/* GObject - GLib Type, Object, Parameter and Signal Library * Copyright (C) 1998-1999, 2000-2001 Tim Janik and Red Hat, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General * Public License along with this library; if not, see . */ /* * MT safe */ #include "config.h" #include "../glib/gvalgrind.h" #include #include "gtype.h" #include "gtype-private.h" #include "gtypeplugin.h" #include "gvaluecollector.h" #include "gatomicarray.h" #include "gobject_trace.h" #include "glib-private.h" #include "gconstructor.h" #ifdef G_OS_WIN32 #include #endif #ifdef G_ENABLE_DEBUG #define IF_DEBUG(debug_type) if (_g_type_debug_flags & G_TYPE_DEBUG_ ## debug_type) #endif /** * SECTION:gtype * @short_description: The GLib Runtime type identification and * management system * @title:Type Information * * The GType API is the foundation of the GObject system. It provides the * facilities for registering and managing all fundamental data types, * user-defined object and interface types. * * For type creation and registration purposes, all types fall into one of * two categories: static or dynamic. Static types are never loaded or * unloaded at run-time as dynamic types may be. Static types are created * with g_type_register_static() that gets type specific information passed * in via a #GTypeInfo structure. * * Dynamic types are created with g_type_register_dynamic() which takes a * #GTypePlugin structure instead. The remaining type information (the * #GTypeInfo structure) is retrieved during runtime through #GTypePlugin * and the g_type_plugin_*() API. * * These registration functions are usually called only once from a * function whose only purpose is to return the type identifier for a * specific class. Once the type (or class or interface) is registered, * it may be instantiated, inherited, or implemented depending on exactly * what sort of type it is. * * There is also a third registration function for registering fundamental * types called g_type_register_fundamental() which requires both a #GTypeInfo * structure and a #GTypeFundamentalInfo structure but it is seldom used * since most fundamental types are predefined rather than user-defined. * * Type instance and class structs are limited to a total of 64 KiB, * including all parent types. Similarly, type instances' private data * (as created by G_ADD_PRIVATE()) are limited to a total of * 64 KiB. If a type instance needs a large static buffer, allocate it * separately (typically by using #GArray or #GPtrArray) and put a pointer * to the buffer in the structure. * * As mentioned in the [GType conventions][gtype-conventions], type names must * be at least three characters long. There is no upper length limit. The first * character must be a letter (a–z or A–Z) or an underscore (‘_’). Subsequent * characters can be letters, numbers or any of ‘-_+’. */ /* NOTE: some functions (some internal variants and exported ones) * invalidate data portions of the TypeNodes. if external functions/callbacks * are called, pointers to memory maintained by TypeNodes have to be looked up * again. this affects most of the struct TypeNode fields, e.g. ->children or * CLASSED_NODE_IFACES_ENTRIES() respectively IFACE_NODE_PREREQUISITES() (but * not ->supers[]), as all those memory portions can get realloc()ed during * callback invocation. * * LOCKING: * lock handling issues when calling static functions are indicated by * uppercase letter postfixes, all static functions have to have * one of the below postfixes: * - _I: [Indifferent about locking] * function doesn't care about locks at all * - _U: [Unlocked invocation] * no read or write lock has to be held across function invocation * (locks may be acquired and released during invocation though) * - _L: [Locked invocation] * a write lock or more than 0 read locks have to be held across * function invocation * - _W: [Write-locked invocation] * a write lock has to be held across function invocation * - _Wm: [Write-locked invocation, mutatable] * like _W, but the write lock might be released and reacquired * during invocation, watch your pointers * - _WmREC: [Write-locked invocation, mutatable, recursive] * like _Wm, but also acquires recursive mutex class_init_rec_mutex */ #ifdef LOCK_DEBUG #define G_READ_LOCK(rw_lock) do { g_printerr (G_STRLOC ": readL++\n"); g_rw_lock_reader_lock (rw_lock); } while (0) #define G_READ_UNLOCK(rw_lock) do { g_printerr (G_STRLOC ": readL--\n"); g_rw_lock_reader_unlock (rw_lock); } while (0) #define G_WRITE_LOCK(rw_lock) do { g_printerr (G_STRLOC ": writeL++\n"); g_rw_lock_writer_lock (rw_lock); } while (0) #define G_WRITE_UNLOCK(rw_lock) do { g_printerr (G_STRLOC ": writeL--\n"); g_rw_lock_writer_unlock (rw_lock); } while (0) #else #define G_READ_LOCK(rw_lock) g_rw_lock_reader_lock (rw_lock) #define G_READ_UNLOCK(rw_lock) g_rw_lock_reader_unlock (rw_lock) #define G_WRITE_LOCK(rw_lock) g_rw_lock_writer_lock (rw_lock) #define G_WRITE_UNLOCK(rw_lock) g_rw_lock_writer_unlock (rw_lock) #endif #define INVALID_RECURSION(func, arg, type_name) G_STMT_START{ \ static const gchar _action[] = " invalidly modified type "; \ gpointer _arg = (gpointer) (arg); const gchar *_tname = (type_name), *_fname = (func); \ if (_arg) \ g_error ("%s(%p)%s'%s'", _fname, _arg, _action, _tname); \ else \ g_error ("%s()%s'%s'", _fname, _action, _tname); \ }G_STMT_END #define g_assert_type_system_initialized() \ g_assert (static_quark_type_flags) #define TYPE_FUNDAMENTAL_FLAG_MASK (G_TYPE_FLAG_CLASSED | \ G_TYPE_FLAG_INSTANTIATABLE | \ G_TYPE_FLAG_DERIVABLE | \ G_TYPE_FLAG_DEEP_DERIVABLE) #define TYPE_FLAG_MASK (G_TYPE_FLAG_ABSTRACT | G_TYPE_FLAG_VALUE_ABSTRACT) #define SIZEOF_FUNDAMENTAL_INFO ((gssize) MAX (MAX (sizeof (GTypeFundamentalInfo), \ sizeof (gpointer)), \ sizeof (glong))) /* The 2*sizeof(size_t) alignment here is borrowed from * GNU libc, so it should be good most everywhere. * It is more conservative than is needed on some 64-bit * platforms, but ia64 does require a 16-byte alignment. * The SIMD extensions for x86 and ppc32 would want a * larger alignment than this, but we don't need to * do better than malloc. */ #define STRUCT_ALIGNMENT (2 * sizeof (gsize)) #define ALIGN_STRUCT(offset) \ ((offset + (STRUCT_ALIGNMENT - 1)) & -STRUCT_ALIGNMENT) /* --- typedefs --- */ typedef struct _TypeNode TypeNode; typedef struct _CommonData CommonData; typedef struct _BoxedData BoxedData; typedef struct _IFaceData IFaceData; typedef struct _ClassData ClassData; typedef struct _InstanceData InstanceData; typedef union _TypeData TypeData; typedef struct _IFaceEntries IFaceEntries; typedef struct _IFaceEntry IFaceEntry; typedef struct _IFaceHolder IFaceHolder; /* --- prototypes --- */ static inline GTypeFundamentalInfo* type_node_fundamental_info_I (TypeNode *node); static void type_add_flags_W (TypeNode *node, GTypeFlags flags); static void type_data_make_W (TypeNode *node, const GTypeInfo *info, const GTypeValueTable *value_table); static inline void type_data_ref_Wm (TypeNode *node); static inline void type_data_unref_U (TypeNode *node, gboolean uncached); static void type_data_last_unref_Wm (TypeNode * node, gboolean uncached); static inline gpointer type_get_qdata_L (TypeNode *node, GQuark quark); static inline void type_set_qdata_W (TypeNode *node, GQuark quark, gpointer data); static IFaceHolder* type_iface_peek_holder_L (TypeNode *iface, GType instance_type); static gboolean type_iface_vtable_base_init_Wm (TypeNode *iface, TypeNode *node); static void type_iface_vtable_iface_init_Wm (TypeNode *iface, TypeNode *node); static gboolean type_node_is_a_L (TypeNode *node, TypeNode *iface_node); /* --- enumeration --- */ /* The InitState enumeration is used to track the progress of initializing * both classes and interface vtables. Keeping the state of initialization * is necessary to handle new interfaces being added while we are initializing * the class or other interfaces. */ typedef enum { UNINITIALIZED, BASE_CLASS_INIT, BASE_IFACE_INIT, CLASS_INIT, IFACE_INIT, INITIALIZED } InitState; /* --- structures --- */ struct _TypeNode { guint volatile ref_count; #ifdef G_ENABLE_DEBUG guint volatile instance_count; #endif GTypePlugin *plugin; guint n_children; /* writable with lock */ guint n_supers : 8; guint n_prerequisites : 9; guint is_classed : 1; guint is_instantiatable : 1; guint mutatable_check_cache : 1; /* combines some common path checks */ GType *children; /* writable with lock */ TypeData * volatile data; GQuark qname; GData *global_gdata; union { GAtomicArray iface_entries; /* for !iface types */ GAtomicArray offsets; } _prot; GType *prerequisites; GType supers[1]; /* flexible array */ }; #define SIZEOF_BASE_TYPE_NODE() (G_STRUCT_OFFSET (TypeNode, supers)) #define MAX_N_SUPERS (255) #define MAX_N_CHILDREN (G_MAXUINT) #define MAX_N_INTERFACES (255) /* Limited by offsets being 8 bits */ #define MAX_N_PREREQUISITES (511) #define NODE_TYPE(node) (node->supers[0]) #define NODE_PARENT_TYPE(node) (node->supers[1]) #define NODE_FUNDAMENTAL_TYPE(node) (node->supers[node->n_supers]) #define NODE_NAME(node) (g_quark_to_string (node->qname)) #define NODE_REFCOUNT(node) ((guint) g_atomic_int_get ((int *) &(node)->ref_count)) #define NODE_IS_BOXED(node) (NODE_FUNDAMENTAL_TYPE (node) == G_TYPE_BOXED) #define NODE_IS_IFACE(node) (NODE_FUNDAMENTAL_TYPE (node) == G_TYPE_INTERFACE) #define CLASSED_NODE_IFACES_ENTRIES(node) (&(node)->_prot.iface_entries) #define CLASSED_NODE_IFACES_ENTRIES_LOCKED(node)(G_ATOMIC_ARRAY_GET_LOCKED(CLASSED_NODE_IFACES_ENTRIES((node)), IFaceEntries)) #define IFACE_NODE_N_PREREQUISITES(node) ((node)->n_prerequisites) #define IFACE_NODE_PREREQUISITES(node) ((node)->prerequisites) #define iface_node_get_holders_L(node) ((IFaceHolder*) type_get_qdata_L ((node), static_quark_iface_holder)) #define iface_node_set_holders_W(node, holders) (type_set_qdata_W ((node), static_quark_iface_holder, (holders))) #define iface_node_get_dependants_array_L(n) ((GType*) type_get_qdata_L ((n), static_quark_dependants_array)) #define iface_node_set_dependants_array_W(n,d) (type_set_qdata_W ((n), static_quark_dependants_array, (d))) #define TYPE_ID_MASK ((GType) ((1 << G_TYPE_FUNDAMENTAL_SHIFT) - 1)) #define NODE_IS_ANCESTOR(ancestor, node) \ ((ancestor)->n_supers <= (node)->n_supers && \ (node)->supers[(node)->n_supers - (ancestor)->n_supers] == NODE_TYPE (ancestor)) struct _IFaceHolder { GType instance_type; GInterfaceInfo *info; GTypePlugin *plugin; IFaceHolder *next; }; struct _IFaceEntry { GType iface_type; GTypeInterface *vtable; InitState init_state; }; struct _IFaceEntries { guint offset_index; IFaceEntry entry[1]; }; #define IFACE_ENTRIES_HEADER_SIZE (sizeof(IFaceEntries) - sizeof(IFaceEntry)) #define IFACE_ENTRIES_N_ENTRIES(_entries) ( (G_ATOMIC_ARRAY_DATA_SIZE((_entries)) - IFACE_ENTRIES_HEADER_SIZE) / sizeof(IFaceEntry) ) struct _CommonData { GTypeValueTable *value_table; }; struct _BoxedData { CommonData data; GBoxedCopyFunc copy_func; GBoxedFreeFunc free_func; }; struct _IFaceData { CommonData common; guint16 vtable_size; GBaseInitFunc vtable_init_base; GBaseFinalizeFunc