/* GObject - GLib Type, Object, Parameter and Signal Library
 * Copyright (C) 2009 Red Hat, Inc.
 * Copyright (C) 2022 Canonical Ltd.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General
 * Public License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include <math.h>
#include <string.h>
#include <glib-object.h>
#include "../testcommon.h"

#define WARM_UP_N_RUNS 50
#define WARM_UP_ALWAYS_SEC 2.0
#define ESTIMATE_ROUND_TIME_N_RUNS 5
#define DEFAULT_TEST_TIME 15 /* seconds */
 /* The time we want each round to take, in seconds, this should
  * be large enough compared to the timer resolution, but small
  * enough that the risk of any random slowness will miss the
  * running window */
#define TARGET_ROUND_TIME 0.008

static gboolean verbose = FALSE;
static gboolean quiet = FALSE;
static int test_length = DEFAULT_TEST_TIME;
static double test_factor = 0;
static GTimer *global_timer = NULL;

static GOptionEntry cmd_entries[] = {
  {"verbose", 'v', 0, G_OPTION_ARG_NONE, &verbose,
   "Print extra information", NULL},
  {"quiet", 'q', 0, G_OPTION_ARG_NONE, &quiet,
   "Print extra information", NULL},
  {"seconds", 's', 0, G_OPTION_ARG_INT, &test_length,
   "Time to run each test in seconds", NULL},
  {"factor", 'f', 0, G_OPTION_ARG_DOUBLE, &test_factor,
   "Use a fixed factor for sample runs (also $GLIB_PERFORMANCE_FACTOR)", NULL},
  G_OPTION_ENTRY_NULL
};

typedef struct _PerformanceTest PerformanceTest;
struct _PerformanceTest {
  const char *name;

  gpointer extra_data;

  guint base_factor;

  gpointer (*setup) (PerformanceTest *test);
  void (*init) (PerformanceTest *test,
		gpointer data,
		double factor);
  void (*run) (PerformanceTest *test,
	       gpointer data);
  void (*finish) (PerformanceTest *test,
		  gpointer data);
  void (*teardown) (PerformanceTest *test,
		    gpointer data);
  void (*print_result) (PerformanceTest *test,
			gpointer data,
			double time);
};

static void
run_test (PerformanceTest *test)
{
  gpointer data = NULL;
  guint64 i, num_rounds;
  double elapsed, min_elapsed, max_elapsed, avg_elapsed, factor;
  double var_mean = 0;
  double var_m2 = 0;
  GTimer *timer;

  if (verbose || !quiet)
    g_print ("Running test %s\n", test->name);

  /* Set up test */
  timer = g_timer_new ();
  data = test->setup (test);

  if (verbose)
    g_print ("Warming up\n");

  g_timer_start (timer);

  /* Warm up the test by doing a few runs */
  for (i = 0; TRUE; i++)
    {
      test->init (test, data, 1.0);
      test->run (test, data);
      test->finish (test, data);

      if (test_factor > 0)
        {
          /* The caller specified a constant factor. That makes mostly
           * sense, to ensure that the test run is independent from
           * external factors. In this case, don't make warm up dependent
           * on WARM_UP_ALWAYS_SEC. */
        }
      else if (global_timer)
        {
          if (g_timer_elapsed (global_timer, NULL) < WARM_UP_ALWAYS_SEC)
            {
              /* We always warm up for a certain time where we keep the
               * CPU busy.
               *
               * Note that when we run multiple tests, then this is only
               * performed once for the first test. */
              continue;
            }
          g_clear_pointer (&global_timer, g_timer_destroy);
        }

      if (i >= WARM_UP_N_RUNS)
        break;

      if (test_factor == 0 && g_timer_elapsed (timer, NULL) > test_length / 10)
        {
          /* The warm up should not take longer than 10 % of the entire
           * test run. Note that the warm up time for WARM_UP_ALWAYS_SEC
           * already passed. */
          break;
        }
    }

  g_timer_stop (timer);
  elapsed = g_timer_elapsed (timer, NULL);

  if (verbose)
    {
      g_print ("Warm up time: %.2f secs\n", elapsed);
      g_print ("Estimating round time\n");
    }

  min_elapsed = 0;

  if (test_factor > 0)
    {
      factor = test_factor;
    }
  else
    {
      /* Estimate time for one run by doing a few test rounds. */
      for (i = 0; i < ESTIMATE_ROUND_TIME_N_RUNS; i++)
        {
          test->init (test, data, 1.0);
          g_timer_start (timer);
          test->run (test, data);
          g_timer_stop (timer);
          test->finish (test, data);

          elapsed = g_timer_elapsed (timer, NULL);
          if (i == 0)
            min_elapsed = elapsed;
          else
            min_elapsed = MIN (min_elapsed, elapsed);
        }

      factor = TARGET_ROUND_TIME / min_elapsed;
    }

  if (verbose)
    g_print ("Uncorrected round time: %.4f msecs, correction factor %.2f\n", 1000*min_elapsed, factor);

  /* Calculate number of rounds needed */
  num_rounds = (guint64) (test_length / TARGET_ROUND_TIME) + 1;

  if (verbose)
    g_print ("Running %"G_GINT64_MODIFIER"d rounds\n", num_rounds);

  /* Run the test */
  avg_elapsed = 0.0;
  min_elapsed = 1e100;
  max_elapsed = 0.0;
  for (i = 0; i < num_rounds; i++)
    {
      double delta;
      double delta2;

      test->init (test, data, factor);
      g_timer_start (timer);
      test->run (test, data);
      g_timer_stop (timer);
      test->finish (test, data);

      elapsed = g_timer_elapsed (timer, NULL);

      min_elapsed = MIN (min_elapsed, elapsed);
      max_elapsed = MAX (max_elapsed, elapsed);
      avg_elapsed += elapsed;

