/O is enabled. Then %G_IO_ERROR_PENDING is returned * and the user can be notified of the connection finishing by waiting * for the G_IO_OUT condition. The result of the connection must then be * checked with g_socket_check_connect_result(). * * Returns: %TRUE if connected, %FALSE on error. * * Since: 2.22 */ gboolean g_socket_connect (GSocket *socket, GSocketAddress *address, GCancellable *cancellable, GError **error) { struct sockaddr_storage buffer; g_return_val_if_fail (G_IS_SOCKET (socket) && G_IS_SOCKET_ADDRESS (address), FALSE); if (!check_socket (socket, error)) return FALSE; if (!g_socket_address_to_native (address, &buffer, sizeof buffer, error)) return FALSE; if (socket->priv->remote_address) g_object_unref (socket->priv->remote_address); socket->priv->remote_address = g_object_ref (address); while (1) { if (connect (socket->priv->fd, (struct sockaddr *) &buffer, g_socket_address_get_native_size (address)) < 0) { int errsv = get_socket_errno (); if (errsv == EINTR) continue; #ifndef G_OS_WIN32 if (errsv == EINPROGRESS) #else if (errsv == WSAEWOULDBLOCK) #endif { win32_unset_event_mask (socket, FD_CONNECT); if (socket->priv->blocking) { if (g_socket_condition_wait (socket, G_IO_OUT, cancellable, error)) { if (g_socket_check_connect_result (socket, error)) break; } } else { g_set_error_literal (error, G_IO_ERROR, G_IO_ERROR_PENDING, _("Connection in progress")); socket->priv->connect_pending = TRUE; } } else g_set_error_literal (error, G_IO_ERROR, socket_io_error_from_errno (errsv), socket_strerror (errsv)); return FALSE; } break; } win32_unset_event_mask (socket, FD_CONNECT); socket->priv->connected = TRUE; return TRUE; } /** * g_socket_check_connect_result: * @socket: a #GSocket * @error: #GError for error reporting, or %NULL to ignore. * * Checks and resets the pending connect error for the socket. * This is used to check for errors when g_socket_connect() is * used in non-blocking mode. * * Returns: %TRUE if no error, %FALSE otherwise, setting @error to the error * * Since: 2.22 */ gboolean g_socket_check_connect_result (GSocket *socket, GError **error) { int value; g_return_val_if_fail (G_IS_SOCKET (socket), FALSE); if (!check_socket (socket, error)) return FALSE; if (!check_timeout (socket, error)) return FALSE; if (!g_socket_get_option (socket, SOL_SOCKET, SO_ERROR, &value, error)) { g_prefix_error (error, _("Unable to get pending error: ")); return FALSE; } if (value != 0) { g_set_error_literal (error, G_IO_ERROR, socket_io_error_from_errno (value), socket_strerror (value)); if (socket->priv->remote_address) { g_object_unref (socket->priv->remote_address); socket->priv->remote_address = NULL; } return FALSE; } socket->priv->connected = TRUE; return TRUE; } /** * g_socket_get_available_bytes: * @socket: a #GSocket * * Get the amount of data pending in the OS input buffer. * * If @socket is a UDP or SCTP socket, this will return the size of * just the next packet, even if additional packets are buffered after * that one. * * Note that on Windows, this function is rather inefficient in the * UDP case, and so if you know any plausible upper bound on the size * of the incoming packet, it is better to just do a * g_socket_receive() with a buffer of that size, rather than calling * g_socket_get_available_bytes() first and then doing a receive of * exactly the right size. * * Returns: the number of bytes that can be read from the socket * without blocking or truncating, or -1 on error. * * Since: 2.32 */ gssize g_socket_get_available_bytes (GSocket *socket) { #ifdef G_OS_WIN32 const gint bufsize = 64 * 1024; static guchar *buf = NULL; u_long avail; #else gint avail; #endif g_return_val_if_fail (G_IS_SOCKET (socket), -1); #if defined (SO_NREAD) if (!g_socket_get_option (socket, SOL_SOCKET, SO_NREAD, &avail, NULL)) return -1; #elif !defined (G_OS_WIN32) if (ioctl (socket->priv->fd, FIONREAD, &avail) < 0) avail = -1; #else if (socket->priv->type == G_SOCKET_TYPE_DATAGRAM) { if (G_UNLIKELY (g_once_init_enter (&buf))) g_once_init_leave (&buf, g_malloc (bufsize)); avail = recv (socket->priv->fd, buf, bufsize, MSG_PEEK); if (avail == -1 && get_socket_errno () == WSAEWOULDBLOCK) avail = 0; } else { if (ioctlsocket (socket->priv->fd, FIONREAD, &avail) < 0) avail = -1; } #endif return avail; } /** * g_socket_receive: * @socket: a #GSocket * @buffer: (array length=size) (element-type guint8): a buffer to * read data into (which should be at least @size bytes long). * @size: the number of bytes you want to read from the socket * @cancellable: (allow-none): a %GCancellable or %NULL * @error: #GError for error reporting, or %NULL to ignore. * * Receive data (up to @size bytes) from a socket. This is mainly used by * connection-oriented sockets; it is identical to g_socket_receive_from() * with @address set to %NULL. * * For %G_SOCKET_TYPE_DATAGRAM and %G_SOCKET_TYPE_SEQPACKET sockets, * g_socket_receive() will always read either 0 or 1 complete messages from * the socket. If the received message is too large to fit in @buffer, then * the data beyond @size bytes will be discarded, without any explicit * indication that this has occurred. * * For %G_SOCKET_TYPE_STREAM sockets, g_socket_receive() can return any * number of bytes, up to @size. If more than @size bytes have been * received, the additional data will be returned in future calls to * g_socket_receive(). * * If the socket is in blocking mode the call will block until there * is some data to receive, the connection is closed, or there is an * error. If there is no data available and the socket is in * non-blocking mode, a %G_IO_ERROR_WOULD_BLOCK error will be * returned. To be notified when data is available, wait for the * %G_IO_IN condition. * * On error -1 is returned and @error is set accordingly. * * Returns: Number of bytes read, or 0 if the connection was closed by * the peer, or -1 on error * * Since: 2.22 */ gssize g_socket_receive (GSocket *socket, gchar *buffer, gsize size, GCancellable *cancellable, GError **error) { return g_socket_receive_with_blocking (socket, buffer, size, socket->priv->blocking, cancellable, error); } /** * g_socket_receive_with_blocking: * @socket: a #GSocket * @buffer: (array length=size) (element-type guint8): a buffer to * read data into (which should be at least @size bytes long). * @size: the number of bytes you want to read from the socket * @blocking: whether to do blocking or non-blocking I/O * @cancellable: (allow-none): a %GCancellable or %NULL * @error: #GError for error reporting, or %NULL to ignore. * * This behaves exactly the same as g_socket_receive(), except that * the choice of blocking or non-blocking behavior is determined by * the @blocking argument rather than by @socket's properties. * * Returns: Number of bytes read, or 0 if the connection was closed by * the peer, or -1 on error * * Since: 2.26 */ gssize g_socket_receive_with_blocking (GSocket *socket, gchar *buffer, gsize size, gboolean blocking, GCancellable *cancellable, GError **error) { gssize ret; g_return_val_if_fail (G_IS_SOCKET (socket) && buffer != NULL, -1); if (!check_socket (socket, error)) return -1; if (!check_timeout (socket, error)) return -1; if (g_cancellable_set_error_if_cancelled (cancellable, error)) return -1; while (1) { if ((ret = recv (socket->priv->fd, buffer, size, 0)) < 0) { int errsv = get_socket_errno (); if (errsv == EINTR) continue; #ifdef WSAEWOULDBLOCK if (errsv == WSAEWOULDBLOCK) #else if (errsv == EWOULDBLOCK || errsv == EAGAIN) #endif { win32_unset_event_mask (socket, FD_READ); if (blocking) { if (!g_socket_condition_wait (socket, G_IO_IN, cancellable, error)) return -1; continue; } } win32_unset_event_mask (socket, FD_READ); socket_set_error_lazy (error, errsv, _("Error receiving data: %s")); return -1; } win32_unset_event_mask (socket, FD_READ); break; } return ret; } /** * g_socket_receive_from: * @socket: a #GSocket * @address: (out) (allow-none): a pointer to a #GSocketAddress * pointer, or %NULL * @buffer: (array length=size) (element-type guint8): a buffer to * read data into (which should be at least @size bytes long). * @size: the number of bytes you want to read