vtable_finalize_base; GClassInitFunc dflt_init; GClassFinalizeFunc dflt_finalize; gconstpointer dflt_data; gpointer dflt_vtable; }; struct _ClassData { CommonData common; guint16 class_size; guint16 class_private_size; int volatile init_state; /* atomic - g_type_class_ref reads it unlocked */ GBaseInitFunc class_init_base; GBaseFinalizeFunc class_finalize_base; GClassInitFunc class_init; GClassFinalizeFunc class_finalize; gconstpointer class_data; gpointer class; }; struct _InstanceData { CommonData common; guint16 class_size; guint16 class_private_size; int volatile init_state; /* atomic - g_type_class_ref reads it unlocked */ GBaseInitFunc class_init_base; GBaseFinalizeFunc class_finalize_base; GClassInitFunc class_init; GClassFinalizeFunc class_finalize; gconstpointer class_data; gpointer class; guint16 instance_size; guint16 private_size; guint16 n_preallocs; GInstanceInitFunc instance_init; }; union _TypeData { CommonData common; BoxedData boxed; IFaceData iface; ClassData class; InstanceData instance; }; typedef struct { gpointer cache_data; GTypeClassCacheFunc cache_func; } ClassCacheFunc; typedef struct { gpointer check_data; GTypeInterfaceCheckFunc check_func; } IFaceCheckFunc; /* --- variables --- */ static GRWLock type_rw_lock; static GRecMutex class_init_rec_mutex; static guint static_n_class_cache_funcs = 0; static ClassCacheFunc *static_class_cache_funcs = NULL; static guint static_n_iface_check_funcs = 0; static IFaceCheckFunc *static_iface_check_funcs = NULL; static GQuark static_quark_type_flags = 0; static GQuark static_quark_iface_holder = 0; static GQuark static_quark_dependants_array = 0; static guint type_registration_serial = 0; GTypeDebugFlags _g_type_debug_flags = 0; /* --- type nodes --- */ static GHashTable *static_type_nodes_ht = NULL; static TypeNode *static_fundamental_type_nodes[(G_TYPE_FUNDAMENTAL_MAX >> G_TYPE_FUNDAMENTAL_SHIFT) + 1] = { NULL, }; static GType static_fundamental_next = G_TYPE_RESERVED_USER_FIRST; static inline TypeNode* lookup_type_node_I (GType utype) { if (utype > G_TYPE_FUNDAMENTAL_MAX) return (TypeNode*) (utype & ~TYPE_ID_MASK); else return static_fundamental_type_nodes[utype >> G_TYPE_FUNDAMENTAL_SHIFT]; } /** * g_type_get_type_registration_serial: * * Returns an opaque serial number that represents the state of the set * of registered types. Any time a type is registered this serial changes, * which means you can cache information based on type lookups (such as * g_type_from_name()) and know if the cache is still valid at a later * time by comparing the current serial with the one at the type lookup. * * Since: 2.36 * * Returns: An unsigned int, representing the state of type registrations */ guint g_type_get_type_registration_serial (void) { return (guint)g_atomic_int_get ((gint *)&type_registration_serial); } static TypeNode* type_node_any_new_W (TypeNode *pnode, GType ftype, const gchar *name, GTypePlugin *plugin, GTypeFundamentalFlags type_flags) { guint n_supers; GType type; TypeNode *node; guint i, node_size = 0; n_supers = pnode ? pnode->n_supers + 1 : 0; if (!pnode) node_size += SIZEOF_FUNDAMENTAL_INFO; /* fundamental type info */ node_size += SIZEOF_BASE_TYPE_NODE (); /* TypeNode structure */ node_size += (sizeof (GType) * (1 + n_supers + 1)); /* self + ancestors + (0) for ->supers[] */ node = g_malloc0 (node_size); if (!pnode) /* offset fundamental types */ { node = G_STRUCT_MEMBER_P (node, SIZEOF_FUNDAMENTAL_INFO); static_fundamental_type_nodes[ftype >> G_TYPE_FUNDAMENTAL_SHIFT] = node; type = ftype; } else type = (GType) node; g_assert ((type & TYPE_ID_MASK) == 0); node->n_supers = n_supers; if (!pnode) { node->supers[0] = type; node->supers[1] = 0; node->is_classed = (type_flags & G_TYPE_FLAG_CLASSED) != 0; node->is_instantiatable = (type_flags & G_TYPE_FLAG_INSTANTIATABLE) != 0; if (NODE_IS_IFACE (node)) { IFACE_NODE_N_PREREQUISITES (node) = 0; IFACE_NODE_PREREQUISITES (node) = NULL; } else _g_atomic_array_init (CLASSED_NODE_IFACES_ENTRIES (node)); } else { node->supers[0] = type; memcpy (node->supers + 1, pnode->supers, sizeof (GType) * (1 + pnode->n_supers + 1)); node->is_classed = pnode->is_classed; node->is_instantiatable = pnode->is_instantiatable; if (NODE_IS_IFACE (node)) { IFACE_NODE_N_PREREQUISITES (node) = 0; IFACE_NODE_PREREQUISITES (node) = NULL; } else { guint j; IFaceEntries *entries; entries = _g_atomic_array_copy (CLASSED_NODE_IFACES_ENTRIES (pnode), IFACE_ENTRIES_HEADER_SIZE, 0); if (entries) { for (j = 0; j < IFACE_ENTRIES_N_ENTRIES (entries); j++) { entries->entry[j].vtable = NULL; entries->entry[j].init_state = UNINITIALIZED; } _g_atomic_array_update (CLASSED_NODE_IFACES_ENTRIES (node), entries); } } i = pnode->n_children++; pnode->children = g_renew (GType, pnode->children, pnode->n_children); pnode->children[i] = type; } TRACE(GOBJECT_TYPE_NEW(name, node->supers[1], type)); node->plugin = plugin; node->n_children = 0; node->children = NULL; node->data = NULL; node->qname = g_quark_from_string (name); node->global_gdata = NULL; g_hash_table_insert (static_type_nodes_ht, (gpointer) g_quark_to_string (node->qname), (gpointer) type); g_atomic_int_inc ((gint *)&type_registration_serial); return node; } static inline GTypeFundamentalInfo* type_node_fundamental_info_I (TypeNode *node) { GType ftype = NODE_FUNDAMENTAL_TYPE (node); if (ftype != NODE_TYPE (node)) node = lookup_type_node_I (ftype); return node ? G_STRUCT_MEMBER_P (node, -SIZEOF_FUNDAMENTAL_INFO) : NULL; } static TypeNode* type_node_fundamental_new_W (GType ftype, const gchar *name, GTypeFundamentalFlags type_flags) { GTypeFundamentalInfo *finfo; TypeNode *node; g_assert ((ftype & TYPE_ID_MASK) == 0); g_assert (ftype <= G_TYPE_FUNDAMENTAL_MAX); if (ftype >> G_TYPE_FUNDAMENTAL_SHIFT == static_fundamental_next) static_fundamental_next++; type_flags &= TYPE_FUNDAMENTAL_FLAG_MASK; node = type_node_any_new_W (NULL, ftype, name, NULL, type_flags); finfo = type_node_fundamental_info_I (node); finfo->type_flags = type_flags; return node; } static TypeNode* type_node_new_W (TypeNode *pnode, const gchar *name, GTypePlugin *plugin) { g_assert (pnode); g_assert (pnode->n_supers < MAX_N_SUPERS); g_assert (pnode->n_children < MAX_N_CHILDREN); return type_node_any_new_W (pnode, NODE_FUNDAMENTAL_TYPE (pnode), name, plugin, 0); } static inline IFaceEntry* lookup_iface_entry_I (volatile IFaceEntries *entries, TypeNode *iface_node) { guint8 *offsets; guint offset_index; IFaceEntry *check; int index; IFaceEntry *entry; if (entries == NULL) return NULL; G_ATOMIC_ARRAY_DO_TRANSACTION (&iface_node->_prot.offsets, guint8, entry = NULL; offsets = transaction_data; offset_index = entries->offset_index; if (offsets != NULL && offset_index < G_ATOMIC_ARRAY_DATA_SIZE(offsets)) { index = offsets[offset_index]; if (index > 0) { /* zero means unset, subtract one to get real index */ index -= 1; if (index < IFACE_ENTRIES_N_ENTRIES (entries)) { check = (IFaceEntry *)&entries->entry[index]; if (check->iface_type == NODE_TYPE (iface_node)) entry = check; } } } ); return entry; } static inline IFaceEntry* type_lookup_iface_entry_L (TypeNode *node, TypeNode *iface_node) { if (!NODE_IS_IFACE (iface_node)) return NULL; return lookup_iface_entry_I (CLASSED_NODE_IFACES_ENTRIES_LOCKED (node), iface_node); } static inline gboolean type_lookup_iface_vtable_I (TypeNode *node, TypeNode *iface_node, gpointer *vtable_ptr) { IFaceEntry *entry; gboolean res; if (!NODE_IS_IFACE (iface_node)) { if (vtable_ptr) *vtable_ptr = NULL; return FALSE; } G_ATOMIC_ARRAY_DO_TRANSACTION (CLASSED_NODE_IFACES_ENTRIES (node), IFaceEntries, entry = lookup_iface_entry_I (transaction_data, iface_node); res = entry != NULL; if (vtable_ptr) { if (entry) *vtable_ptr = entry->vtable; else *vtable_ptr = NULL; } ); return res; } static inline gboolean type_lookup_prerequisite_L (TypeNode *iface, GType prerequisite_type) { if (NODE_IS_IFACE (iface) && IFACE_NODE_N_PREREQUISITES (iface)) { GType *prerequisites = IFACE_NODE_PREREQUISITES (iface) - 1; guint n_prerequisites = IFACE_NODE_N_PREREQUISITES (iface); do { guint i; GType *check; i = (n_prerequisites + 1) >> 1; check = prerequisites + i; if (prerequisite_type == *check) return TRUE; else if (prerequisite_type > *check) { n_prerequisites -= i; prerequisites = check; } else /* if (prerequisite_type < *check) */ n_prerequisites = i - 1; } while (n_prerequisites); } return FALSE; } static const gchar* type_descriptive_name_I (GType type) { if (type) { TypeNode *node = lookup_type_node_I (type); return node ? NODE_NAME (node) : ""; } else return ""; } /* --- type consistency checks --- */ static gboolean check_plugin_U (GTypePlugin *plugin, gboolean need_complete_type_info, gboolean need_complete_interface_info, const gchar *type_name) { /* G_IS_TYPE_PLUGIN() and G_TYPE_PLUGIN_GET_CLASS() are external calls: _U */ if (!plugin) { g_warning ("plugin handle for type '%s' is NULL", type_name); return FALSE; } if (!G_IS_TYPE_PLUGIN (plugin)) { g_warning ("plugin pointer (%p) for type '%s' is invalid", plugin, type_name); return FALSE; } if (need_complete_type_info && !G_TYPE_PLUGIN_GET_CLASS (plugin)->complete_type_info) { g_warning ("plugin for type '%s' has no complete_type_info() implementation", type_name); return FALSE; } if (need_complete_interface_info && !G_TYPE_PLUGIN_GET_CLASS (plugin)->complete_interface_info) { g_warning ("plugin for type '%s' has no complete_interface_info() implementation", type_name); return FALSE; } return TRUE; } static gboolean check_type_name_I (const gchar *type_name) { static const gchar extra_chars[] = "-_+"; const gchar *p = type_name; gboolean name_valid; if (!type_name[0] || !type_name[1] || !type_name[2]) { g_warning ("type name '%s' is too short", type_name); return FALSE; } /* check the first letter */ name_valid = (p[0] >= 'A' && p[0] <= 'Z') || (p[0] >= 'a' && p[0] <= 'z') || p[0] == '_'; for (p = type_name + 1; *p; p++) name_valid &= ((p[0] >= 'A' && p[0] <= 'Z') || (p[0] >= 'a' && p[0] <= 'z') || (p[0] >= '0' && p[0] <= '9') || strchr (extra_chars, p[0])); if (!name_valid) { g_warning ("type name '%s' contains invalid characters", type_name); return FALSE; } if (g_type_from_name (type_name)) { g_warning ("cannot register existing type '%s'", type_name); return FALSE; } return TRUE; } static gboolean check_derivation_I (GType parent_type, const gchar *type_name) { TypeNode *pnode; GTypeFundamentalInfo* finfo; pnode = lookup_type_node_I (parent_type); if (!pnode) { g_warning ("cannot derive type '%s' from invalid parent type '%s'", type_name, type_descriptive_name_I (parent_type)); return FALSE; } finfo = type_node_fundamental_info_I (pnode); /* ensure flat derivability */ if (!(finfo->type_flags & G_TYPE_FLAG_DERIVABLE)) { g_warning ("cannot derive '%s' from non-derivable parent type '%s'", type_name, NODE_NAME (pnode)); return FALSE; } /* ensure deep derivability */ if (parent_type != NODE_FUNDAMENTAL_TYPE (pnode) && !