      /* Iteratively compute standard deviation using Welford's online algorithm. */
      delta = elapsed - var_mean;
      var_mean += delta / (i + 1);
      delta2 = elapsed - var_mean;
      var_m2 += delta * delta2;
    }

  if (num_rounds > 1)
    avg_elapsed = avg_elapsed / num_rounds;

  if (verbose)
    {
      double sample_stddev;

      if (num_rounds < 2)
        sample_stddev = NAN;
      else
        sample_stddev = sqrt (var_m2 / (num_rounds - 1)) * 1000;

      g_print ("Minimum corrected round time: %.2f msecs\n", min_elapsed * 1000);
      g_print ("Average corrected round time: %.2f msecs +/- %.3f stddev\n", avg_elapsed * 1000, sample_stddev);
      g_print ("Maximum corrected round time: %.2f msecs\n", max_elapsed * 1000);
    }

  /* Print the results */
  g_print ("%s: ", test->name);
  test->print_result (test, data, min_elapsed);

  /* Tear down */
  test->teardown (test, data);
  g_timer_destroy (timer);
}

/*************************************************************
 * Simple object is a very simple small GObject subclass
 * with no properties, no signals, implementing no interfaces
 *************************************************************/

static GType simple_object_get_type (void);
#define SIMPLE_TYPE_OBJECT        (simple_object_get_type ())
typedef struct _SimpleObject      SimpleObject;
typedef struct _SimpleObjectClass   SimpleObjectClass;

struct _SimpleObject
{
  GObject parent_instance;
  int val;
};

struct _SimpleObjectClass
{
  GObjectClass parent_class;
};

G_DEFINE_TYPE (SimpleObject, simple_object, G_TYPE_OBJECT)

static void
simple_object_finalize (GObject *object)
{
  G_OBJECT_CLASS (simple_object_parent_class)->finalize (object);
}

static void
simple_object_class_init (SimpleObjectClass *class)
{
  GObjectClass *object_class = G_OBJECT_CLASS (class);

  object_class->finalize = simple_object_finalize;
}

static void
simple_object_init (SimpleObject *simple_object)
{
  simple_object->val = 42;
}

typedef struct _TestIfaceClass TestIfaceClass;
typedef struct _TestIfaceClass TestIface1Class;
typedef struct _TestIfaceClass TestIface2Class;
typedef struct _TestIfaceClass TestIface3Class;
typedef struct _TestIfaceClass TestIface4Class;
typedef struct _TestIfaceClass TestIface5Class;
typedef struct _TestIface TestIface;

struct _TestIfaceClass
{
  GTypeInterface base_iface;
  void (*method) (TestIface *obj);
};

static GType test_iface1_get_type (void);
static GType test_iface2_get_type (void);
static GType test_iface3_get_type (void);
static GType test_iface4_get_type (void);
static GType test_iface5_get_type (void);

#define TEST_TYPE_IFACE1 (test_iface1_get_type ())
#define TEST_TYPE_IFACE2 (test_iface2_get_type ())
#define TEST_TYPE_IFACE3 (test_iface3_get_type ())
#define TEST_TYPE_IFACE4 (test_iface4_get_type ())
#define TEST_TYPE_IFACE5 (test_iface5_get_type ())

static DEFINE_IFACE (TestIface1, test_iface1,  NULL, NULL)
static DEFINE_IFACE (TestIface2, test_iface2,  NULL, NULL)
static DEFINE_IFACE (TestIface3, test_iface3,  NULL, NULL)
static DEFINE_IFACE (TestIface4, test_iface4,  NULL, NULL)
static DEFINE_IFACE (TestIface5, test_iface5,  NULL, NULL)

/*************************************************************
 * Complex object is a GObject subclass with a properties,
 * construct properties, signals and implementing an interface.
 *************************************************************/

static GType complex_object_get_type (void);
#define COMPLEX_TYPE_OBJECT        (complex_object_get_type ())
typedef struct _ComplexObject      ComplexObject;
typedef struct _ComplexObjectClass ComplexObjectClass;

struct _ComplexObject
{
  GObject parent_instance;
  int val1;
  char *val2;
};

struct _ComplexObjectClass
{
  GObjectClass parent_class;

  void (*signal) (ComplexObject *obj);
  void (*signal_empty) (ComplexObject *obj);
};

static void complex_test_iface_init (gpointer         g_iface,
				     gpointer         iface_data);

G_DEFINE_TYPE_EXTENDED (ComplexObject, complex_object,
			G_TYPE_OBJECT, 0,
			G_IMPLEMENT_INTERFACE (TEST_TYPE_IFACE1, complex_test_iface_init)
			G_IMPLEMENT_INTERFACE (TEST_TYPE_IFACE2, complex_test_iface_init)
			G_IMPLEMENT_INTERFACE (TEST_TYPE_IFACE3, complex_test_iface_init)
			G_IMPLEMENT_INTERFACE (TEST_TYPE_IFACE4, complex_test_iface_init)
			G_IMPLEMENT_INTERFACE (TEST_TYPE_IFACE5, complex_test_iface_init))

#define COMPLEX_OBJECT(object) (G_TYPE_CHECK_INSTANCE_CAST ((object), COMPLEX_TYPE_OBJECT, ComplexObject))

enum {
  PROP_0,
  PROP_VAL1,
  PROP_VAL2,
  N_PROPERTIES
};

static GParamSpec *pspecs[N_PROPERTIES] = { NULL, };

enum {
  COMPLEX_SIGNAL,
  COMPLEX_SIGNAL_EMPTY,
  COMPLEX_SIGNAL_GENERIC,
  COMPLEX_SIGNAL_GENERIC_EMPTY,
  COMPLEX_SIGNAL_ARGS,
  COMPLEX_LAST_SIGNAL
};

static guint complex_signals[COMPLEX_LAST_SIGNAL] = { 0 };

static void
complex_object_finalize (GObject *object)
{
  ComplexObject *c = COMPLEX_OBJECT (object);

  g_free (c->val2);

