/* GLIB - Library of useful routines for C programming * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ /* * Modified by the GLib Team and others 1997-2000. See the AUTHORS * file for a list of people on the GLib Team. See the ChangeLog * files for a list of changes. These files are distributed with * GLib at ftp://ftp.gtk.org/pub/gtk/. */ /* * MT safe */ #ifdef HAVE_CONFIG_H #include #endif #include "glib.h" typedef struct _GRealTree GRealTree; typedef struct _GTreeNode GTreeNode; struct _GRealTree { GTreeNode *root; GCompareDataFunc key_compare; GDestroyNotify key_destroy_func; GDestroyNotify value_destroy_func; gpointer key_compare_data; }; struct _GTreeNode { gint balance; /* height (left) - height (right) */ GTreeNode *left; /* left subtree */ GTreeNode *right; /* right subtree */ gpointer key; /* key for this node */ gpointer value; /* value stored at this node */ }; static GTreeNode* g_tree_node_new (gpointer key, gpointer value); static void g_tree_node_destroy (GTreeNode *node, GDestroyNotify key_destroy_func, GDestroyNotify value_destroy_func); static GTreeNode* g_tree_node_insert (GTree *tree, GTreeNode *node, gpointer key, gpointer value, gboolean replace, gboolean *inserted); static GTreeNode* g_tree_node_remove (GTree *tree, GTreeNode *node, gconstpointer key, gboolean notify); static GTreeNode* g_tree_node_balance (GTreeNode *node); static GTreeNode* g_tree_node_remove_leftmost (GTreeNode *node, GTreeNode **leftmost); static GTreeNode* g_tree_node_restore_left_balance (GTreeNode *node, gint old_balance); static GTreeNode* g_tree_node_restore_right_balance (GTreeNode *node, gint old_balance); static GTreeNode* g_tree_node_lookup (GTreeNode *node, GCompareDataFunc compare, gpointer comp_data, gconstpointer key); static gint g_tree_node_count (GTreeNode *node); static gint g_tree_node_pre_order (GTreeNode *node, GTraverseFunc traverse_func, gpointer data); static gint g_tree_node_in_order (GTreeNode *node, GTraverseFunc traverse_func, gpointer data); static gint g_tree_node_post_order (GTreeNode *node, GTraverseFunc traverse_func, gpointer data); static gpointer g_tree_node_search (GTreeNode *node, GCompareFunc search_func, gconstpointer data); static gint g_tree_node_height (GTreeNode *node); static GTreeNode* g_tree_node_rotate_left (GTreeNode *node); static GTreeNode* g_tree_node_rotate_right (GTreeNode *node); static void g_tree_node_check (GTreeNode *node); G_LOCK_DEFINE_STATIC (g_tree_global); static GMemChunk *node_mem_chunk = NULL; static GTreeNode *node_free_list = NULL; static GTreeNode* g_tree_node_new (gpointer key, gpointer value) { GTreeNode *node; G_LOCK (g_tree_global); if (node_free_list) { node = node_free_list; node_free_list = node->right; } else { if (!node_mem_chunk) node_mem_chunk = g_mem_chunk_new ("GLib GTreeNode mem chunk", sizeof (GTreeNode), 1024, G_ALLOC_ONLY); node = g_chunk_new (GTreeNode, node_mem_chunk); } G_UNLOCK (g_tree_global); node->balance = 0; node->left = NULL; node->right = NULL; node->key = key; node->value = value; return node; } static void g_tree_node_destroy (GTreeNode *node, GDestroyNotify key_destroy_func, GDestroyNotify value_destroy_func) { if (node) { g_tree_node_destroy (node->right, key_destroy_func, value_destroy_func); g_tree_node_destroy (node->left, key_destroy_func, value_destroy_func); if (key_destroy_func) key_destroy_func (node->key); if (value_destroy_func) value_destroy_func (node->value); #ifdef ENABLE_GC_FRIENDLY node->left = NULL; node->key = NULL; node->value = NULL; #endif /* ENABLE_GC_FRIENDLY */ G_LOCK (g_tree_global); node->right = node_free_list; node_free_list = node; G_UNLOCK (g_tree_global); } } /** * g_tree_new: * @key_compare_func: the function used to order the nodes in the #GTree. * It should