(finfo->type_flags & G_TYPE_FLAG_DEEP_DERIVABLE)) { g_warning ("cannot derive '%s' from non-fundamental parent type '%s'", type_name, NODE_NAME (pnode)); return FALSE; } return TRUE; } static gboolean check_collect_format_I (const gchar *collect_format) { const gchar *p = collect_format; gchar valid_format[] = { G_VALUE_COLLECT_INT, G_VALUE_COLLECT_LONG, G_VALUE_COLLECT_INT64, G_VALUE_COLLECT_DOUBLE, G_VALUE_COLLECT_POINTER, 0 }; while (*p) if (!strchr (valid_format, *p++)) return FALSE; return p - collect_format <= G_VALUE_COLLECT_FORMAT_MAX_LENGTH; } static gboolean check_value_table_I (const gchar *type_name, const GTypeValueTable *value_table) { if (!value_table) return FALSE; else if (value_table->value_init == NULL) { if (value_table->value_free || value_table->value_copy || value_table->value_peek_pointer || value_table->collect_format || value_table->collect_value || value_table->lcopy_format || value_table->lcopy_value) g_warning ("cannot handle uninitializable values of type '%s'", type_name); return FALSE; } else /* value_table->value_init != NULL */ { if (!value_table->value_free) { /* +++ optional +++ * g_warning ("missing 'value_free()' for type '%s'", type_name); * return FALSE; */ } if (!value_table->value_copy) { g_warning ("missing 'value_copy()' for type '%s'", type_name); return FALSE; } if ((value_table->collect_format || value_table->collect_value) && (!value_table->collect_format || !value_table->collect_value)) { g_warning ("one of 'collect_format' and 'collect_value()' is unspecified for type '%s'", type_name); return FALSE; } if (value_table->collect_format && !check_collect_format_I (value_table->collect_format)) { g_warning ("the '%s' specification for type '%s' is too long or invalid", "collect_format", type_name); return FALSE; } if ((value_table->lcopy_format || value_table->lcopy_value) && (!value_table->lcopy_format || !value_table->lcopy_value)) { g_warning ("one of 'lcopy_format' and 'lcopy_value()' is unspecified for type '%s'", type_name); return FALSE; } if (value_table->lcopy_format && !check_collect_format_I (value_table->lcopy_format)) { g_warning ("the '%s' specification for type '%s' is too long or invalid", "lcopy_format", type_name); return FALSE; } } return TRUE; } static gboolean check_type_info_I (TypeNode *pnode, GType ftype, const gchar *type_name, const GTypeInfo *info) { GTypeFundamentalInfo *finfo = type_node_fundamental_info_I (lookup_type_node_I (ftype)); gboolean is_interface = ftype == G_TYPE_INTERFACE; g_assert (ftype <= G_TYPE_FUNDAMENTAL_MAX && !(ftype & TYPE_ID_MASK)); /* check instance members */ if (!(finfo->type_flags & G_TYPE_FLAG_INSTANTIATABLE) && (info->instance_size || info->n_preallocs || info->instance_init)) { if (pnode) g_warning ("cannot instantiate '%s', derived from non-instantiatable parent type '%s'", type_name, NODE_NAME (pnode)); else g_warning ("cannot instantiate '%s' as non-instantiatable fundamental", type_name); return FALSE; } /* check class & interface members */ if (!((finfo->type_flags & G_TYPE_FLAG_CLASSED) || is_interface) && (info->class_init || info->class_finalize || info->class_data || info->class_size || info->base_init || info->base_finalize)) { if (pnode) g_warning ("cannot create class for '%s', derived from non-classed parent type '%s'", type_name, NODE_NAME (pnode)); else g_warning ("cannot create class for '%s' as non-classed fundamental", type_name); return FALSE; } /* check interface size */ if (is_interface && info->class_size < sizeof (GTypeInterface)) { g_warning ("specified interface size for type '%s' is smaller than 'GTypeInterface' size", type_name); return FALSE; } /* check class size */ if (finfo->type_flags & G_TYPE_FLAG_CLASSED) { if (info->class_size < sizeof (GTypeClass)) { g_warning ("specified class size for type '%s' is smaller than 'GTypeClass' size", type_name); return FALSE; } if (pnode && info->class_size < pnode->data->class.class_size) { g_warning ("specified class size for type '%s' is smaller " "than the parent type's '%s' class size", type_name, NODE_NAME (pnode)); return FALSE; } } /* check instance size */ if (finfo->type_flags & G_TYPE_FLAG_INSTANTIATABLE) { if (info->instance_size < sizeof (GTypeInstance)) { g_warning ("specified instance size for type '%s' is smaller than 'GTypeInstance' size", type_name); return FALSE; } if (pnode && info->instance_size < pnode->data->instance.instance_size) { g_warning ("specified instance size for type '%s' is smaller " "than the parent type's '%s' instance size", type_name, NODE_NAME (pnode)); return FALSE; } } return TRUE; } static TypeNode* find_conforming_child_type_L (TypeNode *pnode, TypeNode *iface) { TypeNode *node = NULL; guint i; if (type_lookup_iface_entry_L (pnode, iface)) return pnode; for (i = 0; i < pnode->n_children && !node; i++) node = find_conforming_child_type_L (lookup_type_node_I (pnode->children[i]), iface); return node; } static gboolean check_add_interface_L (GType instance_type, GType iface_type) { TypeNode *node = lookup_type_node_I (instance_type); TypeNode *iface = lookup_type_node_I (iface_type); IFaceEntry *entry; TypeNode *tnode; GType *prerequisites; guint i; if (!node || !node->is_instantiatable) { g_warning ("cannot add interfaces to invalid (non-instantiatable) type '%s'", type_descriptive_name_I (instance_type)); return FALSE; } if (!iface || !NODE_IS_IFACE (iface)) { g_warning ("cannot add invalid (non-interface) type '%s' to type '%s'", type_descriptive_name_I (iface_type), NODE_NAME (node)); return FALSE; } if (node->data && node->data->class.class) { g_warning ("attempting to add an interface (%s) to class (%s) after class_init", NODE_NAME (iface), NODE_NAME (node)); return FALSE; } tnode = lookup_type_node_I (NODE_PARENT_TYPE (iface)); if (NODE_PARENT_TYPE (tnode) && !type_lookup_iface_entry_L (node, tnode)) { /* 2001/7/31:timj: erk, i guess this warning is junk as interface derivation is flat */ g_warning ("cannot add sub-interface '%s' to type '%s' which does not conform to super-interface '%s'", NODE_NAME (iface), NODE_NAME (node), NODE_NAME (tnode)); return FALSE; } /* allow overriding of interface type introduced for parent type */ entry = type_lookup_iface_entry_L (node, iface); if (entry && entry->vtable == NULL && !type_iface_peek_holder_L (iface, NODE_TYPE (node))) { /* ok, we do conform to this interface already, but the interface vtable was not * yet intialized, and we just conform to the interface because it got added to * one of our parents. so we allow overriding of holder info here. */ return TRUE; } /* check whether one of our children already conforms (or whether the interface * got added to this node already) */ tnode = find_conforming_child_type_L (node, iface); /* tnode is_a node */ if (tnode) { g_warning ("cannot add interface type '%s' to type '%s', since type '%s' already conforms to interface", NODE_NAME (iface), NODE_NAME (node), NODE_NAME (tnode)); return FALSE; } prerequisites = IFACE_NODE_PREREQUISITES (iface); for (i = 0; i < IFACE_NODE_N_PREREQUISITES (iface); i++) { tnode = lookup_type_node_I (prerequisites[i]); if (!type_node_is_a_L (node, tnode)) { g_warning ("cannot add interface type '%s' to type '%s' which does not conform to prerequisite '%s'", NODE_NAME (iface), NODE_NAME (node), NODE_NAME (tnode)); return FALSE; } } return TRUE; } static gboolean check_interface_info_I (TypeNode *iface, GType instance_type, const GInterfaceInfo *info) { if ((info->interface_finalize || info->interface_data) && !info->interface_init) { g_warning ("interface type '%s' for type '%s' comes without initializer", NODE_NAME (iface), type_descriptive_name_I (instance_type)); return FALSE; } return TRUE; } /* --- type info (type node data) --- */ static void type_data_make_W (TypeNode *node, const GTypeInfo *info, const GTypeValueTable *value_table) { TypeData *data; GTypeValueTable *vtable = NULL; guint vtable_size = 0; g_assert (node->data == NULL && info != NULL); if (!value_table) { TypeNode *pnode = lookup_type_node_I (NODE_PARENT_TYPE (node)); if (pnode) vtable = pnode->data->common.value_table; else { static const GTypeValueTable zero_vtable = { NULL, }; value_table = &zero_vtable; } } if (value_table) { /* need to setup vtable_size since we have to allocate it with data in one chunk */ vtable_size = sizeof (GTypeValueTable); if (value_table->collect_format) vtable_size += strlen (value_table->collect_format); if (value_table->lcopy_format) vtable_size += strlen (value_table->lcopy_format); vtable_size += 2; } if (node->is_instantiatable) /* careful, is_instantiatable is also is_classed */ { TypeNode *pnode = lookup_type_node_I (NODE_PARENT_TYPE (node)); data = g_malloc0 (sizeof (InstanceData) + vtable_size); if (vtable_size) vtable = G_STRUCT_MEMBER_P (data, sizeof (InstanceData)); data->instance.class_size = info->class_size; data->instance.class_init_base = info->base_init; data->instance.class_finalize_base = info->base_finalize; data->instance.class_init = info->class_init; data->instance.class_finalize = info->class_finalize; data->instance.class_data = info->class_data; data->instance.class = NULL; data->instance.init_state = UNINITIALIZED; data->instance.instance_size = info->instance_size; /* We'll set the final value for data->instance.private size * after the parent class has been initialized */ data->instance.private_size = 0; data->instance.class_private_size = 0; if (pnode) data->instance.class_private_size = pnode->data->instance.class_private_size; data->instance.n_preallocs = MIN (info->n_preallocs, 1024); data->instance.instance_init = info->instance_init; } else if (node->is_classed) /* only classed */ { TypeNode *pnode = lookup_type_node_I (NODE_PARENT_TYPE (node)); data = g_malloc0 (sizeof (ClassData) + vtable_size); if (vtable_size) vtable = G_STRUCT_MEMBER_P (data, sizeof (ClassData)); data->class.class_size = info->class_size; data->class.class_init_base = info->base_init; data->class.class_finalize_base = info->base_finalize; data->class.class_init = info->class_init; data->class.class_finalize = info->class_finalize; data->class.class_data = info->class_data; data->class.class = NULL; data->class.class_private_size = 0; if (pnode) data->class.class_private_size = pnode->data->class.class_private_size; data->class.init_state = UNINITIALIZED; } else if (NODE_IS_IFACE (node)) { data = g_malloc0 (sizeof (IFaceData) + vtable_size); if (vtable_size) vtable = G_STRUCT_MEMBER_P (data, sizeof (IFaceData)); data->iface.vtable_size = info->class_size; data->iface.vtable_init_base = info->base_init; data->iface.vtable_finalize_base = info->base_finalize; data->iface.dflt_init = info->class_init; data->iface.dflt_finalize = info->class_finalize; data->iface.dflt_data = info->class_data; data->iface.dflt_vtable = NULL; } else if (NODE_IS_BOXED (node)) { data = g_malloc0 (sizeof (BoxedData) + vtable_size); if (vtable_size) vtable = G_STRUCT_MEMBER_P (data, sizeof (BoxedData)); } else { data = g_malloc0 (sizeof (CommonData) + vtable_size); if (vtable_size) vtable = G_STRUCT_MEMBER_P (data, sizeof (CommonData)); } node->data = data; if (vtable_size) { gchar *p; /* we allocate the vtable and its strings together with the type data, so * children can take over their parent's vtable pointer, and we don't * need to worry freeing it or not when the child data is destroyed */ *vtable = *value_table; p = G_STRUCT_MEMBER_P (vtable, sizeof (*vtable)); p[0] = 0; vtable->collect_format = p; if (value_table->collect_format) { strcat (p, value_table->collect_format); p += strlen (value_table->collect_format); } p++; p[0] = 0; vtable->lcopy_format = p; if (value_table->lcopy_format) strcat (p, value_table->lcopy_format); } node->data->common.value_table = vtable; node->mutatable_check_cache = (node->data->common.value_table->value_init != NULL && !