  G_OBJECT_CLASS (complex_object_parent_class)->finalize (object);
}

static void
complex_object_set_property (GObject         *object,
			     guint            prop_id,
			     const GValue    *value,
			     GParamSpec      *pspec)
{
  ComplexObject *complex = COMPLEX_OBJECT (object);

  switch (prop_id)
    {
    case PROP_VAL1:
      complex->val1 = g_value_get_int (value);
      break;
    case PROP_VAL2:
      g_free (complex->val2);
      complex->val2 = g_value_dup_string (value);
      break;
    default:
      G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
      break;
    }
}

static void
complex_object_get_property (GObject         *object,
			     guint            prop_id,
			     GValue          *value,
			     GParamSpec      *pspec)
{
  ComplexObject *complex = COMPLEX_OBJECT (object);

  switch (prop_id)
    {
    case PROP_VAL1:
      g_value_set_int (value, complex->val1);
      break;
    case PROP_VAL2:
      g_value_set_string (value, complex->val2);
      break;
    default:
      G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
      break;
    }
}

static void
complex_object_real_signal (ComplexObject *obj)
{
}

static void
complex_object_class_init (ComplexObjectClass *class)
{
  GObjectClass *object_class = G_OBJECT_CLASS (class);

  object_class->finalize = complex_object_finalize;
  object_class->set_property = complex_object_set_property;
  object_class->get_property = complex_object_get_property;

  class->signal = complex_object_real_signal;

  complex_signals[COMPLEX_SIGNAL] =
    g_signal_new ("signal",
		  G_TYPE_FROM_CLASS (object_class),
		  G_SIGNAL_RUN_FIRST,
		  G_STRUCT_OFFSET (ComplexObjectClass, signal),
		  NULL, NULL,
		  g_cclosure_marshal_VOID__VOID,
		  G_TYPE_NONE, 0);

  complex_signals[COMPLEX_SIGNAL_EMPTY] =
    g_signal_new ("signal-empty",
		  G_TYPE_FROM_CLASS (object_class),
		  G_SIGNAL_RUN_FIRST,
		  G_STRUCT_OFFSET (ComplexObjectClass, signal_empty),
		  NULL, NULL,
		  g_cclosure_marshal_VOID__VOID,
		  G_TYPE_NONE, 0);

  complex_signals[COMPLEX_SIGNAL_GENERIC] =
    g_signal_new ("signal-generic",
		  G_TYPE_FROM_CLASS (object_class),
		  G_SIGNAL_RUN_FIRST,
		  G_STRUCT_OFFSET (ComplexObjectClass, signal),
		  NULL, NULL,
		  NULL,
		  G_TYPE_NONE, 0);
  complex_signals[COMPLEX_SIGNAL_GENERIC_EMPTY] =
    g_signal_new ("signal-generic-empty",
		  G_TYPE_FROM_CLASS (object_class),
		  G_SIGNAL_RUN_FIRST,
		  G_STRUCT_OFFSET (ComplexObjectClass, signal_empty),
		  NULL, NULL,
		  NULL,
		  G_TYPE_NONE, 0);

  complex_signals[COMPLEX_SIGNAL_ARGS] =
    g_signal_new ("signal-args",
                  G_TYPE_FROM_CLASS (object_class),
                  G_SIGNAL_RUN_FIRST,
                  G_STRUCT_OFFSET (ComplexObjectClass, signal),
                  NULL, NULL,
                  g_cclosure_marshal_VOID__UINT_POINTER,
                  G_TYPE_NONE, 2, G_TYPE_UINT, G_TYPE_POINTER);

  pspecs[PROP_VAL1] = g_param_spec_int ("val1", "val1", "val1",
                                        0, G_MAXINT, 42,
                                        G_PARAM_STATIC_STRINGS | G_PARAM_CONSTRUCT | G_PARAM_READWRITE);
  pspecs[PROP_VAL2] = g_param_spec_string ("val2", "val2", "val2",
                                           NULL,
                                           G_PARAM_STATIC_STRINGS | G_PARAM_READWRITE);

  g_object_class_install_properties (object_class, N_PROPERTIES, pspecs);
}

static void
complex_object_iface_method (TestIface *obj)
{
  ComplexObject *complex = COMPLEX_OBJECT (obj);
  complex->val1++;
}

static void
complex_test_iface_init (gpointer         g_iface,
			 gpointer         iface_data)
{
  TestIfaceClass *iface = g_iface;
  iface->method = complex_object_iface_method;
}

static void
complex_object_init (ComplexObject *complex_object)
{
  complex_object->val1 = 42;
}