from the socket * @cancellable: (allow-none): a %GCancellable or %NULL * @error: #GError for error reporting, or %NULL to ignore. * * Receive data (up to @size bytes) from a socket. * * If @address is non-%NULL then @address will be set equal to the * source address of the received packet. * @address is owned by the caller. * * See g_socket_receive() for additional information. * * Returns: Number of bytes read, or 0 if the connection was closed by * the peer, or -1 on error * * Since: 2.22 */ gssize g_socket_receive_from (GSocket *socket, GSocketAddress **address, gchar *buffer, gsize size, GCancellable *cancellable, GError **error) { GInputVector v; v.buffer = buffer; v.size = size; return g_socket_receive_message (socket, address, &v, 1, NULL, 0, NULL, cancellable, error); } /* See the comment about SIGPIPE above. */ #ifdef MSG_NOSIGNAL #define G_SOCKET_DEFAULT_SEND_FLAGS MSG_NOSIGNAL #else #define G_SOCKET_DEFAULT_SEND_FLAGS 0 #endif /** * g_socket_send: * @socket: a #GSocket * @buffer: (array length=size) (element-type guint8): the buffer * containing the data to send. * @size: the number of bytes to send * @cancellable: (allow-none): a %GCancellable or %NULL * @error: #GError for error reporting, or %NULL to ignore. * * Tries to send @size bytes from @buffer on the socket. This is * mainly used by connection-oriented sockets; it is identical to * g_socket_send_to() with @address set to %NULL. * * If the socket is in blocking mode the call will block until there is * space for the data in the socket queue. If there is no space available * and the socket is in non-blocking mode a %G_IO_ERROR_WOULD_BLOCK error * will be returned. To be notified when space is available, wait for the * %G_IO_OUT condition. Note though that you may still receive * %G_IO_ERROR_WOULD_BLOCK from g_socket_send() even if you were previously * notified of a %G_IO_OUT condition. (On Windows in particular, this is * very common due to the way the underlying APIs work.) * * On error -1 is returned and @error is set accordingly. * * Returns: Number of bytes written (which may be less than @size), or -1 * on error * * Since: 2.22 */ gssize g_socket_send (GSocket *socket, const gchar *buffer, gsize size, GCancellable *cancellable, GError **error) { return g_socket_send_with_blocking (socket, buffer, size, socket->priv->blocking, cancellable, error); } /** * g_socket_send_with_blocking: * @socket: a #GSocket * @buffer: (array length=size) (element-type guint8): the buffer * containing the data to send. * @size: the number of bytes to send * @blocking: whether to do blocking or non-blocking I/O * @cancellable: (allow-none): a %GCancellable or %NULL * @error: #GError for error reporting, or %NULL to ignore. * * This behaves exactly the same as g_socket_send(), except that * the choice of blocking or non-blocking behavior is determined by * the @blocking argument rather than by @socket's properties. * * Returns: Number of bytes written (which may be less than @size), or -1 * on error * * Since: 2.26 */ gssize g_socket_send_with_blocking (GSocket *socket, const gchar *buffer, gsize size, gboolean blocking, GCancellable *cancellable, GError **error) { gssize ret; g_return_val_if_fail (G_IS_SOCKET (socket) && buffer != NULL, -1); if (!check_socket (socket, error)) return -1; if (!check_timeout (socket, error)) return -1; if (g_cancellable_set_error_if_cancelled (cancellable, error)) return -1; while (1) { if ((ret = send (socket->priv->fd, buffer, size, G_SOCKET_DEFAULT_SEND_FLAGS)) < 0) { int errsv = get_socket_errno (); if (errsv == EINTR) continue; #ifdef WSAEWOULDBLOCK if (errsv == WSAEWOULDBLOCK) #else if (errsv == EWOULDBLOCK || errsv == EAGAIN) #endif { win32_unset_event_mask (socket, FD_WRITE); if (blocking) { if (!g_socket_condition_wait (socket, G_IO_OUT, cancellable, error)) return -1; continue; } } socket_set_error_lazy (error, errsv, _("Error sending data: %s")); return -1; } break; } return ret; } /** * g_socket_send_to: * @socket: a #GSocket * @address: (allow-none): a #GSocketAddress, or %NULL * @buffer: (array length=size) (element-type guint8): the buffer * containing the data to send. * @size: the number of bytes to send * @cancellable: (allow-none): a %GCancellable or %NULL * @error: #GError for error reporting, or %NULL to ignore. * * Tries to send @size bytes from @buffer to @address. If @address is * %NULL then the message is sent to the default receiver (set by * g_socket_connect()). * * See g_socket_send() for additional information. * * Returns: Number of bytes written (which may be less than @size), or -1 * on error * * Since: 2.22 */ gssize g_socket_send_to (GSocket *socket, GSocketAddress *address, const gchar *buffer, gsize size, GCancellable *cancellable, GError **error) { GOutputVector v; v.buffer = buffer; v.size = size; return g_socket_send_message (socket, address, &v, 1, NULL, 0, 0, cancellable, error); } /** * g_socket_shutdown: * @socket: a #GSocket * @shutdown_read: whether to shut down the read side * @shutdown_write: whether to shut down the write side * @error: #GError for error reporting, or %NULL to ignore. * * Shut down part of a full-duplex connection. * * If @shutdown_read is %TRUE then the receiving side of the connection * is shut down, and further reading is disallowed. * * If @shutdown_write is %TRUE then the sending side of the connection * is shut down, and further writing is disallowed. * * It is allowed for both @shutdown_read and @shutdown_write to be %TRUE. * * One example where this is used is graceful disconnect for TCP connections * where you close the sending side, then wait for the other side to close * the connection, thus ensuring that the other side saw all sent data. * * Returns: %TRUE on success, %FALSE on error * * Since: 2.22 */ gboolean g_socket_shutdown (GSocket *socket, gboolean shutdown_read, gboolean shutdown_write, GError **error) { int how; g_return_val_if_fail (G_IS_SOCKET (socket), TRUE); if (!check_socket (socket, error)) return FALSE; /* Do nothing? */ if (!shutdown_read && !shutdown_write) return TRUE; #ifndef G_OS_WIN32 if (shutdown_read && shutdown_write) how = SHUT_RDWR; else if (shutdown_read) how = SHUT_RD; else how = SHUT_WR; #else if (shutdown_read && shutdown_write) how = SD_BOTH; else if (shutdown_read) how = SD_RECEIVE; else how = SD_SEND; #endif if (shutdown (socket->priv->fd, how) != 0) { int errsv = get_socket_errno (); g_set_error (error, G_IO_ERROR, socket_io_error_from_errno (errsv), _("Unable to shutdown socket: %s"), socket_strerror (errsv)); return FALSE; } if (shutdown_read && shutdown_write) socket->priv->connected = FALSE; return TRUE; } /** * g_socket_close: * @socket: a #GSocket * @error: #GError for error reporting, or %NULL to ignore. * * Closes the socket, shutting down any active connection. * * Closing a socket does not wait for all outstanding I/O operations * to finish, so the caller should not rely on them to be guaranteed * to complete even if the close returns with no error. * * Once the socket is closed, all other operations will return * %G_IO_ERROR_CLOSED. Closing a socket multiple times will not * return an error. * * Sockets will be automatically closed when the last reference * is dropped, but you might want to call this function to make sure * resources are released as early as possible. * * Beware that due to the way that TCP works, it is possible for * recently-sent data to be lost if either you close a socket while the * %G_IO_IN condition is set, or else if the remote connection tries to * send something to you after you close the socket but before it has * finished reading all of the data you sent. There is no easy generic * way to avoid this problem; the easiest fix is to design the network * protocol such that the client will never send data "out of turn". * Another solution is for the server to half-close the connection by * calling g_socket_shutdown() with only the @shutdown_write flag set, * and then wait for the client to notice this and close its side of the * connection, after which the server can safely call g_socket_close(). * (This is what #GTcpConnection does if you