((G_TYPE_FLAG_VALUE_ABSTRACT | G_TYPE_FLAG_ABSTRACT) & GPOINTER_TO_UINT (type_get_qdata_L (node, static_quark_type_flags)))); g_assert (node->data->common.value_table != NULL); /* paranoid */ g_atomic_int_set ((int *) &node->ref_count, 1); } static inline void type_data_ref_Wm (TypeNode *node) { if (!node->data) { TypeNode *pnode = lookup_type_node_I (NODE_PARENT_TYPE (node)); GTypeInfo tmp_info; GTypeValueTable tmp_value_table; g_assert (node->plugin != NULL); if (pnode) { type_data_ref_Wm (pnode); if (node->data) INVALID_RECURSION ("g_type_plugin_*", node->plugin, NODE_NAME (node)); } memset (&tmp_info, 0, sizeof (tmp_info)); memset (&tmp_value_table, 0, sizeof (tmp_value_table)); G_WRITE_UNLOCK (&type_rw_lock); g_type_plugin_use (node->plugin); g_type_plugin_complete_type_info (node->plugin, NODE_TYPE (node), &tmp_info, &tmp_value_table); G_WRITE_LOCK (&type_rw_lock); if (node->data) INVALID_RECURSION ("g_type_plugin_*", node->plugin, NODE_NAME (node)); check_type_info_I (pnode, NODE_FUNDAMENTAL_TYPE (node), NODE_NAME (node), &tmp_info); type_data_make_W (node, &tmp_info, check_value_table_I (NODE_NAME (node), &tmp_value_table) ? &tmp_value_table : NULL); } else { g_assert (NODE_REFCOUNT (node) > 0); g_atomic_int_inc ((int *) &node->ref_count); } } static inline gboolean type_data_ref_U (TypeNode *node) { guint current; do { current = NODE_REFCOUNT (node); if (current < 1) return FALSE; } while (!g_atomic_int_compare_and_exchange ((int *) &node->ref_count, current, current + 1)); return TRUE; } static gboolean iface_node_has_available_offset_L (TypeNode *iface_node, int offset, int for_index) { guint8 *offsets; offsets = G_ATOMIC_ARRAY_GET_LOCKED (&iface_node->_prot.offsets, guint8); if (offsets == NULL) return TRUE; if (G_ATOMIC_ARRAY_DATA_SIZE (offsets) <= offset) return TRUE; if (offsets[offset] == 0 || offsets[offset] == for_index+1) return TRUE; return FALSE; } static int find_free_iface_offset_L (IFaceEntries *entries) { IFaceEntry *entry; TypeNode *iface_node; int offset; int i; int n_entries; n_entries = IFACE_ENTRIES_N_ENTRIES (entries); offset = -1; do { offset++; for (i = 0; i < n_entries; i++) { entry = &entries->entry[i]; iface_node = lookup_type_node_I (entry->iface_type); if (!iface_node_has_available_offset_L (iface_node, offset, i)) break; } } while (i != n_entries); return offset; } static void iface_node_set_offset_L (TypeNode *iface_node, int offset, int index) { guint8 *offsets, *old_offsets; int new_size, old_size; int i; old_offsets = G_ATOMIC_ARRAY_GET_LOCKED (&iface_node->_prot.offsets, guint8); if (old_offsets == NULL) old_size = 0; else { old_size = G_ATOMIC_ARRAY_DATA_SIZE (old_offsets); if (offset < old_size && old_offsets[offset] == index + 1) return; /* Already set to this index, return */ } new_size = MAX (old_size, offset + 1); offsets = _g_atomic_array_copy (&iface_node->_prot.offsets, 0, new_size - old_size); /* Mark new area as unused */ for (i = old_size; i < new_size; i++) offsets[i] = 0; offsets[offset] = index + 1; _g_atomic_array_update (&iface_node->_prot.offsets, offsets); } static void type_node_add_iface_entry_W (TypeNode *node, GType iface_type, IFaceEntry *parent_entry) { IFaceEntries *entries; IFaceEntry *entry; TypeNode *iface_node; guint i, j; int num_entries; g_assert (node->is_instantiatable); entries = CLASSED_NODE_IFACES_ENTRIES_LOCKED (node); if (entries != NULL) { num_entries = IFACE_ENTRIES_N_ENTRIES (entries); g_assert (num_entries < MAX_N_INTERFACES); for (i = 0; i < num_entries; i++) { entry = &entries->entry[i]; if (entry->iface_type == iface_type) { /* this can happen in two cases: * - our parent type already conformed to iface_type and node * got its own holder info. here, our children already have * entries and NULL vtables, since this will only work for * uninitialized classes. * - an interface type is added to an ancestor after it was * added to a child type. */ if (!parent_entry) g_assert (entry->vtable == NULL && entry->init_state == UNINITIALIZED); else { /* sick, interface is added to ancestor *after* child type; * nothing todo, the entry and our children were already setup correctly */ } return; } } } entries = _g_atomic_array_copy (CLASSED_NODE_IFACES_ENTRIES (node), IFACE_ENTRIES_HEADER_SIZE, sizeof (IFaceEntry)); num_entries = IFACE_ENTRIES_N_ENTRIES (entries); i = num_entries - 1; if (i == 0) entries->offset_index = 0; entries->entry[i].iface_type = iface_type; entries->entry[i].vtable = NULL; entries->entry[i].init_state = UNINITIALIZED; if (parent_entry) { if (node->data && node->data->class.init_state >= BASE_IFACE_INIT) { entries->entry[i].init_state = INITIALIZED; entries->entry[i].vtable = parent_entry->vtable; } } /* Update offsets in iface */ iface_node = lookup_type_node_I (iface_type); if (iface_node_has_available_offset_L (iface_node, entries->offset_index, i)) { iface_node_set_offset_L (iface_node, entries->offset_index, i); } else { entries->offset_index = find_free_iface_offset_L (entries); for (j = 0; j < IFACE_ENTRIES_N_ENTRIES (entries); j++) { entry = &entries->entry[j]; iface_node = lookup_type_node_I (entry->iface_type); iface_node_set_offset_L (iface_node, entries->offset_index, j); } } _g_atomic_array_update (CLASSED_NODE_IFACES_ENTRIES (node), entries); if (parent_entry) { for (i = 0; i < node->n_children; i++) type_node_add_iface_entry_W (lookup_type_node_I (node->children[i]), iface_type, &entries->entry[i]); } } static void type_add_interface_Wm (TypeNode *node, TypeNode *iface, const GInterfaceInfo *info, GTypePlugin *plugin) { IFaceHolder *iholder = g_new0 (IFaceHolder, 1); IFaceEntry *entry; guint i; g_assert (node->is_instantiatable && NODE_IS_IFACE (iface) && ((info && !plugin) || (!info && plugin))); iholder->next = iface_node_get_holders_L (iface); iface_node_set_holders_W (iface, iholder); iholder->instance_type = NODE_TYPE (node); iholder->info = info ? g_memdup (info, sizeof (*info)) : NULL; iholder->plugin = plugin; /* create an iface entry for this type */ type_node_add_iface_entry_W (node, NODE_TYPE (iface), NULL); /* if the class is already (partly) initialized, we may need to base * initalize and/or initialize the new interface. */ if (node->data) { InitState class_state = node->data->class.init_state; if (class_state >= BASE_IFACE_INIT) type_iface_vtable_base_init_Wm (iface, node); if (class_state >= IFACE_INIT) type_iface_vtable_iface_init_Wm (iface, node); } /* create iface entries for children of this type */ entry = type_lookup_iface_entry_L (node, iface); for (i = 0; i < node->n_children; i++) type_node_add_iface_entry_W (lookup_type_node_I (node->children[i]), NODE_TYPE (iface), entry); } static void type_iface_add_prerequisite_W (TypeNode *iface, TypeNode *prerequisite_node) { GType prerequisite_type = NODE_TYPE (prerequisite_node); GType *prerequisites, *dependants; guint n_dependants, i; g_assert (NODE_IS_IFACE (iface) && IFACE_NODE_N_PREREQUISITES (iface) < MAX_N_PREREQUISITES && (prerequisite_node->is_instantiatable || NODE_IS_IFACE (prerequisite_node))); prerequisites = IFACE_NODE_PREREQUISITES (iface); for (i = 0; i < IFACE_NODE_N_PREREQUISITES (iface); i++) if (prerequisites[i] == prerequisite_type) return; /* we already have that prerequisiste */ else if (prerequisites[i] > prerequisite_type) break; IFACE_NODE_N_PREREQUISITES (iface) += 1; IFACE_NODE_PREREQUISITES (iface) = g_renew (GType, IFACE_NODE_PREREQUISITES (iface), IFACE_NODE_N_PREREQUISITES (iface)); prerequisites = IFACE_NODE_PREREQUISITES (iface); memmove (prerequisites + i + 1, prerequisites + i, sizeof (prerequisites[0]) * (IFACE_NODE_N_PREREQUISITES (iface) - i - 1)); prerequisites[i] = prerequisite_type; /* we want to get notified when prerequisites get added to prerequisite_node */ if (NODE_IS_IFACE (prerequisite_node)) { dependants = iface_node_get_dependants_array_L (prerequisite_node); n_dependants = dependants ? dependants[0] : 0; n_dependants += 1; dependants = g_renew (GType, dependants, n_dependants + 1); dependants[n_dependants] = NODE_TYPE (iface); dependants[0] = n_dependants; iface_node_set_dependants_array_W (prerequisite_node, dependants); } /* we need to notify all dependants */ dependants = iface_node_get_dependants_array_L (iface); n_dependants = dependants ? dependants[0] : 0; for (i = 1; i <= n_dependants; i++) type_iface_add_prerequisite_W (lookup_type_node_I (dependants[i]), prerequisite_node); } /** * g_type_interface_add_prerequisite: * @interface_type: #GType value of an interface type * @prerequisite_type: #GType value of an interface or instantiatable type * * Adds @prerequisite_type to the list of prerequisites of @interface_type. * This means that any type implementing @interface_type must also implement * @prerequisite_type. Prerequisites can be thought of as an alternative to * interface derivation (which GType doesn't support). An interface can have * at most one instantiatable prerequisite type. */ void g_type_interface_add_prerequisite (GType interface_type, GType prerequisite_type) { TypeNode *iface, *prerequisite_node; IFaceHolder *holders; g_return_if_fail (G_TYPE_IS_INTERFACE (interface_type)); /* G_TYPE_IS_INTERFACE() is an external call: _U */ g_return_if_fail (!g_type_is_a (interface_type, prerequisite_type)); g_return_if_fail (!g_type_is_a (prerequisite_type, interface_type)); iface = lookup_type_node_I (interface_type); prerequisite_node = lookup_type_node_I (prerequisite_type); if (!iface || !prerequisite_node || !NODE_IS_IFACE (iface)) { g_warning ("interface type '%s' or prerequisite type '%s' invalid", type_descriptive_name_I (interface_type), type_descriptive_name_I (prerequisite_type)); return; } G_WRITE_LOCK (&type_rw_lock); holders = iface_node_get_holders_L (iface); if (holders) { G_WRITE_UNLOCK (&type_rw_lock); g_warning ("unable to add prerequisite '%s' to interface '%s' which is already in use for '%s'", type_descriptive_name_I (prerequisite_type), type_descriptive_name_I (interface_type), type_descriptive_name_I (holders->instance_type)); return; } if (prerequisite_node->is_instantiatable) { guint i; /* can have at most one publicly installable instantiatable prerequisite */ for (i = 0; i < IFACE_NODE_N_PREREQUISITES (iface); i++) { TypeNode *prnode = lookup_type_node_I (IFACE_NODE_PREREQUISITES (iface)[i]); if (prnode->is_instantiatable) { G_WRITE_UNLOCK (&type_rw_lock); g_warning ("adding prerequisite '%s' to interface '%s' conflicts with existing prerequisite '%s'", type_descriptive_name_I (prerequisite_type), type_descriptive_name_I (interface_type), type_descriptive_name_I (NODE_TYPE (prnode))); return; } } for (i = 0; i < prerequisite_node->n_supers + 1; i++) type_iface_add_prerequisite_W (iface, lookup_type_node_I (prerequisite_node->supers[i])); G_WRITE_UNLOCK (&type_rw_lock); } else if (NODE_IS_IFACE (prerequisite_node)) { GType *prerequisites; guint i; prerequisites = IFACE_NODE_PREREQUISITES (prerequisite_node); for (i = 0; i < IFACE_NODE_N_PREREQUISITES (prerequisite_node); i++) type_iface_add_prerequisite_W (iface, lookup_type_node_I (prerequisites[i])); type_iface_add_prerequisite_W (iface, prerequisite_node); G_WRITE_UNLOCK (&type_rw_lock); } else { G_WRITE_UNLOCK (&type_rw_lock); g_warning ("prerequisite '%s' for interface '%s' is neither instantiatable nor interface", type_descriptive_name_I (prerequisite_type), type_descriptive_name_I (interface_type)); } } /** * g_type_interface_prerequisites: * @interface_type: an interface type * @n_prerequisites: (out) (optional): location to return the number * of prerequisites, or %NULL * * Returns the prerequisites of an interfaces type. * * Since: 2.2 * * Returns: (array length=n_prerequisites) (transfer full): a * newly-allocated zero-terminated array of #GType containing * the prerequisites of @interface_type */ GType* g_type_interface_prerequisites (GType interface_type, guint *n_prerequisites) { TypeNode *iface; g_return_val_if_fail (G_TYPE_IS_INTERFACE (interface_type), NULL); iface = lookup_type_node_I (interface_type); if (iface) { GType *types; TypeNode *inode = NULL; guint i, n = 0; G_READ_LOCK (&type_rw_lock); types = g_new0 (GType, IFACE_NODE_N_PREREQUISITES (iface) + 1); for (i = 0; i < IFACE_NODE_N_PREREQUISITES (iface); i++) { GType prerequisite = IFACE_NODE_PREREQUISITES (iface)[i]; TypeNode *node = lookup_type_node_I (prerequisite); if (node->is_instantiatable) { if (!inode || type_node_is_a_L (node, inode)) inode = node; } else types[n++] = NODE_TYPE (node); } if (inode) types[n++] = NODE_TYPE (inode); if (n_prerequisites) *n_prerequisites = n; G_READ_UNLOCK (&type_rw_lock); return types; } else { if (n_prerequisites) *n_prerequisites = 0; return NULL; } } static IFaceHolder* type_iface_peek_holder_L (TypeNode *iface, GType instance_type) { IFaceHolder *iholder; g_assert (NODE_IS_IFACE (iface)); iholder = iface_node_get_holders_L (iface); while (iholder && iholder->instance_type != instance_type) iholder = iholder->next; return iholder; } static IFaceHolder* type_iface_retrieve_holder_info_Wm (TypeNode *iface, GType instance_type, gboolean need_info) { IFaceHolder *iholder = type_iface_peek_holder_L (iface, instance_type); if (iholder && !iholder->info && need_info) { GInterfaceInfo tmp_info; g_assert (iholder->plugin != NULL); type_data_ref_Wm (iface); if (iholder->info) INVALID_RECURSION ("g_type_plugin_*", iface->plugin, NODE_NAME (iface)); memset (&tmp_info, 0, sizeof (tmp_info)); G_WRITE_UNLOCK (&type_rw_lock); g_type_plugin_use (iholder->plugin); g_type_plugin_complete_interface_info (iholder->plugin, instance_type, NODE_TYPE (iface), &tmp_info); G_WRITE_LOCK (&type_rw_lock); if (iholder->info) INVALID_RECURSION ("g_type_plugin_*", iholder->plugin, NODE_NAME (iface)); check_interface_info_I (iface, instance_type, &tmp_info); iholder->info = g_memdup (&tmp_info, sizeof (tmp_info)); } return iholder; /* we don't modify write lock upon returning NULL */ } static void type_iface_blow_holder_info_Wm (TypeNode *iface, GType instance_type) { IFaceHolder *iholder = iface_node_get_holders_L (iface); g_assert (NODE_IS_IFACE (iface)); while (iholder->instance_type != instance_type) iholder = iholder->next; if (iholder->info && iholder->plugin) { g_free (iholder->info); iholder->info = NULL; G_WRITE_UNLOCK (&type_rw_lock); g_type_plugin_unuse (iholder->plugin); type_data_unref_U (iface, FALSE); G_WRITE_LOCK (&type_rw_lock); } } /** * g_type_create_instance: (skip) * @type: an instantiatable type to create an instance for * * Creates and initializes an instance of @type if @type is valid and * can be instantiated. The type system only performs basic allocation * and structure setups for instances: actual instance creation should * happen through functions supplied by the type's fundamental type * implementation. So use of g_type_create_instance() is reserved for * implementators of fundamental types only. E.g. instances of the * #GObject hierarchy should be created via g_object_new() and never * directly through g_type_create_instance() which doesn't handle things * like singleton objects or object construction. * * The extended members of the returned instance are guaranteed to be filled * with zeros. * * Note: Do not use this function, unless you're implementing a * fundamental type. Also language bindings should not use this * function, but g_object_new() instead. * * Returns: an allocated and initialized instance, subject to further * treatment by the fundamental type implementation */ GTypeInstance* g_type_create_instance (GType type) { TypeNode *node; GTypeInstance *instance; GTypeClass *class; gchar *allocated; gint private_size; gint ivar_size; guint i; node = lookup_type_node_I (type); if (!node || !node->is_instantiatable) { g_error ("cannot create new instance of invalid (non-instantiatable) type '%s'", type_descriptive_name_I (type)); } /* G_TYPE_IS_ABSTRACT() is an external call: _U */ if (!node->mutatable_check_cache && G_TYPE_IS_ABSTRACT (type)) { g_error ("cannot create instance of abstract (non-instantiatable) type '%s'", type_descriptive_name_I (type)); } class = g_type_class_ref (type); /* We allocate the 'private' areas before the normal instance data, in * reverse order. This allows the private area of a particular class * to always be at a constant relative address to the instance data. * If we stored the private data after the instance data this would * not be the case (since a subclass that added more instance * variables would push the private data further along). * * This presents problems for valgrindability, of course, so we do a * workaround for that case. We identify the start of the object to * valgrind as an allocated block (so that pointers to objects show up * as 'reachable' instead of 'possibly lost'). We then add an extra * pointer at the end of the object, after all instance data, back to * the start of the private area so that it is also recorded as * reachable. We also add extra private space at the start because * valgrind doesn't seem to like us claiming to have allocated an * address that it saw allocated by malloc(). */ private_size = node->data->instance.private_size; ivar_size = node->data->instance.instance_size; #ifdef ENABLE_VALGRIND if (private_size && RUNNING_ON_VALGRIND) { private_size += ALIGN_STRUCT (1); /* Allocate one extra pointer size... */ allocated = g_slice_alloc0 (private_size + ivar_size + sizeof (gpointer)); /* ... and point it back to the start of the private data. */ *(gpointer *) (allocated + private_size + ivar_size) = allocated + ALIGN_STRUCT (1); /* Tell valgrind that it should treat the object itself as such */ VALGRIND_MALLOCLIKE_BLOCK (allocated + private_size, ivar_size + sizeof (gpointer), 0, TRUE); VALGRIND_MALLOCLIKE_BLOCK (allocated + ALIGN_STRUCT (1), private_size - ALIGN_STRUCT (1), 0, TRUE); } else #endif allocated = g_slice_alloc0 (private_size + ivar_size); instance = (GTypeInstance *) (allocated + private_size); for (i = node->n_supers; i > 0; i--) { TypeNode *pnode; pnode = lookup_type_node_I (node->supers[i]); if (pnode->data->instance.instance_init) { instance->g_class = pnode->data->instance.class; pnode->data->instance.instance_init (instance, class); } } instance->g_class = class; if (node->data->instance.instance_init) node->data->instance.instance_init (instance, class); #ifdef G_ENABLE_DEBUG IF_DEBUG (INSTANCE_COUNT) { g_atomic_int_inc ((int *) &node->instance_count); } #endif TRACE(GOBJECT_OBJECT_NEW(instance, type)); return instance; } /** * g_type_free_instance: * @instance: an instance of a type * * Frees an instance of a type, returning it to the instance pool for * the type, if there is one. * * Like g_type_create_instance(), this function is reserved for * implementors of fundamental types. */ void g_type_free_instance (GTypeInstance *instance) { TypeNode *node; GTypeClass *class; gchar *allocated; gint private_size; gint ivar_size; g_return_if_fail (instance != NULL && instance->g_class != NULL); class = instance->g_class; node = lookup_type_node_I (class->g_type); if (!node || !node->is_instantiatable || !node->data || node->data->class.class != (gpointer) class) { g_warning ("cannot free instance of invalid (non-instantiatable) type '%s'", type_descriptive_name_I (class->g_type)); return; } /* G_TYPE_IS_ABSTRACT() is an external call: _U */ if (!node->mutatable_check_cache && G_TYPE_IS_ABSTRACT (NODE_TYPE (node))) { g_warning ("cannot free instance of abstract (non-instantiatable) type '%s'", NODE_NAME (node)); return; } instance->g_class = NULL; private_size = node->data->instance.private_size; ivar_size = node->data->instance.instance_size; allocated = ((gchar *) instance) - private_size; #ifdef G_ENABLE_DEBUG memset (allocated, 0xaa, ivar_size + private_size); #endif #ifdef ENABLE_VALGRIND /* See comment in g_type_create_instance() about what's going on here. * We're basically unwinding what we put into motion there. */ if (private_size && RUNNING_ON_VALGRIND) { private_size += ALIGN_STRUCT (1); allocated -= ALIGN_STRUCT (1); /* Clear out the extra pointer... */ *(gpointer *) (allocated + private_size + ivar_size) = NULL; /* ... and ensure we include it in the size we free. */ g_slice_free1 (private_size + ivar_size + sizeof (gpointer), allocated); VALGRIND_FREELIKE_BLOCK (allocated + ALIGN_STRUCT (1), 0); VALGRIND_FREELIKE_BLOCK (instance, 0); } else #endif g_slice_free1 (private_size + ivar_size, allocated); #ifdef G_ENABLE_DEBUG IF_DEBUG (INSTANCE_COUNT) { g_atomic_int_add ((int *) &node->instance_count, -1); } #endif g_type_class_unref (class); } static void type_iface_ensure_dflt_vtable_Wm (TypeNode *iface) { g_assert (iface->data); if (!iface->data->iface.dflt_vtable) { GTypeInterface *vtable = g_malloc0 (iface->data->iface.vtable_size); iface->data->iface.dflt_vtable = vtable; vtable->g_type = NODE_TYPE (iface); vtable->g_instance_type = 0; if (iface->data->iface.vtable_init_base || iface->data->iface.dflt_init) { G_WRITE_UNLOCK (&type_rw_lock); if (iface->data->iface.vtable_init_base) iface->data->iface.vtable_init_base (vtable); if (iface->data->iface.dflt_init) iface->data->iface.dflt_init (vtable, (gpointer) iface->data->iface.dflt_data); G_WRITE_LOCK (&type_rw_lock); } } } /* This is called to allocate and do the first part of initializing * the interface vtable; type_iface_vtable_iface_init_Wm() does the remainder. * * A FALSE return indicates that we didn't find an init function for * this type/iface pair, so the vtable from the parent type should * be used. Note that the write lock is not modified upon a FALSE * return. */ static gboolean type_iface_vtable_base_init_Wm (TypeNode *iface, TypeNode *node) { IFaceEntry *entry; IFaceHolder *iholder; GTypeInterface *vtable = NULL; TypeNode *pnode; /* type_iface_retrieve_holder_info_Wm() doesn't modify write lock for returning NULL */ iholder = type_iface_retrieve_holder_info_Wm (iface, NODE_TYPE (node), TRUE); if (!iholder) return FALSE; /* we don't modify write lock upon FALSE */ type_iface_ensure_dflt_vtable_Wm (iface); entry = type_lookup_iface_entry_L (node, iface); g_assert (iface->data && entry && entry->vtable == NULL && iholder && iholder->info); entry->init_state = IFACE_INIT; pnode = lookup_type_node_I (NODE_PARENT_TYPE (node)); if (pnode) /* want to copy over parent iface contents */ { IFaceEntry *pentry = type_lookup_iface_entry_L (pnode, iface); if (pentry) vtable = g_memdup (pentry->vtable, iface->data->iface.vtable_size); } if (!vtable) vtable = g_memdup (iface->data->iface.dflt_vtable, iface->data->iface.vtable_size); entry->vtable = vtable; vtable->g_type = NODE_TYPE (iface); vtable->g_instance_type = NODE_TYPE (node); if (iface->data->iface.vtable_init_base) { G_WRITE_UNLOCK (&type_rw_lock); iface->data->iface.vtable_init_base (vtable); G_WRITE_LOCK (&type_rw_lock); } return TRUE; /* initialized the vtable */ } /* Finishes what type_iface_vtable_base_init_Wm started by * calling the interface init function. * this function may only be called for types with their * own interface holder info, i.e. types for which * g_type_add_interface*() was called and not children thereof. */ static void type_iface_vtable_iface_init_Wm (TypeNode *iface, TypeNode *node) { IFaceEntry *entry = type_lookup_iface_entry_L (node, iface); IFaceHolder *iholder = type_iface_peek_holder_L (iface, NODE_TYPE (node)); GTypeInterface *vtable = NULL; guint i; /* iholder->info should have been filled in by type_iface_vtable_base_init_Wm() */ g_assert (iface->data && entry && iholder && iholder->info); g_assert (entry->init_state == IFACE_INIT); /* assert prior base_init() */ entry->init_state = INITIALIZED; vtable = entry->vtable; if (iholder->info->interface_init) { G_WRITE_UNLOCK (&type_rw_lock); if (iholder->info->interface_init) iholder->info->interface_init (vtable, iholder->info->interface_data); G_WRITE_LOCK (&type_rw_lock); } for (i = 0; i < static_n_iface_check_funcs; i++) { GTypeInterfaceCheckFunc check_func = static_iface_check_funcs[i].check_func; gpointer check_data = static_iface_check_funcs[i].check_data; G_WRITE_UNLOCK (&type_rw_lock); check_func (check_data, (gpointer)vtable); G_WRITE_LOCK (&type_rw_lock); } } static gboolean type_iface_vtable_finalize_Wm (TypeNode *iface, TypeNode *node, GTypeInterface *vtable) { IFaceEntry *entry = type_lookup_iface_entry_L (node, iface); IFaceHolder *iholder; /* type_iface_retrieve_holder_info_Wm() doesn't modify write lock for returning NULL */ iholder = type_iface_retrieve_holder_info_Wm (iface, NODE_TYPE (node), FALSE); if (!iholder) return FALSE; /* we don't modify write lock upon FALSE */ g_assert (entry && entry->vtable == vtable && iholder->info); entry->vtable = NULL; entry->init_state = UNINITIALIZED; if (iholder->info->interface_finalize || iface->data->iface.vtable_finalize_base) { G_WRITE_UNLOCK (&type_rw_lock); if (iholder->info->interface_finalize) iholder->info->interface_finalize (vtable, iholder->info->interface_data); if (iface->data->iface.vtable_finalize_base) iface->data->iface.vtable_finalize_base (vtable); G_WRITE_LOCK (&type_rw_lock); } vtable->g_type = 0; vtable->g_instance_type = 0; g_free (vtable); type_iface_blow_holder_info_Wm (iface, NODE_TYPE (node)); return TRUE; /* write lock modified */ } static void type_class_init_Wm (TypeNode *node, GTypeClass *pclass) { GSList *slist, *init_slist = NULL; GTypeClass *class; IFaceEntries *entries; IFaceEntry *entry; TypeNode *bnode, *pnode; guint i; /* Accessing data->class will work for instantiable types * too because ClassData is a subset of InstanceData */ g_assert (node->is_classed && node->data && node->data->class.class_size && !node->data->class.class && node->data->class.init_state == UNINITIALIZED); if (node->data->class.class_private_size) class = g_malloc0 (ALIGN_STRUCT (node->data->class.class_size) + node->data->class.class_private_size); else class = g_malloc0 (node->data->class.class_size); node->data->class.class = class; g_atomic_int_set (&node->data->class.init_state, BASE_CLASS_INIT); if (pclass) { TypeNode *pnode = lookup_type_node_I (pclass->g_type); memcpy (class, pclass, pnode->data->class.class_size); memcpy (G_STRUCT_MEMBER_P (class, ALIGN_STRUCT (node->data->class.class_size)), G_STRUCT_MEMBER_P (pclass, ALIGN_STRUCT (pnode->data->class.class_size)), pnode->data->class.class_private_size); if (node->is_instantiatable) { /* We need to initialize the private_size here rather than in * type_data_make_W() since the class init for the parent * class may have changed pnode->data->instance.private_size. */ node->data->instance.private_size = pnode->data->instance.private_size; } } class->g_type = NODE_TYPE (node); G_WRITE_UNLOCK (&type_rw_lock); /* stack all base class initialization functions, so we * call them in ascending order. */ for (bnode = node; bnode; bnode = lookup_type_node_I (NODE_PARENT_TYPE (bnode))) if (bnode->data->class.class_init_base) init_slist = g_slist_prepend (init_slist, (gpointer) bnode->data->class.class_init_base); for (slist = init_slist; slist; slist = slist->next) { GBaseInitFunc class_init_base = (GBaseInitFunc) slist->data; class_init_base (class); } g_slist_free (init_slist); G_WRITE_LOCK (&type_rw_lock); g_atomic_int_set (&node->data->class.init_state, BASE_IFACE_INIT); /* Before we initialize the class, base initialize all interfaces, either * from parent, or through our holder info */ pnode = lookup_type_node_I (NODE_PARENT_TYPE (node)); i = 0; while ((entries = CLASSED_NODE_IFACES_ENTRIES_LOCKED (node)) != NULL && i < IFACE_ENTRIES_N_ENTRIES (entries)) { entry = &entries->entry[i]; while (i < IFACE_ENTRIES_N_ENTRIES (entries) && entry->init_state == IFACE_INIT) { entry++; i++; } if (i == IFACE_ENTRIES_N_ENTRIES (entries)) break; if (!type_iface_vtable_base_init_Wm (lookup_type_node_I (entry->iface_type), node)) { guint j; IFaceEntries *pentries = CLASSED_NODE_IFACES_ENTRIES_LOCKED (pnode); /* need to get this interface from parent, type_iface_vtable_base_init_Wm() * doesn't modify write lock upon FALSE, so entry is still valid; */ g_assert (pnode != NULL); if (pentries) for (j = 0; j < IFACE_ENTRIES_N_ENTRIES (pentries); j++) { IFaceEntry *pentry = &pentries->entry[j]; if (pentry->iface_type == entry->iface_type) { entry->vtable = pentry->vtable; entry->init_state = INITIALIZED; break; } } g_assert (entry->vtable != NULL); } /* If the write lock was released, additional interface entries might * have been inserted into CLASSED_NODE_IFACES_ENTRIES (node); they'll * be base-initialized when inserted, so we don't have to worry that * we might miss them. Uninitialized entries can only be moved higher * when new ones are inserted. */ i++; } g_atomic_int_set (&node->data->class.init_state, CLASS_INIT); G_WRITE_UNLOCK (&type_rw_lock); if (node->data->class.class_init) node->data->class.class_init (class, (gpointer) node->data->class.class_data); G_WRITE_LOCK (&type_rw_lock); g_atomic_int_set (&node->data->class.init_state, IFACE_INIT); /* finish initializing the interfaces through our holder info. * inherited interfaces are already init_state == INITIALIZED, because * they either got setup in the above base_init loop, or during * class_init from within type_add_interface_Wm() for this or * an anchestor type. */ i = 0; while ((entries = CLASSED_NODE_IFACES_ENTRIES_LOCKED (node)) != NULL) { entry = &entries->entry[i]; while (i < IFACE_ENTRIES_N_ENTRIES (entries) && entry->init_state == INITIALIZED) { entry++; i++; } if (i == IFACE_ENTRIES_N_ENTRIES (entries)) break; type_iface_vtable_iface_init_Wm (lookup_type_node_I (entry->iface_type), node); /* As in the loop above, additional initialized entries might be inserted * if the write lock is released, but that's harmless because the entries * we need to initialize only move higher in the list. */ i++; } g_atomic_int_set (&node->data->class.init_state, INITIALIZED); } static void type_data_finalize_class_ifaces_Wm (TypeNode *node) { guint i; IFaceEntries *entries; g_assert (node->is_instantiatable && node->data && node->data->class.class && NODE_REFCOUNT (node) == 0); reiterate: entries = CLASSED_NODE_IFACES_ENTRIES_LOCKED (node); for (i = 0; entries != NULL && i < IFACE_ENTRIES_N_ENTRIES (entries); i++) { IFaceEntry *entry = &entries->entry[i]; if (entry->vtable) { if (type_iface_vtable_finalize_Wm (lookup_type_node_I (entry->iface_type), node, entry->vtable)) { /* refetch entries, IFACES_ENTRIES might be modified */ goto reiterate; } else { /* type_iface_vtable_finalize_Wm() doesn't modify write lock upon FALSE, * iface vtable came from parent */ entry->vtable = NULL; entry->init_state = UNINITIALIZED; } } } } static void type_data_finalize_class_U (TypeNode *node, ClassData *cdata) { GTypeClass *class = cdata->class; TypeNode *bnode; g_assert (cdata->class && NODE_REFCOUNT (node) == 0); if (cdata->class_finalize) cdata->class_finalize (class, (gpointer) cdata->class_data); /* call all base class destruction functions in descending order */ if (cdata->class_finalize_base) cdata->class_finalize_base (class); for (bnode = lookup_type_node_I (NODE_PARENT_TYPE (node)); bnode; bnode = lookup_type_node_I (NODE_PARENT_TYPE (bnode))) if (bnode->data->class.class_finalize_base) bnode->data->class.class_finalize_base (class); g_free (cdata->class); } static void type_data_last_unref_Wm (TypeNode *node, gboolean uncached) { g_return_if_fail (node != NULL && node->plugin != NULL); if (!node->data || NODE_REFCOUNT (node) == 0) { g_warning ("cannot drop last reference to unreferenced type '%s'", NODE_NAME (node)); return; } /* call class cache hooks */ if (node->is_classed && node->data && node->data->class.class && static_n_class_cache_funcs && !uncached) { guint i; G_WRITE_UNLOCK (&type_rw_lock); G_READ_LOCK (&type_rw_lock); for (i = 0; i < static_n_class_cache_funcs; i++) { GTypeClassCacheFunc cache_func = static_class_cache_funcs[i].cache_func; gpointer cache_data = static_class_cache_funcs[i].cache_data; gboolean need_break; G_READ_UNLOCK (&type_rw_lock); need_break = cache_func (cache_data, node->data->class.class); G_READ_LOCK (&type_rw_lock); if (!node->data || NODE_REFCOUNT (node) == 0) INVALID_RECURSION ("GType class cache function ", cache_func, NODE_NAME (node)); if (need_break) break; } G_READ_UNLOCK (&type_rw_lock); G_WRITE_LOCK (&type_rw_lock); } /* may have been re-referenced meanwhile */ if (g_atomic_int_dec_and_test ((int *) &node->ref_count)) { GType ptype = NODE_PARENT_TYPE (node); TypeData *tdata; if (node->is_instantiatable) { /* destroy node->data->instance.mem_chunk */ } tdata = node->data; if (node->is_classed && tdata->class.class) { if (CLASSED_NODE_IFACES_ENTRIES_LOCKED (node) != NULL) type_data_finalize_class_ifaces_Wm (node); node->mutatable_check_cache = FALSE; node->data = NULL; G_WRITE_UNLOCK (&type_rw_lock); type_data_finalize_class_U (node, &tdata->class); G_WRITE_LOCK (&type_rw_lock); } else if (NODE_IS_IFACE (node) && tdata->iface.dflt_vtable) { node->mutatable_check_cache = FALSE; node->data = NULL; if (tdata->iface.dflt_finalize || tdata->iface.vtable_finalize_base) { G_WRITE_UNLOCK (&type_rw_lock); if (tdata->iface.dflt_finalize) tdata->iface.dflt_finalize (tdata->iface.dflt_vtable, (gpointer) tdata->iface.dflt_data); if (tdata->iface.vtable_finalize_base) tdata->iface.vtable_finalize_base (tdata->iface.dflt_vtable); G_WRITE_LOCK (&type_rw_lock); } g_free (tdata->iface.dflt_vtable); } else { node->mutatable_check_cache = FALSE; node->data = NULL; } /* freeing tdata->common.value_table and its contents is taken care of * by allocating it in one chunk with tdata */ g_free (tdata); G_WRITE_UNLOCK (&type_rw_lock); g_type_plugin_unuse (node->plugin); if (ptype) type_data_unref_U (lookup_type_node_I (ptype), FALSE); G_WRITE_LOCK (&type_rw_lock); } } static inline void type_data_unref_U (TypeNode *node, gboolean uncached) { guint current; do { current = NODE_REFCOUNT (node); if (current <= 1) { if (!node->plugin) { g_warning ("static type '%s' unreferenced too often", NODE_NAME (node)); return; } else { /* This is the last reference of a type from a plugin. We are * experimentally disabling support for unloading type * plugins, so don't allow the last ref to drop. */ return; } g_assert (current > 0); g_rec_mutex_lock (&class_init_rec_mutex); /* required locking order: 1) class_init_rec_mutex, 2) type_rw_lock */ G_WRITE_LOCK (&type_rw_lock); type_data_last_unref_Wm (node, uncached); G_WRITE_UNLOCK (&type_rw_lock); g_rec_mutex_unlock (&class_init_rec_mutex); return; } } while (!g_atomic_int_compare_and_exchange ((int *) &node->ref_count, current, current - 1)); } /** * g_type_add_class_cache_func: (skip) * @cache_data: data to be passed to @cache_func * @cache_func: a #GTypeClassCacheFunc * * Adds a #GTypeClassCacheFunc to be called before the reference count of a * class goes from one to zero. This can be used to prevent premature class * destruction. All installed #GTypeClassCacheFunc functions will be chained * until one of them returns %TRUE. The functions have to check the class id * passed in to figure whether they actually want to cache the class of this * type, since all classes are routed through the same #GTypeClassCacheFunc * chain. */ void g_type_add_class_cache_func (gpointer cache_data, GTypeClassCacheFunc cache_func) { guint i; g_return_if_fail (cache_func != NULL); G_WRITE_LOCK (&type_rw_lock); i = static_n_class_cache_funcs++; static_class_cache_funcs = g_renew (ClassCacheFunc, static_class_cache_funcs, static_n_class_cache_funcs); static_class_cache_funcs[i].cache_data = cache_data; static_class_cache_funcs[i].cache_func = cache_func; G_WRITE_UNLOCK (&type_rw_lock); } /** * g_type_remove_class_cache_func: (skip) * @cache_data: data that was given when adding @cache_func * @cache_func: a #GTypeClassCacheFunc * * Removes a previously installed #GTypeClassCacheFunc. The cache * maintained by @cache_func has to be empty when calling * g_type_remove_class_cache_func() to avoid leaks. */ void g_type_remove_class_cache_func (gpointer cache_data, GTypeClassCacheFunc cache_func) { gboolean found_it = FALSE; guint i; g_return_if_fail (cache_func != NULL); G_WRITE_LOCK (&type_rw_lock); for (i = 0; i < static_n_class_cache_funcs; i++) if (static_class_cache_funcs[i].cache_data == cache_data && static_class_cache_funcs[i].cache_func == cache_func) { static_n_class_cache_funcs--; memmove (static_class_cache_funcs + i, static_class_cache_funcs + i + 1, sizeof (static_class_cache_funcs[0]) * (static_n_class_cache_funcs - i)); static_class_cache_funcs = g_renew (ClassCacheFunc, static_class_cache_funcs, static_n_class_cache_funcs); found_it = TRUE; break; } G_WRITE_UNLOCK (&type_rw_lock); if (!found_it) g_warning (G_STRLOC ": cannot remove unregistered class cache func %p with data %p", cache_func, cache_data); } /** * g_type_add_interface_check: (skip) * @check_data: data to pass to @check_func * @check_func: function to be called after each interface * is initialized * * Adds a function to be called after an interface vtable is * initialized for any class (i.e. after the @interface_init * member of #GInterfaceInfo has been called). * * This function is useful when you want to check an invariant * that depends on the interfaces of a class. For instance, the * implementation of #GObject uses this facility to check that an * object implements all of the properties that are defined on its * interfaces. * * Since: 2.4 */ void g_type_add_interface_check (gpointer check_data, GTypeInterfaceCheckFunc check_func) { guint i; g_return_if_fail (check_func != NULL); G_WRITE_LOCK (&type_rw_lock); i = static_n_iface_check_funcs++; static_iface_check_funcs = g_renew (IFaceCheckFunc, static_iface_check_funcs, static_n_iface_check_funcs); static_iface_check_funcs[i].check_data = check_data; static_iface_check_funcs[i].check_func = check_func; G_WRITE_UNLOCK (&type_rw_lock); } /** * g_type_remove_interface_check: (skip) * @check_data: callback data passed to g_type_add_interface_check() * @check_func: callback function passed to g_type_add_interface_check() * * Removes an interface check function added with * g_type_add_interface_check(). * * Since: 2.4 */ void g_type_remove_interface_check (gpointer check_data, GTypeInterfaceCheckFunc check_func) { gboolean found_it = FALSE; guint i; g_return_if_fail (check_func != NULL); G_WRITE_LOCK (&type_rw_lock); for (i = 0; i < static_n_iface_check_funcs; i++) if (static_iface_check_funcs[i].check_data == check_data && static_iface_check_funcs[i].check_func == check_func) { static_n_iface_check_funcs--; memmove (static_iface_check_funcs + i, static_iface_check_funcs + i + 1, sizeof (static_iface_check_funcs[0]) * (static_n_iface_check_funcs - i)); static_iface_check_funcs = g_renew (IFaceCheckFunc, static_iface_check_funcs, static_n_iface_check_funcs); found_it = TRUE; break; } G_WRITE_UNLOCK (&type_rw_lock); if (!found_it) g_warning (G_STRLOC ": cannot remove unregistered class check func %p with data %p", check_func, check_data); } /* --- type registration --- */ /** * g_type_register_fundamental: * @type_id: a predefined type identifier * @type_name: 0-terminated string used as the name of the new type * @info: #GTypeInfo structure for this type * @finfo: #GTypeFundamentalInfo structure for this type * @flags: bitwise combination of #GTypeFlags values * * Registers @type_id as the predefined identifier and @type_name as the * name of a fundamental type. If @type_id is already registered, or a * type named @type_name is already registered, the behaviour is undefined. * The type system uses the information contained in the #GTypeInfo structure * pointed to by @info and the #GTypeFundamentalInfo structure pointed to by * @finfo to manage the type and its instances. The value of @flags determines * additional characteristics of the fundamental type. * * Returns: the predefined type identifier */ GType g_type_register_fundamental (GType type_id, const gchar *type_name, const GTypeInfo *info, const GTypeFundamentalInfo *finfo, GTypeFlags flags) { TypeNode *node; g_assert_type_system_initialized (); g_return_val_if_fail (type_id > 0, 0); g_return_val_if_fail (type_name != NULL, 0); g_return_val_if_fail (info != NULL, 0); g_return_val_if_fail (finfo != NULL, 0); if (!check_type_name_I (type_name)) return 0; if ((type_id & TYPE_ID_MASK) || type_id > G_TYPE_FUNDAMENTAL_MAX) { g_warning ("attempt to register fundamental type '%s' with invalid type id (%" G_GSIZE_FORMAT ")", type_name, type_id); return 0; } if ((finfo->type_flags & G_TYPE_FLAG_INSTANTIATABLE) && !(finfo->type_flags & G_TYPE_FLAG_CLASSED)) { g_warning ("cannot register instantiatable fundamental type '%s' as non-classed", type_name); return 0; } if (lookup_type_node_I (type_id)) { g_warning ("cannot register existing fundamental type '%s' (as '%s')", type_descriptive_name_I (type_id), type_name); return 0; } G_WRITE_LOCK (&type_rw_lock); node = type_node_fundamental_new_W (type_id, type_name, finfo->type_flags); type_add_flags_W (node, flags); if (check_type_info_I (NULL, NODE_FUNDAMENTAL_TYPE (node), type_name, info)) type_data_make_W (node, info, check_value_table_I (type_name, info->value_table) ? info->value_table : NULL); G_WRITE_UNLOCK (&type_rw_lock); return NODE_TYPE (node); } /** * g_type_register_static_simple: (skip) * @parent_type: type from which this type will be derived * @type_name: 0-terminated string used as the name of the new type * @class_size: size of the class structure (see #GTypeInfo) * @class_init: location of the class initialization function (see #GTypeInfo) * @instance_size: size of the instance structure (see #GTypeInfo) * @instance_init: location of the instance initialization function (see #GTypeInfo) * @flags: bitwise combination of #GTypeFlags values * * Registers @type_name as the name of a new static type derived from * @parent_type. The value of @flags determines the nature (e.g. * abstract or not) of the type. It works by filling a #GTypeInfo * struct and calling g_type_register_static(). * * Since: 2.12 * * Returns: the new type identifier */ GType g_type_register_static_simple (GType parent_type, const gchar *type_name, guint class_size, GClassInitFunc class_init, guint instance_size, GInstanceInitFunc instance_init, GTypeFlags flags) { GTypeInfo info; /* Instances are not allowed to be larger than this. If you have a big * fixed-length array or something, point to it instead. */ g_return_val_if_fail (class_size <= G_MAXUINT16, G_TYPE_INVALID); g_return_val_if_fail (instance_size <= G_MAXUINT16, G_TYPE_INVALID); info.class_size = class_size; info.base_init = NULL; info.base_finalize = NULL; info.class_init = class_init; info.class_finalize = NULL; info.class_data = NULL; info.instance_size = instance_size; info.n_preallocs = 0; info.instance_init = instance_init; info.value_table = NULL; return g_type_register_static (parent_type, type_name, &info, flags); } /** * g_type_register_static: * @parent_type: type from which this type will be derived * @type_name: 0-terminated string used as the name of the new type * @info: #GTypeInfo structure for this type * @flags: bitwise combination of #GTypeFlags values * * Registers @type_name as the name of a new static type derived from * @parent_type. The type system uses the information contained in the * #GTypeInfo structure pointed to by @info to manage the type and its * instances (if not abstract). The value of @flags determines the nature * (e.g. abstract or not) of the type. * * Returns: the new type identifier */ GType g_type_register_static (GType parent_type, const gchar *type_name, const GTypeInfo *info, GTypeFlags flags) { TypeNode *pnode, *node; GType type = 0; g_assert_type_system_initialized (); g_return_val_if_fail (parent_type > 0, 0); g_return_val_if_fail (type_name != NULL, 