/*************************************************************
 * Test object construction performance
 *************************************************************/

struct ConstructionTest {
  GObject **objects;
  unsigned int n_objects;
  GType type;
};

static gpointer
test_construction_setup (PerformanceTest *test)
{
  struct ConstructionTest *data;

  data = g_new0 (struct ConstructionTest, 1);
  data->type = ((GType (*)(void))test->extra_data)();

  return data;
}

static void
test_construction_init (PerformanceTest *test,
			gpointer _data,
			double count_factor)
{
  struct ConstructionTest *data = _data;
  unsigned int n;

  n = (unsigned int) (test->base_factor * count_factor);
  if (data->n_objects != n)
    {
      data->n_objects = n;
      data->objects = g_renew (GObject *, data->objects, n);
    }
}

static void
test_construction_run (PerformanceTest *test,
		       gpointer _data)
{
  struct ConstructionTest *data = _data;
  GObject **objects = data->objects;
  GType type = data->type;
  unsigned int n_objects;

  n_objects = data->n_objects;
  for (unsigned int i = 0; i < n_objects; i++)
    objects[i] = g_object_new (type, NULL);
}

static void
test_construction_run1 (PerformanceTest *test,
		        gpointer _data)
{
  struct ConstructionTest *data = _data;
  GObject **objects = data->objects;
  unsigned int n_objects;

  n_objects = data->n_objects;
  for (unsigned int i = 0; i < n_objects; i++)
    objects[i] = (GObject *) g_slice_new0 (SimpleObject);
}

static void
test_complex_construction_run (PerformanceTest *test,
                               gpointer _data)
{
  struct ConstructionTest *data = _data;
  GObject **objects = data->objects;
  GType type = data->type;
  unsigned int n_objects;

  n_objects = data->n_objects;
  for (unsigned int i = 0; i < n_objects; i++)
    objects[i] = g_object_new (type, "val1", 5, "val2", "thousand", NULL);
}

static void
test_complex_construction_run1 (PerformanceTest *test,
                                gpointer _data)
{
  struct ConstructionTest *data = _data;
  GObject **objects = data->objects;
  GType type = data->type;
  unsigned int n_objects;

  n_objects = data->n_objects;
  for (unsigned int i = 0; i < n_objects; i++)
    {
      ComplexObject *object;
      object = (ComplexObject *)g_object_new (type, NULL);
      object->val1 = 5;
      object->val2 = g_strdup ("thousand");
      objects[i] = (GObject *)object;
    }
}

static void
test_complex_construction_run2 (PerformanceTest *test,
                                gpointer _data)
{
  struct ConstructionTest *data = _data;
  GObject **objects = data->objects;
  GType type = data->type;
  unsigned int n_objects;

  n_objects = data->n_objects;
  for (unsigned int i = 0; i < n_objects; i++)
    {
      objects[i] = g_object_new (type, NULL);
    }
}

static void
test_construction_finish (PerformanceTest *test,
			  gpointer _data)
{
  struct ConstructionTest *data = _data;

  for (unsigned int i = 0; i < data->n_objects; i++)
    g_object_unref (data->objects[i]);
}

static void
test_construction_finish1 (PerformanceTest *test,
			   gpointer _data)
{
  struct ConstructionTest *data = _data;

  for (unsigned int i = 0; i < data->n_objects; i++)
    g_slice_free (SimpleObject, (SimpleObject *)data->objects[i]);
}

static void
test_construction_teardown (PerformanceTest *test,
			    gpointer _data)
{
  struct ConstructionTest *data = _data;
  g_free (data->objects);
  g_free (data);
}

static void
test_finalization_init (PerformanceTest *test,
			gpointer _data,
			double count_factor)
{
  struct ConstructionTest *data = _data;
  unsigned int n;

  n = (unsigned int) (test->base_factor * count_factor);
  if (data->n_objects != n)
    {
      data->n_objects = n;
      data->objects = g_renew (GObject *, data->objects, n);
    }

  for (unsigned int i = 0; i <  data->n_objects; i++)
    {
      data->objects[i] = g_object_new (data->type, NULL);
    }
}

static void
test_finalization_run (PerformanceTest *test,
		       gpointer _data)
{
  struct ConstructionTest *data = _data;
  GObject **objects = data->objects;
  unsigned int n_objects;

  n_objects = data->n_objects;
  for (unsigned int i = 0; i < n_objects; i++)
    {
      g_object_unref (objects[i]);
    }
}

static void
test_finalization_finish (PerformanceTest *test,
			  gpointer _data)
{
}

static void
test_construction_print_result (PerformanceTest *test,
				gpointer _data,
				double time)
{
  struct ConstructionTest *data = _data;

  g_print ("Millions of constructed objects per second: %.3f\n",
	   data->n_objects / (time * 1000000));
}

static void
test_finalization_print_result (PerformanceTest *test,
				gpointer _data,
				double time)
{
  struct ConstructionTest *data = _data;

  g_print ("Millions of finalized objects per second: %.3f\n",
	   data->n_objects / (time * 1000000));
}

/*************************************************************
 * Test runtime type check performance
 *************************************************************/

/* Work around g_type_check_instance_is_a being marked "pure",
 * and thus only called once for the loop. */
static gboolean (*my_type_check_instance_is_a) (GTypeInstance *type_instance,
                                                GType iface_type);

struct TypeCheckTest {
  GObject *object;
  unsigned int n_checks;
};

static gpointer
test_type_check_setup (PerformanceTest *test)
{
  struct TypeCheckTest *data;

  my_type_check_instance_is_a = &g_type_check_instance_is_a;

  data = g_new0 (struct TypeCheckTest, 1);
  data->object = g_object_new (COMPLEX_TYPE_OBJECT, NULL);

  return data;
}

static void
test_type_check_init (PerformanceTest *test,
		      gpointer _data,
		      double factor)
{
  struct TypeCheckTest *data = _data;

  data->n_checks = (unsigned int) (test->base_factor * factor);
}

static void
test_type_check_run (PerformanceTest *test,
		     gpointer _data)
{
  struct TypeCheckTest *data = _data;
  GObject *object = data->object;
  GType type, types[5];

  types[0] = test_iface1_get_type ();
  types[1] = test_iface2_get_type ();
  types[2] = test_iface3_get_type ();
  types[3] = test_iface4_get_type ();
  types[4] = test_iface5_get_type ();