return values similar to the standard * strcmp() function - * 0 if the two arguments are equal, a negative value if the first argument * comes before the second, or a positive value if the first argument comes * after the second. * * Creates a new #GTree. * * Return value: a new #GTree. **/ GTree* g_tree_new (GCompareFunc key_compare_func) { g_return_val_if_fail (key_compare_func != NULL, NULL); return g_tree_new_full ((GCompareDataFunc) key_compare_func, NULL, NULL, NULL); } /** * g_tree_new_with_data: * @key_compare_func: qsort()-style comparison function. * @key_compare_data: data to pass to comparison function. * * Creates a new #GTree with a comparison function that accepts user data. * See g_tree_new() for more details. * * Return value: a new #GTree. **/ GTree* g_tree_new_with_data (GCompareDataFunc key_compare_func, gpointer key_compare_data) { g_return_val_if_fail (key_compare_func != NULL, NULL); return g_tree_new_full (key_compare_func, key_compare_data, NULL, NULL); } /** * g_tree_new_full: * @key_compare_func: qsort()-style comparison function. * @key_compare_data: data to pass to comparison function. * @key_destroy_func: a function to free the memory allocated for the key * used when removing the entry from the #GTree or #NULL if you don't * want to supply such a function. * @value_destroy_func: a function to free the memory allocated for the * value used when removing the entry from the #GTree or #NULL if you * don't want to supply such a function. * * Creates a new #GTree like g_tree_new() and allows to specify functions * to free the memory allocated for the key and value that get called when * removing the entry from the #GTree. * * Return value: a new #GTree. **/ GTree* g_tree_new_full (GCompareDataFunc key_compare_func, gpointer key_compare_data, GDestroyNotify key_destroy_func, GDestroyNotify value_destroy_func) { GRealTree *rtree; g_return_val_if_fail (key_compare_func != NULL, NULL); rtree = g_new (GRealTree, 1); rtree->root = NULL; rtree->key_compare = key_compare_func; rtree->key_destroy_func = key_destroy_func; rtree->value_destroy_func = value_destroy_func; rtree->key_compare_data = key_compare_data; return (GTree*) rtree; } /** * g_tree_destroy: * @tree: a #GTree. * * Destroys the #GTree. If keys and/or values are dynamically allocated, you * should either free them first or create the #GTree using g_tree_new_full(). * In the latter case the destroy functions you supplied will be called on * all keys and values before destroying the #GTree. **/ void g_tree_destroy (GTree *tree) { GRealTree *rtree; g_return_if_fail (tree != NULL); rtree = (GRealTree*) tree; g_tree_node_destroy (rtree->root, rtree->key_destroy_func, rtree->value_destroy_func); g_free (rtree); } /** * g_tree_insert: * @tree: a #Gtree. * @key: the key to insert. * @value: the value corresponding to the key. * * Inserts a key/value pair into a #GTree. If the given key already exists * in the #GTree it is set to the new value. If you supplied a * value_destroy_func when creating the #GTree, the old value is freed using * that function. If you supplied a key_destroy_func when creating the * #GTree, the passed key is freed using that function. * * The tree is automatically 'balanced' as new key/value pairs are added, * so that the distance from the root to every leaf is as small as possible. **/ void g_tree_insert (GTree *tree, gpointer key, gpointer value) { GRealTree *rtree; gboolean inserted; g_return_if_fail (tree != NULL); rtree = (GRealTree*) tree; inserted = FALSE; rtree->root = g_tree_node_insert (tree, rtree->root, key, value, FALSE, &inserted); } /** * g_tree_replace: * @tree: a #Gtree. * @key: the key to insert. * @value: the value corresponding to the key. * * Inserts a new key and value into a #GTree similar to g_tree_insert(). * The difference is that if the key already exists in the #GTree, it gets * replaced by the new key. If you supplied a value_destroy_func when * creating the #GTree, the old value is freed using that function. If you * supplied a key_destroy_func when creating the #GTree, the old key is * freed using that function. * * The tree is automatically 'balanced' as new key/value pairs are added, * so that the distance from the root to every leaf is as small as possible. **/ void g_tree_replace (GTree *tree, gpointer key, gpointer value) { GRealTree *rtree; gboolean inserted; g_return_if_fail (tree != NULL); rtree = (GRealTree*) tree; inserted = FALSE; rtree->root = g_tree_node_insert (tree, rtree->root, key, value, TRUE, &inserted); } /** * g_tree_remove: * @tree: a #Gtree. * @key: the key to remove. * * Removes a key/value pair from a #GTree. * * If the #GTree was created using g_tree_new_full(), the key and value * are freed using the supplied destroy_functions, otherwise you have to * make sure that any dynamically allocated values are freed yourself. **/ void g_tree_remove (GTree *tree, gconstpointer key) { GRealTree *rtree; g_return_if_fail (tree != NULL); rtree = (GRealTree*) tree; rtree->root = g_tree_node_remove (tree, rtree->root, key, TRUE); } /** * g_tree_steal: * @tree: a #Gtree. * @key: the key to remove. * * Removes a key and its associated value from a #GTree without calling * the key and value destroy functions. **/ void g_tree_steal (GTree *tree, gconstpointer key) { GRealTree *rtree; g_return_if_fail (tree != NULL); rtree = (GRealTree*) tree; rtree->root = g_tree_node_remove (tree, rtree->root, key, FALSE); } /** * g_tree_lookup: * @tree: a #GTree. * @key: the key to look up. * * Gets the value corresponding to the given key. Since a #GTree is * automatically balanced as key/value pairs are added, key lookup is very * fast. * * Return value: the value corresponding to the key. **/ gpointer g_tree_lookup (GTree *tree, gconstpointer key) { GRealTree *rtree; GTreeNode *node; g_return_val_if_fail (tree != NULL, NULL); rtree = (GRealTree*) tree; node = g_tree_node_lookup (rtree->root, rtree->key_compare, rtree->key_compare_data, key); return node ? node->value : NULL; } /** * g_tree_lookup_extended: * @tree: a #GTree. * @lookup_key: the key to look up. * @orig_key: returns the original key. * @value: returns the value associated with the key. * * Looks up a key in the #GTree, returning the original key and the * associated value and a gboolean which is TRUE if the key was found. This * is useful if you need to free the memory allocated for the original key, * for example before calling g_tree_remove(). * * Return value: #TRUE if the key was found in the #GTree. **/ gboolean g_tree_lookup_extended (GTree *tree, gconstpointer lookup_key, gpointer *orig_key, gpointer *value) { GRealTree *rtree; GTreeNode *node; g_return_val_if_fail (tree != NULL, FALSE); rtree = (GRealTree*) tree; node = g_tree_node_lookup (rtree->root, rtree->key_compare, rtree->key_compare_data, lookup_key); if (node) { if (orig_key) *orig_key = node->key; if (value) *value = node->value; return TRUE; } else return FALSE; } /** * g_tree_foreach: * @tree: a #GTree. * @func: the function to call for each node visited. If this function * returns TRUE, the traversal is stopped. * @user_data: user data to pass to the function. * * Calls the given function for each of the key/value pairs in the #GTree. * The function is passed the key and value of each pair, and the given * @data parameter. **/ void g_tree_foreach (GTree *tree, GTraverseFunc func, gpointer user_data) { GRealTree *rtree; g_return_if_fail (tree != NULL); rtree = (GRealTree*) tree; if (!rtree->root) return; g_tree_node_in_order (rtree->root, func, user_data); } /** * g_tree_traverse: * @tree: a #GTree. * @traverse_func: the function to call for each node visited. If this * function returns TRUE, the traversal is stopped. * @traverse_type: the order in which nodes are visited, one of %G_IN_ORDER, * %G_PRE_ORDER and %G_POST_ORDER. * @user_data: user data to pass to the function. * * Calls the given function for each node in the GTree. This function is * deprecated, use g_tree_foreach() instead. **/ void g_tree_traverse (GTree *tree, GTraverseFunc traverse_func, GTraverseType traverse_type, gpointer user_data) { GRealTree *rtree; g_return_if_fail (tree != NULL); rtree = (GRealTree*) tree; if (!rtree->root) return; switch (traverse_type) { case G_PRE_ORDER: g_tree_node_pre_order (rtree->root, traverse_func, user_data); break; case G_IN_ORDER: g_tree_node_in_order (rtree->root, traverse_func, user_data); break; case G_POST_ORDER: g_tree_node_post_order (rtree->root, traverse_func, user_data); break; case G_LEVEL_ORDER: g_warning ("g_tree_traverse(): traverse type G_LEVEL_ORDER isn't implemented."); break; } } /** * g_tree_search: * @tree: a #GTree. * @search_func: the comparison function used to search the #GTree. * @user_data: the data passed as the second argument to the @search_func * function. * * Searches a #GTree using an alternative form of the comparison function. * * This function is not as useful as it sounds. * It allows you to use a different function for performing the lookup of * a key. However, since the tree is ordered according to the @key_compare_func * function passed to g_tree_new(), the function you pass to g_tree_search() * must return exactly the same value as would be returned by the comparison * function, for each pair of tree nodes, or the search will not work. * * To search for a specific value, you can use g_tree_foreach() or * g_tree_traverse(). * * Return value: the value corresponding to the found key, or NULL if the key * is not found. **/ gpointer g_tree_search (GTree *tree, GCompareFunc search_func, gconstpointer user_data) { GRealTree *rtree; g_return_val_if_fail (tree != NULL, NULL); rtree = (GRealTree*) tree; if (rtree->root) return g_tree_node_search (rtree->root, search_func, user_data); else return NULL; } /** * g_tree_height: * @tree: a #GTree. * * Gets the height of a #GTree. * * If the #GTree contains no nodes, the height is 0. * If the #GTree contains only one root node the height is 1. * If the root node has children the height is 2, etc. * * Return value: the height of the #GTree. **/ gint g_tree_height (GTree *tree) { GRealTree *rtree; g_return_val_if_fail (tree != NULL, 0); rtree = (GRealTree*) tree; if (rtree->root) return g_tree_node_height (rtree->root); else return 0; } /** * g_tree_nnodes: * @tree: a #GTree. * * Gets the number of nodes in a #GTree. * * Return value: the number of nodes in the #GTree. **/ gint g_tree_nnodes (GTree *tree) { GRealTree *rtree; g_return_val_if_fail (tree != NULL, 0); rtree = (GRealTree*) tree; if (rtree->root) return g_tree_node_count (rtree->root); else return 0; } static GTreeNode* g_tree_node_insert (GTree *tree, GTreeNode *node, gpointer key, gpointer value, gboolean replace, gboolean *inserted) { GRealTree *rtree; gint old_balance; gint cmp; rtree = (GRealTree*) tree; if (!node) { *inserted = TRUE; return g_tree_node_new (key, value); } cmp = rtree->key_compare (key, node->key, rtree->key_compare_data); if (cmp == 0) { *inserted = FALSE; if (rtree->value_destroy_func) rtree->value_destroy_func (node->value); node->value = value; if (replace) { if (rtree->key_destroy_func) rtree->key_destroy_func (node->key); node->key = key; } else { /* free the passed key */ if (rtree->key_destroy_func) rtree->key_destroy_func (key); } return node; } if (cmp < 0) { if (node->left) { old_balance = node->left->balance; node->left = g_tree_node_insert (tree, node->left, key, value, replace, inserted); if ((old_balance != node->left->balance) && node->left->balance) node->balance -= 1; } else { *inserted = TRUE; node->left = g_tree_node_new (key, value); node->balance -= 1; } } else if (cmp > 0) { if (node->right) { old_balance = node->right->balance; node->right = g_tree_node_insert (tree, node->right, key, value, replace, inserted); if ((old_balance != node->right->balance) && node->right->balance) node->balance += 1; } else { *inserted = TRUE; node->right = g_tree_node_new (key, value); node->balance += 1; } } if (*inserted) { if ((node->balance < -1) || (node->balance > 1)) node = g_tree_node_balance (node); } return node; } static GTreeNode* g_tree_node_remove (GTree *tree, GTreeNode *node, gconstpointer key, gboolean notify) { GRealTree *rtree; GTreeNode *new_root; gint old_balance; gint cmp; if (!node) return NULL; rtree = (GRealTree *) tree; cmp = rtree->key_compare (key, node->key, rtree->key_compare_data); if (cmp == 0) { GTreeNode *garbage; garbage = node; if (!node->right) { node = node->left; } else { old_balance = node->right->balance; node->right = g_tree_node_remove_leftmost (node->right, &new_root); new_root->left = node->left; new_root->right = node->right; new_root->balance = node->balance; node = g_tree_node_restore_right_balance (new_root, old_balance); } if (notify) { if (rtree->key_destroy_func) rtree->key_destroy_func (garbage->key); if (rtree->value_destroy_func) rtree->value_destroy_func (garbage->value); } #ifdef ENABLE_GC_FRIENDLY garbage->left = NULL; garbage->key = NULL; garbage->value = NULL; #endif /* ENABLE_GC_FRIENDLY */ G_LOCK (g_tree_global); garbage->right = node_free_list; node_free_list = garbage; G_UNLOCK (g_tree_global); } else if (cmp < 0) { if (node->left) { old_balance = node->left->balance; node->left = g_tree_node_remove (tree, node->left, key, notify); node = g_tree_node_restore_left_balance (node, old_balance); } } else if (cmp > 0) { if (node->right) { old_balance = node->right->balance; node->right = g_tree_node_remove (tree, node->right, key, notify); node = g_tree_node_restore_right_balance (node, old_balance); } } return node; } static GTreeNode* g_tree_node_balance (GTreeNode *node) { if (node->balance < -1) { if (node->left->balance > 0) node->left = g_tree_node_rotate_left (node->left); node = g_tree_node_rotate_right (node); } else if (node->balance > 1) { if (node->right->balance < 0) node->right = g_tree_node_rotate_right (node->right); node = g_tree_node_rotate_left (node); } return node; } static GTreeNode* g_tree_node_remove_leftmost (GTreeNode *node, GTreeNode **leftmost) { gint old_balance; if (!node->left) { *leftmost = node; return node->right; } old_balance = node->left->balance; node->left = g_tree_node_remove_leftmost (node->left, leftmost); return g_tree_node_restore_left_balance (node, old_balance); } static GTreeNode* g_tree_node_restore_left_balance (GTreeNode *node, gint old_balance) { if (!node->left) node->balance += 1; else if ((node->left->balance != old_balance) && (node->left->balance == 0)) node->balance += 1; if (node->balance > 1) return g_tree_node_balance (node); return node; } static GTreeNode* g_tree_node_restore_right_balance (GTreeNode *node, gint old_balance) { if (!node->right) node->balance -= 1; else if ((node->right->balance != old_balance) && (node->right->balance == 0)) node->balance -= 1; if (node->balance < -1) return g_tree_node_balance (node); return node; } static GTreeNode * g_tree_node_lookup (GTreeNode *node, GCompareDataFunc compare, gpointer compare_data, gconstpointer key) { gint cmp; if (!node) return NULL; cmp = (* compare) (key, node->key, compare_data); if (cmp == 0) return node; if (cmp < 0) { if (node->left) return g_tree_node_lookup (node->left, compare, compare_data, key); } else if (cmp > 0) { if (node->right) return g_tree_node_lookup (node->right, compare, compare_data, key); } return NULL; } static gint g_tree_node_count (GTreeNode *node) { gint count; count = 1; if (node->left) count += g_tree_node_count (node->left); if (node->right) count += g_tree_node_count (node->right); return count; } static gint g_tree_node_pre_order (GTreeNode *node, GTraverseFunc traverse_func, gpointer data) { if ((*traverse_func) (node->key, node->value, data)) return TRUE; if (node->left) { if (g_tree_node_pre_order (node->left, traverse_func, data)) return TRUE; } if (node->right) { if (g_tree_node_pre_order (node->right, traverse_func, data)) return TRUE; } return FALSE; } static gint g_tree_node_in_order (GTreeNode *node, GTraverseFunc traverse_func, gpointer data) { if (node->left) { if (g_tree_node_in_order (node->left, traverse_func, data)) return TRUE; } if ((*traverse_func) (node->key, node->value, data)) return TRUE; if (node->right) { if (g_tree_node_in_order (node->right, traverse_func, data)) return TRUE; } return FALSE; } static gint g_tree_node_post_order (GTreeNode *node, GTraverseFunc traverse_func, gpointer data) { if (node->left) { if (g_tree_node_post_order (node->left, traverse_func, data)) return TRUE; } if (node->right) { if (g_tree_node_post_order (node->right, traverse_func, data)) return TRUE; } if ((*traverse_func) (node->key, node->value, data)) return TRUE; return FALSE; } static gpointer g_tree_node_search (GTreeNode *node, GCompareFunc search_func, gconstpointer data) { gint dir; if (!node) return NULL; do { dir = (* search_func) (node->key, data); if (dir == 0) return node->value; if (dir < 0) node = node->left; else if (dir > 0) node = node->right; } while (node); return NULL; } static gint g_tree_node_height (GTreeNode *node) { gint left_height; gint right_height; if (node) { left_height = 0; right_height = 0; if (node->left) left_height = g_tree_node_height (node->left); if (node->right) right_height = g_tree_node_height (node->right); return MAX (left_height, right_height) + 1; } return 0; } static GTreeNode* g_tree_node_rotate_left (GTreeNode *node) { GTreeNode *right; gint a_bal; gint b_bal; right = node->right; node->right = right->left; right->left = node; a_bal = node->balance; b_bal = right->balance; if (b_bal <= 0) { if (a_bal >= 1) right->balance = b_bal - 1; else right->balance = a_bal + b_bal - 2; node->balance = a_bal - 1; } else { if (a_bal <= b_bal) right->balance = a_bal - 2; else right->balance = b_bal - 1; node->balance = a_bal - b_bal - 1; } return right; } static GTreeNode* g_tree_node_rotate_right (GTreeNode *node) { GTreeNode *left; gint a_bal; gint b_bal; left = node->left; node->left = left->right; left->right = node; a_bal = node->balance; b_bal = left->balance; if (b_bal <= 0) { if (b_bal > a_bal) left->balance = b_bal + 1; else left->balance = a_bal + 2; node->balance = a_bal - b_bal + 1; } else { if (a_bal <= -1) left->balance = b_bal + 1; else left->balance = a_bal + b_bal + 2; node->balance = a_bal + 1; } return left; } static void g_tree_node_check (GTreeNode *node) { gint left_height; gint right_height; gint balance; if (node) { left_height = 0; right_height = 0; if (node->left) left_height = g_tree_node_height (node->left); if (node->right) right_height = g_tree_node_height (node->right); balance = right_height - left_height; if (balance != node->balance) g_log (g_log_domain_glib, G_LOG_LEVEL_INFO, "g_tree_node_check: failed: %d ( %d )\n", balance, node->balance); if (node->left) g_tree_node_check (node->left); if (node->right) g_tree_node_check (node->right); } }