call * g_tcp_connection_set_graceful_disconnect(). But of course, this * only works if the client will close its connection after the server * does.) * * Returns: %TRUE on success, %FALSE on error * * Since: 2.22 */ gboolean g_socket_close (GSocket *socket, GError **error) { int res; g_return_val_if_fail (G_IS_SOCKET (socket), TRUE); if (socket->priv->closed) return TRUE; /* Multiple close not an error */ if (!check_socket (socket, error)) return FALSE; while (1) { #ifdef G_OS_WIN32 res = closesocket (socket->priv->fd); #else res = close (socket->priv->fd); #endif if (res == -1) { int errsv = get_socket_errno (); if (errsv == EINTR) continue; g_set_error (error, G_IO_ERROR, socket_io_error_from_errno (errsv), _("Error closing socket: %s"), socket_strerror (errsv)); return FALSE; } break; } socket->priv->connected = FALSE; socket->priv->closed = TRUE; if (socket->priv->remote_address) { g_object_unref (socket->priv->remote_address); socket->priv->remote_address = NULL; } return TRUE; } /** * g_socket_is_closed: * @socket: a #GSocket * * Checks whether a socket is closed. * * Returns: %TRUE if socket is closed, %FALSE otherwise * * Since: 2.22 */ gboolean g_socket_is_closed (GSocket *socket) { return socket->priv->closed; } #ifdef G_OS_WIN32 /* Broken source, used on errors */ static gboolean broken_dispatch (GSource *source, GSourceFunc callback, gpointer user_data) { return TRUE; } static GSourceFuncs broken_funcs = { NULL, NULL, broken_dispatch, NULL }; static gint network_events_for_condition (GIOCondition condition) { int event_mask = 0; if (condition & G_IO_IN) event_mask |= (FD_READ | FD_ACCEPT); if (condition & G_IO_OUT) event_mask |= (FD_WRITE | FD_CONNECT); event_mask |= FD_CLOSE; return event_mask; } static void ensure_event (GSocket *socket) { if (socket->priv->event == WSA_INVALID_EVENT) socket->priv->event = WSACreateEvent(); } static void update_select_events (GSocket *socket) { int event_mask; GIOCondition *ptr; GList *l; WSAEVENT event; ensure_event (socket); event_mask = 0; for (l = socket->priv->requested_conditions; l != NULL; l = l->next) { ptr = l->data; event_mask |= network_events_for_condition (*ptr); } if (event_mask != socket->priv->selected_events) { /* If no events selected, disable event so we can unset nonblocking mode */ if (event_mask == 0) event = NULL; else event = socket->priv->event; if (WSAEventSelect (socket->priv->fd, event, event_mask) == 0) socket->priv->selected_events = event_mask; } } static void add_condition_watch (GSocket *socket, GIOCondition *condition) { g_mutex_lock (&socket->priv->win32_source_lock); g_assert (g_list_find (socket->priv->requested_conditions, condition) == NULL); socket->priv->requested_conditions = g_list_prepend (socket->priv->requested_conditions, condition); update_select_events (socket); g_mutex_unlock (&socket->priv->win32_source_lock); } static void remove_condition_watch (GSocket *socket, GIOCondition *condition) { g_mutex_lock (&socket->priv->win32_source_lock); g_assert (g_list_find (socket->priv->requested_conditions, condition) != NULL); socket->priv->requested_conditions = g_list_remove (socket->priv->requested_conditions, condition); update_select_events (socket); g_mutex_unlock (&socket->priv->win32_source_lock); } static GIOCondition update_condition (GSocket *socket) { WSANETWORKEVENTS events; GIOCondition condition; if (WSAEnumNetworkEvents (socket->priv->fd, socket->priv->event, &events) == 0) { socket->priv->current_events |= events.lNetworkEvents; if (events.lNetworkEvents & FD_WRITE && events.iErrorCode[FD_WRITE_BIT] != 0) socket->priv->current_errors |= FD_WRITE; if (events.lNetworkEvents & FD_CONNECT && events.iErrorCode[FD_CONNECT_BIT] != 0) socket->priv->current_errors |= FD_CONNECT; } condition = 0; if (socket->priv->current_events & (FD_READ | FD_ACCEPT)) condition |= G_IO_IN; if (socket->priv->current_events & FD_CLOSE) { int r, errsv, buffer; r = recv (socket->priv->fd, &buffer, sizeof (buffer), MSG_PEEK); if (r < 0) errsv = get_socket_errno (); if (r > 0 || (r < 0 && errsv == WSAENOTCONN)) condition |= G_IO_IN; else if (r == 0 || (r < 0 && (errsv == WSAESHUTDOWN || errsv == WSAECONNRESET || errsv == WSAECONNABORTED || errsv == WSAENETRESET))) condition |= G_IO_HUP; else condition |= G_IO_ERR; } if (socket->priv->closed) condition |= G_IO_HUP; /* Never report both G_IO_OUT and HUP, these are mutually exclusive (can't write to a closed socket) */ if ((condition & G_IO_HUP) == 0 && socket->priv->current_events & FD_WRITE) { if (socket->priv->current_errors & FD_WRITE) condition |= G_IO_ERR; else condition |= G_IO_OUT; } else { if (socket->priv->current_events & FD_CONNECT) { if (socket->priv->current_errors & FD_CONNECT) condition |= (G_IO_HUP | G_IO_ERR); else condition |= G_IO_OUT; } } return condition; } #endif typedef struct { GSource source; #ifdef G_OS_WIN32 GPollFD pollfd; #else gpointer fd_tag; #endif GSocket *socket; GIOCondition condition; } GSocketSource; #ifdef G_OS_WIN32 static gboolean socket_source_prepare_win32 (GSource *source, gint *timeout) { GSocketSource *socket_source = (GSocketSource *)source; *timeout = -1; return (update_condition (socket_source->socket) & socket_source->condition) != 0; } static gboolean socket_source_check_win32 (GSource *source) { int timeout; return socket_source_prepare_win32 (source, &timeout); } #endif static gboolean socket_source_dispatch (GSource *source, GSourceFunc callback, gpointer user_data) { GSocketSourceFunc func = (GSocketSourceFunc)callback; GSocketSource *socket_source = (GSocketSource *)source; GSocket *socket = socket_source->socket; gint64 timeout; guint events; gboolean ret; #ifdef G_OS_WIN32 events = update_condition (socket_source->socket); #else events = g_source_query_unix_fd (source, socket_source->fd_tag); #endif timeout = g_source_get_ready_time (source); if (timeout >= 0 && timeout < g_source_get_time (source)) { socket->priv->timed_out = TRUE; events |= (G_IO_IN | G_IO_OUT); } ret = (*func) (socket, events & socket_source->condition, user_data); if (socket->priv->timeout) g_source_set_ready_time (source, g_get_monotonic_time () + socket->priv->timeout * 1000000); else g_source_set_ready_time (source, -1); return ret; } static void socket_source_finalize (GSource *source) { GSocketSource *socket_source = (GSocketSource *)source; GSocket *socket; socket = socket_source->socket; #ifdef G_OS_WIN32 remove_condition_watch (socket, &socket_source->condition); #endif g_object_unref (socket); } static gboolean socket_source_closure_callback (GSocket *socket, GIOCondition condition, gpointer data) { GClosure *closure = data; GValue params[2] = { G_VALUE_INIT, G_VALUE_INIT }; GValue result_value = G_VALUE_INIT; gboolean result; g_value_init (&result_value, G_TYPE_BOOLEAN); g_value_init (¶ms[0], G_TYPE_SOCKET); g_value_set_object (¶ms[0], socket); g_value_init (¶ms[1], G_TYPE_IO_CONDITION); g_value_set_flags (¶ms[1], condition); g_closure_invoke (closure, &result_value, 2, params, NULL); result = g_value_get_boolean (&result_value); g_value_unset (&result_value); g_value_unset (¶ms[0]); g_value_unset (¶ms[1]); return result; } static GSourceFuncs socket_source_funcs = { #ifdef G_OS_WIN32 socket_source_prepare_win32, socket_source_check_win32, #else NULL, NULL, /* check, prepare */ #endif socket_source_dispatch, socket_source_finalize, (GSourceFunc)socket_source_closure_callback, }; static GSource * socket_source_new (GSocket *socket, GIOCondition condition, GCancellable *cancellable) { GSource *source; GSocketSource *socket_source; #ifdef G_OS_WIN32 ensure_event (socket); if (socket->priv->event == WSA_INVALID_EVENT) { g_warning ("Failed to create WSAEvent"); return g_source_new (&broken_funcs, sizeof (GSource)); } #endif condition |= G_IO_HUP | G_IO_ERR | G_IO_NVAL; source = g_source_new (&socket_source_funcs, sizeof (GSocketSource)); g_source_set_name (source, "GSocket"); socket_source = (GSocketSource *)source; socket_source->socket = g_object_ref (socket); socket_source->condition = condition; if (cancellable) { GSource *cancellable_source; cancellable_source = g_cancellable_source_new (cancellable); g_source_add_child_source (source, cancellable_source); g_source_set_dummy_callback (cancellable_source); g_source_unref (cancellable_source); } #ifdef G_OS_WIN32 add_condition_watch (socket, &socket_source->condition); socket_source->pollfd.fd = (gintptr) socket->priv->event; socket_source->pollfd.events = condition; socket_source->pollfd.revents = 0; g_source_add_poll (source, &socket_source->pollfd); #else socket_source->fd_tag = g_source_add_unix_fd (source, socket->priv->fd, condition); #endif if (socket->priv->timeout) g_source_set_ready_time (source, g_get_monotonic_time () + socket->priv->timeout * 1000000); else g_source_set_ready_time (source, -1); return source; } /** * g_socket_create_source: (skip) * @socket: a #GSocket * @condition: a #GIOCondition mask to monitor * @cancellable: (allow-none): a %GCancellable or %NULL * * Creates a #GSource that can be attached to a %GMainContext to monitor * for the availability of the specified @condition on the socket. The #GSource * keeps a reference to the @socket. * * The callback on the source is of the #GSocketSourceFunc type. * * It is meaningless to specify %G_IO_ERR or %G_IO_HUP in @condition; * these conditions will always be reported output if they are true. * * @cancellable if not %NULL can be used to cancel the source, which will * cause the source to trigger, reporting the current condition (which * is likely 0 unless cancellation happened at the same time as a * condition change). You can check for this in the callback using * g_cancellable_is_cancelled(). * * If @socket has a timeout set, and it is reached before @condition * occurs, the source will then trigger anyway, reporting %G_IO_IN or * %G_IO_OUT depending on @condition. However, @socket will have been * marked as having had a timeout, and so the next #GSocket I/O method * you call will then fail with a %G_IO_ERROR_TIMED_OUT. * * Returns: (transfer full): a newly allocated %GSource, free with g_source_unref(). * * Since: 2.22 */ GSource * g_socket_create_source (GSocket *socket, GIOCondition condition, GCancellable *cancellable) { g_return_val_if_fail (G_IS_SOCKET (socket) && (cancellable == NULL || G_IS_CANCELLABLE (cancellable)), NULL); return socket_source_new (socket, condition, cancellable); } /** * g_socket_condition_check: * @socket: a #GSocket * @condition: a #GIOCondition mask to check * * Checks on the readiness of @socket to perform operations. * The operations specified in @condition are checked for and masked * against the currently-satisfied conditions on @socket. The result * is returned. * * Note that on Windows, it is possible for an operation to return * %G_IO_ERROR_WOULD_BLOCK even immediately after * g_socket_condition_check() has claimed that the socket is ready for * writing. Rather than calling g_socket_condition_check() and then * writing to the socket if it succeeds, it is generally better to * simply try writing to the socket right away, and try again later if * the initial attempt returns %G_IO_ERROR_WOULD_BLOCK. * * It is meaningless to specify %G_IO_ERR or %G_IO_HUP in condition; * these conditions will always be set in the output if they are true. * * This call never blocks. * * Returns: the @GIOCondition mask of the current state * * Since: 2.22 */ GIOCondition g_socket_condition_check (GSocket *socket, GIOCondition condition) { g_return_val_if_fail (G_IS_SOCKET (socket), 0); if (!check_socket (socket, NULL)) return 0; #ifdef G_OS_WIN32 { GIOCondition current_condition; condition |= G_IO_ERR | G_IO_HUP; add_condition_watch (socket, &condition); current_condition = update_condition (socket); remove_condition_watch (socket, &condition); return condition & current_condition; } #else { GPollFD poll_fd; gint result; poll_fd.fd = socket->priv->fd; poll_fd.events = condition; poll_fd.revents = 0; do result = g_poll (&poll_fd, 1, 0); while (result == -1 && get_socket_errno () == EINTR); return poll_fd.revents; } #endif } /** * g_socket_condition_wait: * @socket: a #GSocket * @condition: a #GIOCondition mask to wait for * @cancellable: (allow-none): a #GCancellable, or %NULL * @error: a #GError pointer, or %NULL * * Waits for @condition to become true on @socket. When the condition * is met, %TRUE is returned. * * If @cancellable is cancelled before the condition is met, or if the * socket has a timeout set and it is reached before the condition is * met, then %FALSE is returned and @error, if non-%NULL, is set to * the appropriate value (%G_IO_ERROR_CANCELLED or * %G_IO_ERROR_TIMED_OUT). * * See also g_socket_condition_timed_wait(). * * Returns: %TRUE if the condition was met, %FALSE otherwise * * Since: 2.22 */ gboolean g_socket_condition_wait (GSocket *socket, GIOCondition condition, GCancellable *cancellable, GError **error) { g_return_val_if_fail (G_IS_SOCKET (socket), FALSE); return g_socket_condition_timed_wait (socket, condition, -1, cancellable, error); } /** * g_socket_condition_timed_wait: * @socket: a #GSocket * @condition: a #GIOCondition mask to wait for * @timeout: the maximum time (in microseconds) to wait, or -1 * @cancellable: (allow-none): a #GCancellable, or %NULL * @error: a #GError pointer, or %NULL * * Waits for up to @timeout microseconds for @condition to become true * on @socket. If the condition is met, %TRUE is returned. * * If @cancellable is cancelled before the condition is met, or if * @timeout (or the socket's #GSocket:timeout) is reached before the * condition is met, then %FALSE is returned and @error, if non-%NULL, * is set to the appropriate value (%G_IO_ERROR_CANCELLED or * %G_IO_ERROR_TIMED_OUT). * * If you don't want a timeout, use g_socket_condition_wait(). * (Alternatively, you can pass -1 for @timeout.) * * Note that although @timeout is in microseconds for consistency with * other GLib APIs, this function actually only has millisecond * resolution, and the behavior is undefined if @timeout is not an * exact number of milliseconds. * * Returns: %TRUE if the condition was met, %FALSE otherwise * * Since: 2.32 */ gboolean g_socket_condition_timed_wait (GSocket *socket, GIOCondition condition, gint64 timeout, GCancellable *cancellable, GError **error) { gint64 start_time; g_return_val_if_fail (G_IS_SOCKET (socket), FALSE); if (!check_socket (socket, error)) return FALSE; if (g_cancellable_set_error_if_cancelled (cancellable, error)) return FALSE; if (socket->priv->timeout && (timeout < 0 || socket->priv->timeout < timeout / G_USEC_PER_SEC)) timeout = socket->priv->timeout * 1000; else if (timeout != -1) timeout = timeout / 1000; start_time = g_get_monotonic_time (); #ifdef G_OS_WIN32 { GIOCondition current_condition; WSAEVENT events[2]; DWORD res; GPollFD cancel_fd; int num_events; /* Always check these */ condition |= G_IO_ERR | G_IO_HUP; add_condition_watch (socket, &condition); num_events = 0; events[num_events++] = socket->priv->event; if (g_cancellable_make_pollfd (cancellable, &cancel_fd)) events[num_events++] = (WSAEVENT)cancel_fd.fd; if (timeout == -1) timeout = WSA_INFINITE; current_condition = update_condition (socket); while ((condition & current_condition) == 0) { res = WSAWaitForMultipleEvents (num_events, events, FALSE, timeout, FALSE); if (res == WSA_WAIT_FAILED) { int errsv = get_socket_errno (); g_set_error (error, G_IO_ERROR, socket_io_error_from_errno (errsv), _("Waiting for socket condition: %s"), socket_strerror (errsv)); break; } else if (res == WSA_WAIT_TIMEOUT) { g_set_error_literal (error, G_IO_ERROR, G_IO_ERROR_TIMED_OUT, _("Socket I/O timed out")); break; } if (g_cancellable_set_error_if_cancelled (cancellable, error)) break; current_condition = update_condition (socket); if (timeout != WSA_INFINITE) { timeout -= (g_get_monotonic_time () - start_time) * 1000; if (timeout < 0) timeout = 0; } } remove_condition_watch (socket, &condition); if (num_events > 1) g_cancellable_release_fd (cancellable); return (condition & current_condition) != 0; } #else { GPollFD poll_fd[2]; gint result; gint num; poll_fd[0].fd = socket->priv->fd; poll_fd[0].events = condition; num = 1; if (g_cancellable_make_pollfd (cancellable, &poll_fd[1])) num++; while (TRUE) { result = g_poll (poll_fd, num, timeout); if (result != -1 || errno != EINTR) break; if (timeout != -1) { timeout -= (g_get_monotonic_time () - start_time) / 1000; if (timeout < 0) timeout = 0; } } if (num > 1) g_cancellable_release_fd (cancellable); if (result == 0) { g_set_error_literal (error, G_IO_ERROR, G_IO_ERROR_TIMED_OUT, _("Socket I/O timed out")); return FALSE; } return !g_cancellable_set_error_if_cancelled (cancellable, error); } #endif } /** * g_socket_send_message: * @socket: a #GSocket * @address: (allow-none): a #GSocketAddress, or %NULL * @vectors: (array length=num_vectors): an array of #GOutputVector structs * @num_vectors: the number of elements in @vectors, or -1 * @messages: (array length=num_messages) (allow-none): a pointer to an * array of #GSocketControlMessages, or %NULL. * @num_messages: number of elements in @messages, or -1. * @flags: an int containing #GSocketMsgFlags flags * @cancellable: (allow-none): a %GCancellable or %NULL * @error: #GError for error reporting, or %NULL to ignore. * * Send data to @address on @socket. For sending multiple messages see * g_socket_send_messages(); for easier use, see * g_socket_send() and g_socket_send_to(). * * If @address is %NULL then the message is sent to the default receiver * (set by g_socket_connect()). * * @vectors must point to an array of #GOutputVector structs and * @num_vectors must be the length of this array. (If @num_vectors is -1, * then @vectors is assumed to be terminated by a #GOutputVector with a * %NULL buffer pointer.) The #GOutputVector structs describe the buffers * that the sent data will be gathered from. Using multiple * #GOutputVectors is more memory-efficient than manually copying * data from multiple sources into a single buffer, and more * network-efficient than making multiple calls to g_socket_send(). * * @messages, if non-%NULL, is taken to point to an array of @num_messages * #GSocketControlMessage instances. These correspond to the control * messages to be sent on the socket. * If @num_messages is -1 then @messages is treated as a %NULL-terminated * array. * * @flags modify how the message is sent. The commonly available arguments * for this are available in the #GSocketMsgFlags enum, but the * values there are the same as the system values, and the flags * are passed in as-is, so you can pass in system-specific flags too. * * If the socket is in blocking mode the call will block until there is * space for the data in the socket queue. If there is no space available * and the socket is in non-blocking mode a %G_IO_ERROR_WOULD_BLOCK error * will be returned. To be notified when space is available, wait for the * %G_IO_OUT condition. Note though that you may still receive * %G_IO_ERROR_WOULD_BLOCK from g_socket_send() even if you were previously * notified of a %G_IO_OUT condition. (On Windows in particular, this is * very common due to the way the underlying APIs work.) * * On error -1 is returned and @error is set accordingly. * * Returns: Number of bytes written (which may be less than @size), or -1 * on error * * Since: 2.22 */ gssize g_socket_send_message (GSocket *socket, GSocketAddress *address, GOutputVector *vectors, gint num_vectors, GSocketControlMessage **messages, gint num_messages, gint flags, GCancellable *cancellable, GError **error) { GOutputVector one_vector; char zero; g_return_val_if_fail (G_IS_SOCKET (socket), -1); g_return_val_if_fail (address == NULL || G_IS_SOCKET_ADDRESS (address), -1); g_return_val_if_fail (num_vectors == 0 || vectors != NULL, -1); g_return_val_if_fail (num_messages == 0 || messages != NULL, -1); g_return_val_if_fail (cancellable == NULL || G_IS_CANCELLABLE (cancellable), -1); g_return_val_if_fail (error == NULL || *error == NULL, -1); if (!check_socket (socket, error)) return -1; if (!check_timeout (socket, error)) return -1; if (g_cancellable_set_error_if_cancelled (cancellable, error)) return -1; if (num_vectors == -1) { for (num_vectors = 0; vectors[num_vectors].buffer != NULL; num_vectors++) ; } if (num_messages == -1) { for (num_messages = 0; messages != NULL && messages[num_messages] != NULL; num_messages++) ; } if (num_vectors == 0) { zero = '\0'; one_vector.buffer = &zero; one_vector.size = 1; num_vectors = 1; vectors = &one_vector; } #ifndef G_OS_WIN32 { struct msghdr msg; gssize result; msg.msg_flags = 0; /* name */ if (address) { msg.msg_namelen = g_socket_address_get_native_size (address); msg.msg_name = g_alloca (msg.msg_namelen); if (!g_socket_address_to_native (address, msg.msg_name, msg.msg_namelen, error)) return -1; } else { msg.msg_name = NULL; msg.msg_namelen = 0; } /* iov */ { /* this entire expression will be evaluated at compile time */ if (sizeof *msg.msg_iov == sizeof *vectors && sizeof msg.msg_iov->iov_base == sizeof vectors->buffer && G_STRUCT_OFFSET (struct iovec, iov_base) == G_STRUCT_OFFSET (GOutputVector, buffer) && sizeof msg.msg_iov->iov_len == sizeof vectors->size && G_STRUCT_OFFSET (struct iovec, iov_len) == G_STRUCT_OFFSET (GOutputVector, size)) /* ABI is compatible */ { msg.msg_iov = (struct iovec *) vectors; msg.msg_iovlen = num_vectors; } else /* ABI is incompatible */ { gint i; msg.msg_iov = g_newa (struct iovec, num_vectors); for (i = 0; i < num_vectors; i++) { msg.msg_iov[i].iov_base = (void *) vectors[i].buffer; msg.msg_iov[i].iov_len = vectors[i].size; } msg.msg_iovlen = num_vectors; } } /* control */ { struct cmsghdr *cmsg; gint i; msg.msg_controllen = 0; for (i = 0; i < num_messages; i++) msg.msg_controllen += CMSG_SPACE (g_socket_control_message_get_size (messages[i])); if (msg.msg_controllen == 0) msg.msg_control = NULL; else { msg.msg_control = g_alloca (msg.msg_controllen); memset (msg.msg_control, '\0', msg.msg_controllen); } cmsg = CMSG_FIRSTHDR (&msg); for (i = 0; i < num_messages; i++) { cmsg->cmsg_level = g_socket_control_message_get_level (messages[i]); cmsg->cmsg_type = g_socket_control_message_get_msg_type (messages[i]); cmsg->cmsg_len = CMSG_LEN (g_socket_control_message_get_size (messages[i])); g_socket_control_message_serialize (messages[i], CMSG_DATA (cmsg)); cmsg = CMSG_NXTHDR (&msg, cmsg); } g_assert (cmsg == NULL); } while (1) { result = sendmsg (socket->priv->fd, &msg, flags | G_SOCKET_DEFAULT_SEND_FLAGS); if (result < 0) { int errsv = get_socket_errno (); if (errsv == EINTR) continue; if (socket->priv->blocking && (errsv == EWOULDBLOCK || errsv == EAGAIN)) { if (!g_socket_condition_wait (socket, G_IO_OUT, cancellable, error)) return -1; continue; } socket_set_error_lazy (error, errsv, _("Error sending message: %s")); return -1; } break; } return result; } #else { struct sockaddr_storage addr; guint addrlen; DWORD bytes_sent; int result; WSABUF *bufs; gint i; /* Win32 doesn't support control messages. Actually this is possible for raw and datagram sockets via WSASendMessage on Vista or later, but that doesn't seem very useful */ if (num_messages != 0) { g_set_error_literal (error, G_IO_ERROR, G_IO_ERROR_NOT_SUPPORTED, _("GSocketControlMessage not supported on Windows")); return -1; } /* iov */ bufs = g_newa (WSABUF, num_vectors); for (i = 0; i < num_vectors; i++) { bufs[i].buf = (char *)vectors[i].buffer; bufs[i].len = (gulong)vectors[i].size; } /* name */ addrlen = 0; /* Avoid warning */ if (address) { addrlen = g_socket_address_get_native_size (address); if (!g_socket_address_to_native (address, &addr, sizeof addr, error)) return -1; } while (1) { if (address) result = WSASendTo (socket->priv->fd, bufs, num_vectors, &bytes_sent, flags, (const struct sockaddr *)&addr, addrlen, NULL, NULL); else result = WSASend (socket->priv->fd, bufs, num_vectors, &bytes_sent, flags, NULL, NULL); if (result != 0) { int errsv = get_socket_errno (); if (errsv == WSAEINTR) continue; if (errsv == WSAEWOULDBLOCK) { win32_unset_event_mask (socket, FD_WRITE); if (socket->priv->blocking) { if (!g_socket_condition_wait (socket, G_IO_OUT, cancellable, error)) return -1; continue; } } socket_set_error_lazy (error, errsv, _("Error sending message: %s")); return -1; } break; } return bytes_sent; } #endif } /** * g_socket_send_messages: * @socket: a #GSocket * @messages: (array length=num_messages): an array of #GOutputMessage