  for (unsigned int i = 0; i < data->n_checks; i++)
    {
      type = types[i%5];
      for (unsigned int j = 0; j < 1000; j++)
	{
	  my_type_check_instance_is_a ((GTypeInstance *)object,
				       type);
	}
    }
}

static void
test_type_check_finish (PerformanceTest *test,
			gpointer data)
{
}

static void
test_type_check_print_result (PerformanceTest *test,
			      gpointer _data,
			      double time)
{
  struct TypeCheckTest *data = _data;
  g_print ("Million type checks per second: %.2f\n",
	   data->n_checks / (1000*time));
}

static void
test_type_check_teardown (PerformanceTest *test,
			  gpointer _data)
{
  struct TypeCheckTest *data = _data;

  g_object_unref (data->object);
  g_free (data);
}

/*************************************************************
 * Test signal emissions performance (common code)
 *************************************************************/

struct EmissionTest {
  GObject *object;
  unsigned int n_checks;
  unsigned int signal_id;
};

static void
test_emission_run (PerformanceTest *test,
                             gpointer _data)
{
  struct EmissionTest *data = _data;
  GObject *object = data->object;

  for (unsigned int i = 0; i < data->n_checks; i++)
    g_signal_emit (object, data->signal_id, 0);
}

static void
test_emission_run_args (PerformanceTest *test,
                        gpointer _data)
{
  struct EmissionTest *data = _data;
  GObject *object = data->object;

  for (unsigned int i = 0; i < data->n_checks; i++)
    g_signal_emit (object, data->signal_id, 0, 0, NULL);
}

/*************************************************************
 * Test signal unhandled emissions performance
 *************************************************************/

static gpointer
test_emission_unhandled_setup (PerformanceTest *test)
{
  struct EmissionTest *data;

  data = g_new0 (struct EmissionTest, 1);
  data->object = g_object_new (COMPLEX_TYPE_OBJECT, NULL);
  data->signal_id = complex_signals[GPOINTER_TO_UINT (test->extra_data)];
  return data;
}

static void
test_emission_unhandled_init (PerformanceTest *test,
                              gpointer _data,
                              double factor)
{
  struct EmissionTest *data = _data;

  data->n_checks = (unsigned int) (test->base_factor * factor);
}

static void
test_emission_unhandled_finish (PerformanceTest *test,
                                gpointer data)
{
}

static void
test_emission_unhandled_print_result (PerformanceTest *test,
                                      gpointer _data,
                                      double time)
{
  struct EmissionTest *data = _data;

  g_print ("Emissions per second: %.0f\n",
	   data->n_checks / time);
}

static void
test_emission_unhandled_teardown (PerformanceTest *test,
                                  gpointer _data)
{
  struct EmissionTest *data = _data;

  g_object_unref (data->object);
  g_free (data);
}

/*************************************************************
 * Test signal handled emissions performance
 *************************************************************/

static void
test_emission_handled_handler (ComplexObject *obj, gpointer data)
{
}

static gpointer
test_emission_handled_setup (PerformanceTest *test)
{
  struct EmissionTest *data;

  data = g_new0 (struct EmissionTest, 1);
  data->object = g_object_new (COMPLEX_TYPE_OBJECT, NULL);
  data->signal_id = complex_signals[GPOINTER_TO_UINT (test->extra_data)];
  g_signal_connect (data->object, "signal",
                    G_CALLBACK (test_emission_handled_handler),
                    NULL);
  g_signal_connect (data->object, "signal-empty",
                    G_CALLBACK (test_emission_handled_handler),
                    NULL);
  g_signal_connect (data->object, "signal-generic",
                    G_CALLBACK (test_emission_handled_handler),
                    NULL);
  g_signal_connect (data->object, "signal-generic-empty",
                    G_CALLBACK (test_emission_handled_handler),
                    NULL);
  g_signal_connect (data->object, "signal-args",
                    G_CALLBACK (test_emission_handled_handler),
                    NULL);

  return data;
}

static void
test_emission_handled_init (PerformanceTest *test,
                            gpointer _data,
                            double factor)
{
  struct EmissionTest *data = _data;

  data->n_checks = (unsigned int) (test->base_factor * factor);
}

static void
test_emission_handled_finish (PerformanceTest *test,
                              gpointer data)
{
}

static void
test_emission_handled_print_result (PerformanceTest *test,
                                    gpointer _data,
                                    double time)
{
  struct EmissionTest *data = _data;

  g_print ("Emissions per second: %.0f\n",
	   data->n_checks / time);
}

static void
test_emission_handled_teardown (PerformanceTest *test,
                                gpointer _data)
{
  struct EmissionTest *data = _data;

  g_object_unref (data->object);
  g_free (data);
}

/*************************************************************
 * Test object notify performance (common code)
 *************************************************************/

struct NotifyTest {
  GObject *object;
  unsigned int n_checks;
};

static void
test_notify_run (PerformanceTest *test,
                 void *_data)
{
  struct NotifyTest *data = _data;
  GObject *object = data->object;

  for (unsigned int i = 0; i < data->n_checks; i++)
    g_object_notify (object, "val1");
}

static void
test_notify_by_pspec_run (PerformanceTest *test,
                          void *_data)
{
  struct NotifyTest *data = _data;
  GObject *object = data->object;

  for (unsigned int i = 0; i < data->n_checks; i++)
    g_object_notify_by_pspec (object, pspecs[PROP_VAL1]);
}

/*************************************************************
 * Test notify unhandled performance
 *************************************************************/

static void *
test_notify_unhandled_setup (PerformanceTest *test)
{
  struct NotifyTest *data;

  data = g_new0 (struct NotifyTest, 1);
  data->object = g_object_new (COMPLEX_TYPE_OBJECT, NULL);
  return data;
}

static void
test_notify_unhandled_init (PerformanceTest *test,
                            void *_data,
                            double factor)
{
  struct NotifyTest *data = _data;

  data->n_checks = (unsigned int) (test->base_factor * factor);
}

static void
test_notify_unhandled_finish (PerformanceTest *test,
                              void *data)
{
}

static void
test_notify_unhandled_print_result (PerformanceTest *test,
                                    void *_data,
                                    double time)
{
  struct NotifyTest *data = _data;

  g_print ("Notify (unhandled) per second: %.0f\n",
           data->n_checks / time);
}

static void
test_notify_unhandled_teardown (PerformanceTest *test,
                                void *_data)
{
  struct NotifyTest *data = _data;

  g_object_unref (data->object);
  g_free (data);
}

/*************************************************************
 * Test notify handled performance
 *************************************************************/

static void
test_notify_handled_handler (ComplexObject *obj, GParamSpec *pspec, void *data)
{
}

static void *
test_notify_handled_setup (PerformanceTest *test)
{
  struct NotifyTest *data;

  data = g_new0 (struct NotifyTest, 1);
  data->object = g_object_new (COMPLEX_TYPE_OBJECT, NULL);

  g_signal_connect (data->object, "notify::val1",
                    G_CALLBACK (test_notify_handled_handler), data);
  g_signal_connect (data->object, "notify::val2",
                    G_CALLBACK (test_notify_handled_handler), data);

  return data;
}

static void
test_notify_handled_init (PerformanceTest *test,
                          void *_data,
                          double factor)
{
  struct NotifyTest *data = _data;

  data->n_checks = (unsigned int) (test->base_factor * factor);
}

static void
test_notify_handled_finish (PerformanceTest *test,
                            void *data)
{
}

static void
test_notify_handled_print_result (PerformanceTest *test,
                                  void *_data,
                                  double time)
{
  struct NotifyTest *data = _data;

  g_print ("Notify per second: %.0f\n",
           data->n_checks / time);
}

static void
test_notify_handled_teardown (PerformanceTest *test,
                              void *_data)
{
  struct NotifyTest *data = _data;

  g_assert_cmpuint (
    g_signal_handlers_disconnect_by_func (data->object,
                                          test_notify_handled_handler,
                                          data), ==, 2);
  g_object_unref (data->object);
  g_free (data);
}

/*************************************************************
 * Test object set performance
 *************************************************************/

struct SetTest {
  GObject *object;
  unsigned int n_checks;
};

static void
test_set_run (PerformanceTest *test,
              void *_data)
{
  struct SetTest *data = _data;
  GObject *object = data->object;

  for (unsigned int i = 0; i < data->n_checks; i++)
    g_object_set (object, "val1", i, NULL);
}

static void *
test_set_setup (PerformanceTest *test)
{
  struct SetTest *data;

  data = g_new0 (struct SetTest, 1);
  data->object = g_object_new (COMPLEX_TYPE_OBJECT, NULL);

  /* g_object_get() will take a reference. Increasing the ref count from 1 to 2
   * is more expensive, due to the check for toggle notifications. We have a
   * performance test for that already. Don't also test that overhead during
   * "property-get" test and avoid this by taking an additional reference. */
  g_object_ref (data->object);

  return data;
}

static void
test_set_init (PerformanceTest *test,
               void *_data,
               double factor)
{
  struct SetTest *data = _data;

  data->n_checks = (unsigned int) (test->base_factor * factor);
}

static void
test_set_finish (PerformanceTest *test,
                 void *data)
{
}

static void
test_set_print_result (PerformanceTest *test,
                       void *_data,
                       double time)
{
  struct SetTest *data = _data;

  g_print ("Property set per second: %.0f\n",
           data->n_checks / time);
}

static void
test_set_teardown (PerformanceTest *test,
                   void *_data)
{
  struct SetTest *data = _data;

  g_object_unref (data->object);
  g_object_unref (data->object);
  g_free (data);
}

/*************************************************************
 * Test object get performance
 *************************************************************/

struct GetTest {
  GObject *object;
  unsigned int n_checks;
};

static void
test_get_run (PerformanceTest *test,
              void *_data)
{
  struct GetTest *data = _data;
  GObject *object = data->object;
  int val;

  for (unsigned int i = 0; i < data->n_checks; i++)
    g_object_get (object, "val1", &val, NULL);
}

static void *
test_get_setup (PerformanceTest *test)
{
  struct GetTest *data;

  data = g_new0 (struct GetTest, 1);
  data->object = g_object_new (COMPLEX_TYPE_OBJECT, NULL);

  /* g_object_get() will take a reference. Increasing the ref count from 1 to 2
   * is more expensive, due to the check for toggle notifications. We have a
   * performance test for that already. Don't also test that overhead during
   * "property-get" test and avoid this by taking an additional reference. */
  g_object_ref (data->object);

  return data;
}

static void
test_get_init (PerformanceTest *test,
               void *_data,
               double factor)
{
  struct GetTest *data = _data;

  data->n_checks = (unsigned int) (test->base_factor * factor);
}

static void
test_get_finish (PerformanceTest *test,
                 void *data)
{
}

static void
test_get_print_result (PerformanceTest *test,
                       void *_data,
                       double time)
{
  struct GetTest *data = _data;

  g_print ("Property get per second: %.0f\n",
           data->n_checks / time);
}

static void
test_get_teardown (PerformanceTest *test,
                   gpointer _data)
{
  struct GetTest *data = _data;

  g_object_unref (data->object);
  g_object_unref (data->object);
  g_free (data);
}