structs * @num_messages: the number of elements in @messages * @flags: an int containing #GSocketMsgFlags flags * @cancellable: (allow-none): a %GCancellable or %NULL * @error: #GError for error reporting, or %NULL to ignore. * * Send multiple data messages from @socket in one go. This is the most * complicated and fully-featured version of this call. For easier use, see * g_socket_send(), g_socket_send_to(), and g_socket_send_message(). * * @messages must point to an array of #GOutputMessage structs and * @num_messages must be the length of this array. Each #GOutputMessage * contains an address to send the data to, and a pointer to an array of * #GOutputVector structs to describe the buffers that the data to be sent * for each message will be gathered from. Using multiple #GOutputVectors is * more memory-efficient than manually copying data from multiple sources * into a single buffer, and more network-efficient than making multiple * calls to g_socket_send(). Sending multiple messages in one go avoids the * overhead of making a lot of syscalls in scenarios where a lot of data * packets need to be sent (e.g. high-bandwidth video streaming over RTP/UDP), * or where the same data needs to be sent to multiple recipients. * * @flags modify how the message is sent. The commonly available arguments * for this are available in the #GSocketMsgFlags enum, but the * values there are the same as the system values, and the flags * are passed in as-is, so you can pass in system-specific flags too. * * If the socket is in blocking mode the call will block until there is * space for all the data in the socket queue. If there is no space available * and the socket is in non-blocking mode a %G_IO_ERROR_WOULD_BLOCK error * will be returned if no data was written at all, otherwise the number of * messages sent will be returned. To be notified when space is available, * wait for the %G_IO_OUT condition. Note though that you may still receive * %G_IO_ERROR_WOULD_BLOCK from g_socket_send() even if you were previously * notified of a %G_IO_OUT condition. (On Windows in particular, this is * very common due to the way the underlying APIs work.) * * On error -1 is returned and @error is set accordingly. * * Returns: number of messages sent, or -1 on error. Note that the number of * messages sent may be smaller than @num_messages if the socket is * non-blocking or if @num_messages was larger than UIO_MAXIOV (1024), * in which case the caller may re-try to send the remaining messages. * * Since: 2.44 */ gint g_socket_send_messages (GSocket *socket, GOutputMessage *messages, guint num_messages, gint flags, GCancellable *cancellable, GError **error) { return g_socket_send_messages_with_blocking (socket, messages, num_messages, flags, socket->priv->blocking, cancellable, error); } static gint g_socket_send_messages_with_blocking (GSocket *socket, GOutputMessage *messages, guint num_messages, gint flags, gboolean blocking, GCancellable *cancellable, GError **error) { g_return_val_if_fail (G_IS_SOCKET (socket), -1); g_return_val_if_fail (num_messages == 0 || messages != NULL, -1); g_return_val_if_fail (cancellable == NULL || G_IS_CANCELLABLE (cancellable), -1); g_return_val_if_fail (error == NULL || *error == NULL, -1); if (!check_socket (socket, error)) return -1; if (!check_timeout (socket, error)) return -1; if (g_cancellable_set_error_if_cancelled (cancellable, error)) return -1; if (num_messages == 0) return 0; #if !defined (G_OS_WIN32) && defined (HAVE_SENDMMSG) { struct mmsghdr *msgvec; gint i, num_sent, result, max_sent; #ifdef UIO_MAXIOV #define MAX_NUM_MESSAGES UIO_MAXIOV #else #define MAX_NUM_MESSAGES 1024 #endif if (num_messages > MAX_NUM_MESSAGES) num_messages = MAX_NUM_MESSAGES; msgvec = g_newa (struct mmsghdr, num_messages); for (i = 0; i < num_messages; ++i) { GOutputMessage *msg = &messages[i]; struct msghdr *msg_hdr = &msgvec[i].msg_hdr; msgvec[i].msg_len = 0; msg_hdr->msg_flags = 0; /* name */ if (i > 0 && msg->address == messages[i-1].address) { msg_hdr->msg_name = msgvec[i-1].msg_hdr.msg_name; msg_hdr->msg_namelen = msgvec[i-1].msg_hdr.msg_namelen; } else if (msg->address) { msg_hdr->msg_namelen = g_socket_address_get_native_size (msg->address); msg_hdr->msg_name = g_alloca (msg_hdr->msg_namelen); if (!g_socket_address_to_native (msg->address, msg_hdr->msg_name, msg_hdr->msg_namelen, error)) return -1; } else { msg_hdr->msg_name = NULL; msg_hdr->msg_namelen = 0; } /* iov */ { /* this entire expression will be evaluated at compile time */ if (sizeof (struct iovec) == sizeof (GOutputVector) && sizeof msg_hdr->msg_iov->iov_base == sizeof msg->vectors->buffer && G_STRUCT_OFFSET (struct iovec, iov_base) == G_STRUCT_OFFSET (GOutputVector, buffer) && sizeof msg_hdr->msg_iov->iov_len == sizeof msg->vectors->size && G_STRUCT_OFFSET (struct iovec, iov_len) == G_STRUCT_OFFSET (GOutputVector, size)) /* ABI is compatible */ { msg_hdr->msg_iov = (struct iovec *) msg->vectors; msg_hdr->msg_iovlen = msg->num_vectors; } else /* ABI is incompatible */ { gint j; msg_hdr->msg_iov = g_newa (struct iovec, msg->num_vectors); for (j = 0; j < msg->num_vectors; j++) { msg_hdr->msg_iov[j].iov_base = (void *) msg->vectors[j].buffer; msg_hdr->msg_iov[j].iov_len = msg->vectors[j].size; } msg_hdr->msg_iovlen = msg->num_vectors; } } /* control */ { struct cmsghdr *cmsg; gint j; msg_hdr->msg_controllen = 0; for (j = 0; j < msg->num_control_messages; j++) msg_hdr->msg_controllen += CMSG_SPACE (g_socket_control_message_get_size (msg->control_messages[j])); if (msg_hdr->msg_controllen == 0) msg_hdr->msg_control = NULL; else { msg_hdr->msg_control = g_alloca (msg_hdr->msg_controllen); memset (msg_hdr->msg_control, '\0', msg_hdr->msg_controllen); } cmsg = CMSG_FIRSTHDR (msg_hdr); for (j = 0; j < msg->num_control_messages; j++) { GSocketControlMessage *cm = msg->control_messages[j]; cmsg->cmsg_level = g_socket_control_message_get_level (cm); cmsg->cmsg_type = g_socket_control_message_get_msg_type (cm); cmsg->cmsg_len = CMSG_LEN (g_socket_control_message_get_size (cm)); g_socket_control_message_serialize (cm, CMSG_DATA (cmsg)); cmsg = CMSG_NXTHDR (msg_hdr, cmsg); } g_assert (cmsg == NULL); } } num_sent = result = 0; max_sent = num_messages; while (num_sent < num_messages) { gint ret; ret = sendmmsg (socket->priv->fd, msgvec + num_sent, num_messages - num_sent, flags | G_SOCKET_DEFAULT_SEND_FLAGS); if (ret < 0) { int errsv = get_socket_errno (); if (errsv == EINTR) continue; if (blocking && (errsv == EWOULDBLOCK || errsv == EAGAIN)) { if (!g_socket_condition_wait (socket, G_IO_OUT, cancellable, error)) return -1; continue; } if (num_sent > 0 && (errsv == EWOULDBLOCK || errsv == EAGAIN)) { max_sent = num_sent; break; } socket_set_error_lazy (error, errsv, _("Error sending message: %s")); /* we have to iterate over all messages below now, because we don't * know where between num_sent and num_messages the error occured */ max_sent = num_messages; result = -1; break; } num_sent += ret; result = num_sent; } for (i = 0; i < max_sent; ++i) messages[i].bytes_sent = msgvec[i].msg_len; return result; } #else { gssize result; gint i; for (i = 0; i < num_messages; ++i) { GOutputMessage *msg = &messages[i]; GError *msg_error = NULL; result = g_socket_send_message (socket, msg->address, msg->vectors, msg->num_vectors, msg->control_messages, msg->num_control_messages, flags, cancellable, &msg_error); if (result < 0) { /* if we couldn't send all messages, just return how many we did * manage to send, provided we managed to send at least one */ if (msg_error->code == G_IO_ERROR_WOULD_BLOCK && i > 0) { g_error_free (msg_error); return i; } else { g_propagate_error (error, msg_error); return -1; } } msg->bytes_sent = result; } return i; } #endif } static GSocketAddress * cache_recv_address (GSocket *socket, struct sockaddr *native, int native_len) { GSocketAddress *saddr; gint i; guint64 oldest_time = G_MAXUINT64; gint oldest_index = 0; if (native_len <= 0) return NULL; saddr = NULL; for (i = 0; i < RECV_ADDR_CACHE_SIZE; i++) { GSocketAddress *tmp = socket->priv->recv_addr_cache[i].addr; gpointer tmp_native = socket->priv->recv_addr_cache[i].native; gint tmp_native_len = socket->priv->recv_addr_cache[i].native_len; if (!tmp) continue; if (tmp_native_len != native_len) continue; if (memcmp (tmp_native, native, native_len) == 0) { saddr = g_object_ref (tmp); socket->priv->recv_addr_cache[i].last_used = g_get_monotonic_time (); return saddr; } if (socket->priv->recv_addr_cache[i].last_used < oldest_time) { oldest_time = socket->priv->recv_addr_cache[i].last_used; oldest_index = i; } } saddr = g_socket_address_new_from_native (native, native_len); if (socket->priv->recv_addr_cache[oldest_index].addr) { g_object_unref (socket->priv->recv_addr_cache[oldest_index].addr); g_free (socket->priv->recv_addr_cache[oldest_index].native); } socket->priv->recv_addr_cache[oldest_index].native = g_memdup (native, native_len); socket->priv->recv_addr_cache[oldest_index].native_len = native_len; socket->priv->recv_addr_cache[oldest_index].addr = g_object_ref (saddr); socket->priv->recv_addr_cache[oldest_index].last_used = g_get_monotonic_time (); return saddr; } /** * g_socket_receive_message: * @socket: a #GSocket * @address: (out) (allow-none): a pointer to a #GSocketAddress * pointer, or %NULL * @vectors: (array length=num_vectors): an array of #GInputVector structs * @num_vectors: the number of elements in @vectors, or -1 * @messages: (array length=num_messages) (allow-none): a pointer which * may be filled with an array of #GSocketControlMessages, or %NULL * @num_messages: a pointer which will be filled with the number of * elements in @messages, or %NULL * @flags: a pointer to an int containing #GSocketMsgFlags flags * @cancellable: (allow-none): a %GCancellable or %NULL * @error: a #GError pointer, or %NULL * * Receive data from a socket. This is the most complicated and * fully-featured version of this call. For easier use, see * g_socket_receive() and g_socket_receive_from(). * * If @address is non-%NULL then @address will be set equal to the * source address of the received packet. * @address is owned by the caller. * * @vector must point to an array of #GInputVector structs and * @num_vectors must be the length of this array. These structs * describe the buffers that received data will be scattered into. * If @num_vectors is -1, then @vectors is assumed to be terminated * by a #GInputVector with a %NULL buffer pointer. * * As a special case, if @num_vectors is 0 (in which case, @vectors * may of course be %NULL), then a single byte is received and * discarded. This is to facilitate the common practice of sending a * single '\0' byte for the purposes of transferring ancillary data. * * @messages, if non-%NULL, will be set to point to a newly-allocated * array of #GSocketControlMessage instances or %NULL if no such * messages was received. These correspond to the control messages * received from the kernel, one #GSocketControlMessage per message * from the kernel. This array is %NULL-terminated and must be freed * by the caller using g_free() after calling g_object_unref() on each * element. If @messages is %NULL, any control messages received will * be discarded. * * @num_messages, if non-%NULL, will be set to the number of control * messages received. * * If both @messages and @num_messages are non-%NULL, then * @num_messages gives the number of #GSocketControlMessage instances * in @messages (ie: not including the %NULL terminator). * * @flags is an in/out parameter. The commonly available arguments * for this are available in the #GSocketMsgFlags enum, but the * values there are the same as the system values, and the flags * are passed in as-is, so you can pass in system-specific flags too * (and g_socket_receive_message() may pass system-specific flags out). * Flags passed in to the parameter affect the receive operation; flags returned * out of it are relevant to the specific returned message. * * As with g_socket_receive(), data may be discarded if @socket is * %G_SOCKET_TYPE_DATAGRAM or %G_SOCKET_TYPE_SEQPACKET and you do not * provide enough buffer space to read a complete message. You can pass * %G_SOCKET_MSG_PEEK in @flags to peek at the current message without * removing it from the receive queue, but there is no portable way to find * out the length of the message other than by reading it into a * sufficiently-large buffer. * * If the socket is in blocking mode the call will block until there * is some data to receive, the connection is closed, or there is an * error. If there is no data available and the socket is in * non-blocking mode, a %G_IO_ERROR_WOULD_BLOCK error will be * returned. To be notified when data is available, wait for the * %G_IO_IN condition. * * On error -1 is returned and @error is set accordingly. * * Returns: Number of bytes read, or 0 if the connection was closed by * the peer, or -1 on error * * Since: 2.22 */ gssize g_socket_receive_message (GSocket *socket, GSocketAddress **address, GInputVector *vectors, gint num_vectors, GSocketControlMessage ***messages, gint *num_messages, gint *flags, GCancellable *cancellable, GError **error) { GInputVector one_vector; char one_byte; g_return_val_if_fail (G_IS_SOCKET (socket), -1); if (!check_socket (socket, error)) return -1; if (!check_timeout (socket, error)) return -1; if (g_cancellable_set_error_if_cancelled (cancellable, error)) return -1; if (num_vectors == -1) { for (num_vectors = 0; vectors[num_vectors].buffer != NULL; num_vectors++) ; } if (num_vectors == 0) { one_vector.buffer = &one_byte; one_vector.size = 1; num_vectors = 1; vectors = &one_vector; } #ifndef G_OS_WIN32 { struct msghdr msg; gssize result; struct sockaddr_storage one_sockaddr; /* name */ if (address) { msg.msg_name = &one_sockaddr; msg.msg_namelen = sizeof (struct sockaddr_storage); } else { msg.msg_name = NULL; msg.msg_namelen = 0; } /* iov */ /* this entire expression will be evaluated at compile time */ if (sizeof *msg.msg_iov == sizeof *vectors && sizeof msg.msg_iov->iov_base == sizeof vectors->buffer && G_STRUCT_OFFSET (struct iovec, iov_base) == G_STRUCT_OFFSET (GInputVector, buffer) && sizeof msg.msg_iov->iov_len == sizeof vectors->size && G_STRUCT_OFFSET (struct iovec, iov_len) == G_STRUCT_OFFSET (GInputVector, size)) /* ABI is compatible */ { msg.msg_iov = (struct iovec *) vectors; msg.msg_iovlen = num_vectors; } else /* ABI is incompatible */ { gint i; msg.msg_iov = g_newa (struct iovec, num_vectors); for (i = 0; i < num_vectors; i++) { msg.msg_iov[i].iov_base = vectors[i].buffer; msg.msg_iov[i].iov_len = vectors[i].size; } msg.msg_iovlen = num_vectors; } /* control */ msg.msg_control = g_alloca (2048); msg.msg_controllen = 2048; /* flags */ if (flags != NULL) msg.msg_flags = *flags; else msg.msg_flags = 0; /* We always set the close-on-exec flag so we don't leak file * descriptors into child processes. Note that gunixfdmessage.c * will later call fcntl (fd, FD_CLOEXEC), but that isn't atomic. */ #ifdef MSG_CMSG_CLOEXEC msg.msg_flags |= MSG_CMSG_CLOEXEC; #endif /* do it */ while (1) { result = recvmsg (socket->priv->fd, &msg, msg.msg_flags); #ifdef MSG_CMSG_CLOEXEC if (result < 0 && get_socket_errno () == EINVAL) { /* We must be running on an old kernel. Call without the flag. */ msg.msg_flags &= ~(MSG_CMSG_CLOEXEC); result = recvmsg (socket->priv->fd, &msg, msg.msg_flags); } #endif if (result < 0) { int errsv = get_socket_errno (); if (errsv == EINTR) continue; if (socket->priv->blocking && (errsv == EWOULDBLOCK || errsv == EAGAIN)) { if (!g_socket_condition_wait (socket, G_IO_IN, cancellable, error)) return -1; continue; } socket_set_error_lazy (error, errsv, _("Error receiving message: %s")); return -1; } break; } /* decode address */ if (address != NULL) { *address = cache_recv_address (socket, msg.msg_name, msg.msg_namelen); } /* decode control messages */ { GPtrArray *my_messages = NULL; struct cmsghdr *cmsg; if (msg.msg_controllen >= sizeof (struct cmsghdr)) { for (cmsg = CMSG_FIRSTHDR (&msg); cmsg; cmsg = CMSG_NXTHDR (&msg, cmsg)) { GSocketControlMessage *message; message = g_socket_control_message_deserialize (cmsg->cmsg_level, cmsg->cmsg_type, cmsg->cmsg_len - ((char *)CMSG_DATA (cmsg) - (char *)cmsg), CMSG_DATA (cmsg)); if (message == NULL) /* We've already spewed about the problem in the deserialization code, so just continue */ continue; if (messages == NULL) { /* we have to do it this way if the user ignores the * messages so that we will close any received fds. */ g_object_unref (message); } else { if (my_messages == NULL) my_messages = g_ptr_array_new (); g_ptr_array_add (my_messages, message); } } } if (num_messages) *num_messages = my_messages != NULL ? my_messages->len : 0; if (messages) { if (my_messages == NULL) { *messages = NULL; } else { g_ptr_array_add (my_messages, NULL); *messages = (GSocketControlMessage **) g_ptr_array_free (my_messages, FALSE); } } else { g_assert (my_messages == NULL); } } /* capture the flags */ if (flags != NULL) *flags = msg.msg_flags; return result; } #else { struct sockaddr_storage addr; int addrlen; DWORD bytes_received; DWORD win_flags; int result; WSABUF *bufs; gint i; /* iov */ bufs = g_newa (WSABUF, num_vectors); for (i = 0; i < num_vectors; i++) { bufs[i].buf = (char *)vectors[i].buffer; bufs[i].len = (gulong)vectors[i].size; } /* flags */ if (flags != NULL) win_flags = *flags; else win_flags = 0; /* do it */ while (1) { addrlen = sizeof addr; if (address) result = WSARecvFrom (socket->priv->fd, bufs, num_vectors, &bytes_received, &win_flags, (struct sockaddr *)&addr, &addrlen, NULL, NULL); else result = WSARecv (socket->priv->fd, bufs, num_vectors, &bytes_received, &win_flags, NULL, NULL); if (result != 0) { int errsv = get_socket_errno (); if (errsv == WSAEINTR) continue; if (errsv == WSAEWOULDBLOCK) { win32_unset_event_mask (socket, FD_READ); if (socket->priv->blocking) { if (!g_socket_condition_wait (socket, G_IO_IN, cancellable, error)) return -1; continue; } } socket_set_error_lazy (error, errsv, _("Error receiving message: %s")); return -1; } win32_unset_event_mask (socket, FD_READ); break; } /* decode address */ if (address != NULL) { *address = cache_recv_address (socket, (struct sockaddr *)&addr, addrlen); } /* capture the flags */ if (flags != NULL) *flags = win_flags; if (messages != NULL) *messages = NULL; if (num_messages != NULL) *num_messages = 0; return bytes_received; } #endif } /** * g_socket_get_credentials: * @socket: a #GSocket. * @error: #GError for error reporting, or %NULL to ignore. * * Returns the credentials of the foreign process connected to this * socket, if any (e.g. it is only supported for %G_SOCKET_FAMILY_UNIX * sockets). * * If this operation isn't supported on the OS, the method fails with * the %G_IO_ERROR_NOT_SUPPORTED error. On Linux this is implemented * by reading the %SO_PEERCRED option on the underlying socket. * * Other ways to obtain credentials from a foreign peer includes the * #GUnixCredentialsMessage type and * g_unix_connection_send_credentials() / * g_unix_connection_receive_credentials() functions. * * Returns: (transfer full): %NULL if @error is set, otherwise a #GCredentials object * that must be freed with g_object_unref(). * * Since: 2.26 */ GCredentials * g_socket_get_credentials (GSocket *socket, GError **error) { GCredentials *ret; g_return_val_if_fail (G_IS_SOCKET (socket), NULL); g_return_val_if_fail (error == NULL || *error == NULL, NULL); ret = NULL; #if G_CREDENTIALS_SOCKET_GET_CREDENTIALS_SUPPORTED #ifdef SO_PEERCRED { guint8 native_creds_buf[G_CREDENTIALS_NATIVE_SIZE]; socklen_t optlen = sizeof (native_creds_buf); if (getsockopt (socket->priv->fd, SOL_SOCKET, SO_PEERCRED, native_creds_buf, &optlen) == 0) { ret = g_credentials_new (); g_credentials_set_native (ret, G_CREDENTIALS_NATIVE_TYPE, native_creds_buf); } } #elif G_CREDENTIALS_USE_NETBSD_UNPCBID { struct unpcbid cred; socklen_t optlen = sizeof (cred); if (getsockopt (socket->priv->fd, 0, LOCAL_PEEREID, &cred, &optlen) == 0) { ret = g_credentials_new (); g_credentials_set_native (ret, G_CREDENTIALS_NATIVE_TYPE, &cred); } } #elif G_CREDENTIALS_USE_SOLARIS_UCRED { ucred_t *ucred = NULL; if (getpeerucred (socket->priv->fd, &ucred) == 0) { ret = g_credentials_new (); g_credentials_set_native (ret, G_CREDENTIALS_TYPE_SOLARIS_UCRED, ucred); ucred_free (ucred); } } #else #error "G_CREDENTIALS_SOCKET_GET_CREDENTIALS_SUPPORTED is set but this is no code for this platform" #endif if (!ret) { int errsv = get_socket_errno (); g_set_error (error, G_IO_ERROR, socket_io_error_from_errno (errsv), _("Unable to read socket credentials: %s"), socket_strerror (errsv)); } #else g_set_error_literal (error, G_IO_ERROR, G_IO_ERROR_NOT_SUPPORTED, _("g_socket_get_credentials not implemented for this OS")); #endif return ret; } /** * g_socket_get_option: * @socket: a #GSocket * @level: the "API level" of the option (eg, `SOL_SOCKET`) * @optname: the "name" of the option (eg, `SO_BROADCAST`) * @value: (out): return location for the option value * @error: #GError for error reporting, or %NULL to ignore. * * Gets the value of an integer-valued option on @socket, as with * getsockopt(). (If you need to fetch a non-integer-valued option, * you will need to call getsockopt() directly.) * * The [][gio-gnetworking.h] * header pulls in system headers that will define most of the * standard/portable socket options. For unusual socket protocols or * platform-dependent options, you may need to include additional * headers. * * Note that even for socket options that are a single byte in size, * @value is still a pointer to a #gint variable, not a #guchar; * g_socket_get_option() will handle the conversion internally. * * Returns: success or failure. On failure, @error will be set, and * the system error value (`errno` or WSAGetLastError()) will still * be set to the result of the getsockopt() call. * * Since: 2.36 */ gboolean g_socket_get_option (GSocket *socket, gint level, gint optname, gint *value, GError **error) { guint size; g_return_val_if_fail (G_IS_SOCKET (socket), FALSE); *value = 0; size = sizeof (gint); if (getsockopt (socket->priv->fd, level, optname, value, &size) != 0) { int errsv = get_socket_errno (); g_set_error_literal (error, G_IO_ERROR, socket_io_error_from_errno (errsv), socket_strerror (errsv)); #ifndef G_OS_WIN32 /* Reset errno in case the caller wants to look at it */ errno = errsv; #endif return FALSE; } #if G_BYTE_ORDER == G_BIG_ENDIAN /* If the returned value is smaller than an int then we need to * slide it over into the low-order bytes of *value. */ if (size != sizeof (gint)) *value = *value >> (8 * (sizeof (gint) - size)); #endif return TRUE; } /** * g_socket_set_option: * @socket: a #GSocket * @level: the "API level" of the option (eg, `SOL_SOCKET`) * @optname: the "name" of the option (eg, `SO_BROADCAST`) * @value: the value to set the option to * @error: #GError for error reporting, or %NULL to ignore. * * Sets the value of an integer-valued option on @socket, as with * setsockopt(). (If you need to set a non-integer-valued option, * you will need to call setsockopt() directly.) * * The [][gio-gnetworking.h] * header pulls in system headers that will define most of the * standard/portable socket options. For unusual socket protocols or * platform-dependent options, you may need to include additional * headers. * * Returns: success or failure. On failure, @error will be set, and * the system error value (`errno` or WSAGetLastError()) will still * be set to the result of the setsockopt() call. * * Since: 2.36 */ gboolean g_socket_set_option (GSocket *socket, gint level, gint optname, gint value, GError **error) { gint errsv; g_return_val_if_fail (G_IS_SOCKET (socket), FALSE); if (setsockopt (socket->priv->fd, level, optname, &value, sizeof (gint)) == 0) return TRUE; #if !defined (__linux__) && !defined (G_OS_WIN32) /* Linux and Windows let you set a single-byte value from an int, * but most other platforms don't. */ if (errno == EINVAL && value >= SCHAR_MIN && value <= CHAR_MAX) { #if G_BYTE_ORDER == G_BIG_ENDIAN value = value << (8 * (sizeof (gint) - 1)); #endif if (setsockopt (socket->priv->fd, level, optname, &value, 1) == 0) return TRUE; } #endif errsv = get_socket_errno (); g_set_error_literal (error, G_IO_ERROR, socket_io_error_from_errno (errsv), socket_strerror (errsv)); #ifndef G_OS_WIN32 errno = errsv; #endif return FALSE; }