/*************************************************************
 * Test object refcount performance
 *************************************************************/

struct RefcountTest {
  GObject *object;
  unsigned int n_checks;
  gboolean is_toggle_ref;
};

static void
test_refcount_toggle_ref_cb (gpointer data,
                             GObject *object,
                             gboolean is_last_ref)
{
}

static gpointer
test_refcount_setup (PerformanceTest *test)
{
  struct RefcountTest *data;

  data = g_new0 (struct RefcountTest, 1);
  data->object = g_object_new (COMPLEX_TYPE_OBJECT, NULL);

  if (g_str_equal (test->name, "refcount-toggle"))
    {
      g_object_add_toggle_ref (data->object, test_refcount_toggle_ref_cb, NULL);
      g_object_unref (data->object);
      data->is_toggle_ref = TRUE;
    }

  return data;
}

static void
test_refcount_init (PerformanceTest *test,
                    gpointer _data,
                    double factor)
{
  struct RefcountTest *data = _data;

  data->n_checks = (unsigned int) (test->base_factor * factor);
}

static void
test_refcount_run (PerformanceTest *test,
                   gpointer _data)
{
  struct RefcountTest *data = _data;
  GObject *object = data->object;

  for (unsigned int i = 0; i < data->n_checks; i++)
    {
      g_object_ref (object);
      g_object_ref (object);
      g_object_ref (object);
      g_object_unref (object);
      g_object_unref (object);

      g_object_ref (object);
      g_object_ref (object);
      g_object_unref (object);
      g_object_unref (object);
      g_object_unref (object);
    }
}

static void
test_refcount_1_run (PerformanceTest *test,
                     gpointer _data)
{
  struct RefcountTest *data = _data;
  GObject *object = data->object;

  for (unsigned int i = 0; i < data->n_checks; i++)
    {
      g_object_ref (object);
      g_object_unref (object);
    }
}

static void
test_refcount_finish (PerformanceTest *test,
                      gpointer _data)
{
}

static void
test_refcount_print_result (PerformanceTest *test,
			      gpointer _data,
			      double time)
{
  struct RefcountTest *data = _data;
  g_print ("Million refs+unref per second: %.2f\n",
	   data->n_checks * 5 / (time * 1000000 ));
}

static void
test_refcount_teardown (PerformanceTest *test,
			  gpointer _data)
{
  struct RefcountTest *data = _data;

  if (data->is_toggle_ref)
    g_object_remove_toggle_ref (data->object, test_refcount_toggle_ref_cb, NULL);
  else
    g_object_unref (data->object);

  g_free (data);
}

/*************************************************************
 * Main test code
 *************************************************************/

static PerformanceTest tests[] = {
  {
    "simple-construction",
    simple_object_get_type,
    347800,
    test_construction_setup,
    test_construction_init,
    test_construction_run,
    test_construction_finish,
    test_construction_teardown,
    test_construction_print_result
  },
  {
    "simple-construction1",
    simple_object_get_type,
    1454500,
    test_construction_setup,
    test_construction_init,
    test_construction_run1,
    test_construction_finish1,
    test_construction_teardown,
    test_construction_print_result
  },
  {
    "complex-construction",
    complex_object_get_type,
    110800,
    test_construction_setup,
    test_construction_init,
    test_complex_construction_run,
    test_construction_finish,
    test_construction_teardown,
    test_construction_print_result
  },
  {
    "complex-construction1",
    complex_object_get_type,
    204600,
    test_construction_setup,
    test_construction_init,
    test_complex_construction_run1,
    test_construction_finish,
    test_construction_teardown,
    test_construction_print_result
  },
  {
    "complex-construction2",
    complex_object_get_type,
    237400,
    test_construction_setup,
    test_construction_init,
    test_complex_construction_run2,
    test_construction_finish,
    test_construction_teardown,
    test_construction_print_result
  },
  {
    "finalization",
    simple_object_get_type,
    47400,
    test_construction_setup,
    test_finalization_init,
    test_finalization_run,
    test_finalization_finish,
    test_construction_teardown,
    test_finalization_print_result
  },
  {
    "type-check",
    NULL,
    1887,
    test_type_check_setup,
    test_type_check_init,
    test_type_check_run,
    test_type_check_finish,
    test_type_check_teardown,
    test_type_check_print_result
  },
  {
    "emit-unhandled",
    GUINT_TO_POINTER (COMPLEX_SIGNAL),
    56300,
    test_emission_unhandled_setup,
    test_emission_unhandled_init,
    test_emission_run,
    test_emission_unhandled_finish,
    test_emission_unhandled_teardown,
    test_emission_unhandled_print_result
  },
  {
    "emit-unhandled-empty",
    GUINT_TO_POINTER (COMPLEX_SIGNAL_EMPTY),
    496900,
    test_emission_unhandled_setup,
    test_emission_unhandled_init,
    test_emission_run,
    test_emission_unhandled_finish,
    test_emission_unhandled_teardown,
    test_emission_unhandled_print_result
  },
  {
    "emit-unhandled-generic",
    GUINT_TO_POINTER (COMPLEX_SIGNAL_GENERIC),
    71700,
    test_emission_unhandled_setup,
    test_emission_unhandled_init,
    test_emission_run,
    test_emission_unhandled_finish,
    test_emission_unhandled_teardown,
    test_emission_unhandled_print_result
  },
  {
    "emit-unhandled-generic-empty",
    GUINT_TO_POINTER (COMPLEX_SIGNAL_GENERIC_EMPTY),
    506300,
    test_emission_unhandled_setup,
    test_emission_unhandled_init,
    test_emission_run,
    test_emission_unhandled_finish,
    test_emission_unhandled_teardown,
    test_emission_unhandled_print_result
  },
  {
    "emit-unhandled-args",
    GUINT_TO_POINTER (COMPLEX_SIGNAL_ARGS),
    52000,
    test_emission_unhandled_setup,
    test_emission_unhandled_init,
    test_emission_run_args,
    test_emission_unhandled_finish,
    test_emission_unhandled_teardown,
    test_emission_unhandled_print_result
  },
  {
    "emit-handled",
    GUINT_TO_POINTER (COMPLEX_SIGNAL),
    38600,
    test_emission_handled_setup,
    test_emission_handled_init,
    test_emission_run,
    test_emission_handled_finish,
    test_emission_handled_teardown,
    test_emission_handled_print_result
  },
  {
    "emit-handled-empty",
    GUINT_TO_POINTER (COMPLEX_SIGNAL_EMPTY),
    40100,
    test_emission_handled_setup,
    test_emission_handled_init,
    test_emission_run,
    test_emission_handled_finish,
    test_emission_handled_teardown,
    test_emission_handled_print_result
  },
  {
    "emit-handled-generic",
    GUINT_TO_POINTER (COMPLEX_SIGNAL_GENERIC),
    39600,
    test_emission_handled_setup,
    test_emission_handled_init,
    test_emission_run,
    test_emission_handled_finish,
    test_emission_handled_teardown,
    test_emission_handled_print_result
  },
  {
    "emit-handled-generic-empty",
    GUINT_TO_POINTER (COMPLEX_SIGNAL_GENERIC_EMPTY),
    70400,
    test_emission_handled_setup,
    test_emission_handled_init,
    test_emission_run,
    test_emission_handled_finish,
    test_emission_handled_teardown,
    test_emission_handled_print_result
  },
  {
    "emit-handled-args",
    GUINT_TO_POINTER (COMPLEX_SIGNAL_ARGS),
    37800,
    test_emission_handled_setup,
    test_emission_handled_init,
    test_emission_run_args,
    test_emission_handled_finish,
    test_emission_handled_teardown,
    test_emission_handled_print_result
  },
  {
    "notify-unhandled",
    complex_object_get_type,
    526300,
    test_notify_unhandled_setup,
    test_notify_unhandled_init,
    test_notify_run,
    test_notify_unhandled_finish,
    test_notify_unhandled_teardown,
    test_notify_unhandled_print_result
  },
  {
    "notify-by-pspec-unhandled",
    complex_object_get_type,
    1568600,
    test_notify_unhandled_setup,
    test_notify_unhandled_init,
    test_notify_by_pspec_run,
    test_notify_unhandled_finish,
    test_notify_unhandled_teardown,
    test_notify_unhandled_print_result
  },
  {
    "notify-handled",
    complex_object_get_type,
    25500,
    test_notify_handled_setup,
    test_notify_handled_init,
    test_notify_run,
    test_notify_handled_finish,
    test_notify_handled_teardown,
    test_notify_handled_print_result
  },
  {
    "notify-by-pspec-handled",
    complex_object_get_type,
    26600,
    test_notify_handled_setup,
    test_notify_handled_init,
    test_notify_by_pspec_run,
    test_notify_handled_finish,
    test_notify_handled_teardown,
    test_notify_handled_print_result
  },
  {
    "property-set",
    complex_object_get_type,
    346300,
    test_set_setup,
    test_set_init,
    test_set_run,
    test_set_finish,
    test_set_teardown,
    test_set_print_result
  },
  {
    "property-get",
    complex_object_get_type,
    329200,
    test_get_setup,
    test_get_init,
    test_get_run,
    test_get_finish,
    test_get_teardown,
    test_get_print_result
  },
  {
    "refcount",
    NULL,
    83000,
    test_refcount_setup,
    test_refcount_init,
    test_refcount_run,
    test_refcount_finish,
    test_refcount_teardown,
    test_refcount_print_result
  },
  {
    "refcount-1",
    NULL,
    230000,
    test_refcount_setup,
    test_refcount_init,
    test_refcount_1_run,
    test_refcount_finish,
    test_refcount_teardown,
    test_refcount_print_result
  },
  {
    "refcount-toggle",
    NULL,
    133000,
    test_refcount_setup,
    test_refcount_init,
    test_refcount_1_run,
    test_refcount_finish,
    test_refcount_teardown,
    test_refcount_print_result
  },
};

static PerformanceTest *
find_test (const char *name)
{
  for (size_t i = 0; i < G_N_ELEMENTS (tests); i++)
    {
      if (strcmp (tests[i].name, name) == 0)
	return &tests[i];
    }
  return NULL;
}
int
main (int   argc,
      char *argv[])
{
  PerformanceTest *test;
  GOptionContext *context;
  GError *error = NULL;
  const char *str;

  if ((str = g_getenv ("GLIB_PERFORMANCE_FACTOR")) && str[0])
    {
      test_factor = g_strtod (str, NULL);
    }

  context = g_option_context_new ("GObject performance tests");
  g_option_context_add_main_entries (context, cmd_entries, NULL);
  if (!g_option_context_parse (context, &argc, &argv, &error))
    {
      g_printerr ("%s: %s\n", argv[0], error->message);
      return 1;
    }

  if (test_factor < 0)
    {
      g_printerr ("%s: test factor must be positive\n", argv[0]);
      return 1;
    }

  global_timer = g_timer_new ();

  if (argc > 1)
    {
      for (int i = 1; i < argc; i++)
	{
	  test = find_test (argv[i]);
	  if (test)
	    run_test (test);
	}
    }
  else
    {
      for (size_t k = 0; k < G_N_ELEMENTS (tests); k++)
        run_test (&tests[k]);
    }

  g_option_context_free (context);
  g_clear_pointer (&global_timer, g_timer_destroy);
  return 0;
}