0); g_return_val_if_fail (info != NULL, 0); if (!check_type_name_I (type_name) || !check_derivation_I (parent_type, type_name)) return 0; if (info->class_finalize) { g_warning ("class finalizer specified for static type '%s'", type_name); return 0; } pnode = lookup_type_node_I (parent_type); G_WRITE_LOCK (&type_rw_lock); type_data_ref_Wm (pnode); if (check_type_info_I (pnode, NODE_FUNDAMENTAL_TYPE (pnode), type_name, info)) { node = type_node_new_W (pnode, type_name, NULL); type_add_flags_W (node, flags); type = NODE_TYPE (node); type_data_make_W (node, info, check_value_table_I (type_name, info->value_table) ? info->value_table : NULL); } G_WRITE_UNLOCK (&type_rw_lock); return type; } /** * g_type_register_dynamic: * @parent_type: type from which this type will be derived * @type_name: 0-terminated string used as the name of the new type * @plugin: #GTypePlugin structure to retrieve the #GTypeInfo from * @flags: bitwise combination of #GTypeFlags values * * Registers @type_name as the name of a new dynamic type derived from * @parent_type. The type system uses the information contained in the * #GTypePlugin structure pointed to by @plugin to manage the type and its * instances (if not abstract). The value of @flags determines the nature * (e.g. abstract or not) of the type. * * Returns: the new type identifier or #G_TYPE_INVALID if registration failed */ GType g_type_register_dynamic (GType parent_type, const gchar *type_name, GTypePlugin *plugin, GTypeFlags flags) { TypeNode *pnode, *node; GType type; g_assert_type_system_initialized (); g_return_val_if_fail (parent_type > 0, 0); g_return_val_if_fail (type_name != NULL, 0); g_return_val_if_fail (plugin != NULL, 0); if (!check_type_name_I (type_name) || !check_derivation_I (parent_type, type_name) || !check_plugin_U (plugin, TRUE, FALSE, type_name)) return 0; G_WRITE_LOCK (&type_rw_lock); pnode = lookup_type_node_I (parent_type); node = type_node_new_W (pnode, type_name, plugin); type_add_flags_W (node, flags); type = NODE_TYPE (node); G_WRITE_UNLOCK (&type_rw_lock); return type; } /** * g_type_add_interface_static: * @instance_type: #GType value of an instantiable type * @interface_type: #GType value of an interface type * @info: #GInterfaceInfo structure for this * (@instance_type, @interface_type) combination * * Adds the static @interface_type to @instantiable_type. * The information contained in the #GInterfaceInfo structure * pointed to by @info is used to manage the relationship. */ void g_type_add_interface_static (GType instance_type, GType interface_type, const GInterfaceInfo *info) { /* G_TYPE_IS_INSTANTIATABLE() is an external call: _U */ g_return_if_fail (G_TYPE_IS_INSTANTIATABLE (instance_type)); g_return_if_fail (g_type_parent (interface_type) == G_TYPE_INTERFACE); /* we only need to lock class_init_rec_mutex if instance_type already has its * class initialized, however this function is rarely enough called to take * the simple route and always acquire class_init_rec_mutex. */ g_rec_mutex_lock (&class_init_rec_mutex); /* required locking order: 1) class_init_rec_mutex, 2) type_rw_lock */ G_WRITE_LOCK (&type_rw_lock); if (check_add_interface_L (instance_type, interface_type)) { TypeNode *node = lookup_type_node_I (instance_type); TypeNode *iface = lookup_type_node_I (interface_type); if (check_interface_info_I (iface, NODE_TYPE (node), info)) type_add_interface_Wm (node, iface, info, NULL); } G_WRITE_UNLOCK (&type_rw_lock); g_rec_mutex_unlock (&class_init_rec_mutex); } /** * g_type_add_interface_dynamic: * @instance_type: #GType value of an instantiable type * @interface_type: #GType value of an interface type * @plugin: #GTypePlugin structure to retrieve the #GInterfaceInfo from * * Adds the dynamic @interface_type to @instantiable_type. The information * contained in the #GTypePlugin structure pointed to by @plugin * is used to manage the relationship. */ void g_type_add_interface_dynamic (GType instance_type, GType interface_type, GTypePlugin *plugin) { TypeNode *node; /* G_TYPE_IS_INSTANTIATABLE() is an external call: _U */ g_return_if_fail (G_TYPE_IS_INSTANTIATABLE (instance_type)); g_return_if_fail (g_type_parent (interface_type) == G_TYPE_INTERFACE); node = lookup_type_node_I (instance_type); if (!check_plugin_U (plugin, FALSE, TRUE, NODE_NAME (node))) return; /* see comment in g_type_add_interface_static() about class_init_rec_mutex */ g_rec_mutex_lock (&class_init_rec_mutex); /* required locking order: 1) class_init_rec_mutex, 2) type_rw_lock */ G_WRITE_LOCK (&type_rw_lock); if (check_add_interface_L (instance_type, interface_type)) { TypeNode *iface = lookup_type_node_I (interface_type); type_add_interface_Wm (node, iface, NULL, plugin); } G_WRITE_UNLOCK (&type_rw_lock); g_rec_mutex_unlock (&class_init_rec_mutex); } /* --- public API functions --- */ /** * g_type_class_ref: * @type: type ID of a classed type * * Increments the reference count of the class structure belonging to * @type. This function will demand-create the class if it doesn't * exist already. * * Returns: (type GObject.TypeClass) (transfer none): the #GTypeClass * structure for the given type ID */ gpointer g_type_class_ref (GType type) { TypeNode *node; GType ptype; gboolean holds_ref; GTypeClass *pclass; /* optimize for common code path */ node = lookup_type_node_I (type); if (!node || !node->is_classed) { g_warning ("cannot retrieve class for invalid (unclassed) type '%s'", type_descriptive_name_I (type)); return NULL; } if (G_LIKELY (type_data_ref_U (node))) { if (G_LIKELY (g_atomic_int_get (&node->data->class.init_state) == INITIALIZED)) return node->data->class.class; holds_ref = TRUE; } else holds_ref = FALSE; /* here, we either have node->data->class.class == NULL, or a recursive * call to g_type_class_ref() with a partly initialized class, or * node->data->class.init_state == INITIALIZED, because any * concurrently running initialization was guarded by class_init_rec_mutex. */ g_rec_mutex_lock (&class_init_rec_mutex); /* required locking order: 1) class_init_rec_mutex, 2) type_rw_lock */ /* we need an initialized parent class for initializing derived classes */ ptype = NODE_PARENT_TYPE (node); pclass = ptype ? g_type_class_ref (ptype) : NULL; G_WRITE_LOCK (&type_rw_lock); if (!holds_ref) type_data_ref_Wm (node); if (!node->data->class.class) /* class uninitialized */ type_class_init_Wm (node, pclass); G_WRITE_UNLOCK (&type_rw_lock); if (pclass) g_type_class_unref (pclass); g_rec_mutex_unlock (&class_init_rec_mutex); return node->data->class.class; } /** * g_type_class_unref: * @g_class: (type GObject.TypeClass): a #GTypeClass structure to unref * * Decrements the reference count of the class structure being passed in. * Once the last reference count of a class has been released, classes * may be finalized by the type system, so further dereferencing of a * class pointer after g_type_class_unref() are invalid. */ void g_type_class_unref (gpointer g_class) { TypeNode *node; GTypeClass *class = g_class; g_return_if_fail (g_class != NULL); node = lookup_type_node_I (class->g_type); if (node && node->is_classed && NODE_REFCOUNT (node)) type_data_unref_U (node, FALSE); else g_warning ("cannot unreference class of invalid (unclassed) type '%s'", type_descriptive_name_I (class->g_type)); } /** * g_type_class_unref_uncached: (skip) * @g_class: (type GObject.TypeClass): a #GTypeClass structure to unref * * A variant of g_type_class_unref() for use in #GTypeClassCacheFunc * implementations. It unreferences a class without consulting the chain * of #GTypeClassCacheFuncs, avoiding the recursion which would occur * otherwise. */ void g_type_class_unref_uncached (gpointer g_class) { TypeNode *node; GTypeClass *class = g_class; g_return_if_fail (g_class != NULL); node = lookup_type_node_I (class->g_type); if (node && node->is_classed && NODE_REFCOUNT (node)) type_data_unref_U (node, TRUE); else g_warning ("cannot unreference class of invalid (unclassed) type '%s'", type_descriptive_name_I (class->g_type)); } /** * g_type_class_peek: * @type: type ID of a classed type * * This function is essentially the same as g_type_class_ref(), * except that the classes reference count isn't incremented. * As a consequence, this function may return %NULL if the class * of the type passed in does not currently exist (hasn't been * referenced before). * * Returns: (type GObject.TypeClass) (transfer none): the #GTypeClass * structure for the given type ID or %NULL if the class does not * currently exist */ gpointer g_type_class_peek (GType type) { TypeNode *node; gpointer class; node = lookup_type_node_I (type); if (node && node->is_classed && NODE_REFCOUNT (node) && g_atomic_int_get (&node->data->class.init_state) == INITIALIZED) /* ref_count _may_ be 0 */ class = node->data->class.class; else class = NULL; return class; } /** * g_type_class_peek_static: * @type: type ID of a classed type * * A more efficient version of g_type_class_peek() which works only for * static types. * * Returns: (type GObject.TypeClass) (transfer none): the #GTypeClass * structure for the given type ID or %NULL if the class does not * currently exist or is dynamically loaded * * Since: 2.4 */ gpointer g_type_class_peek_static (GType type) { TypeNode *node; gpointer class; node = lookup_type_node_I (type); if (node && node->is_classed && NODE_REFCOUNT (node) && /* peek only static types: */ node->plugin == NULL && g_atomic_int_get (&node->data->class.init_state) == INITIALIZED) /* ref_count _may_ be 0 */ class = node->data->class.class; else class = NULL; return class; } /** * g_type_class_peek_parent: * @g_class: (type GObject.TypeClass): the #GTypeClass structure to * retrieve the parent class for * * This is a convenience function often needed in class initializers. * It returns the class structure of the immediate parent type of the * class passed in. Since derived classes hold a reference count on * their parent classes as long as they are instantiated, the returned * class will always exist. * * This function is essentially equivalent to: * g_type_class_peek (g_type_parent (G_TYPE_FROM_CLASS (g_class))) * * Returns: (type GObject.TypeClass) (transfer none): the parent class * of @g_class */ gpointer g_type_class_peek_parent (gpointer g_class) { TypeNode *node; gpointer class = NULL; g_return_val_if_fail (g_class != NULL, NULL); node = lookup_type_node_I (G_TYPE_FROM_CLASS (g_class)); /* We used to acquire a read lock here. That is not necessary, since * parent->data->class.class is constant as long as the derived class * exists. */ if (node && node->is_classed && node->data && NODE_PARENT_TYPE (node)) { node = lookup_type_node_I (NODE_PARENT_TYPE (node)); class = node->data->class.class; } else if (NODE_PARENT_TYPE (node)) g_warning (G_STRLOC ": invalid class pointer '%p'", g_class); return class; } /** * g_type_interface_peek: * @instance_class: (type GObject.TypeClass): a #GTypeClass structure * @iface_type: an interface ID which this class conforms to * * Returns the #GTypeInterface structure of an interface to which the * passed in class conforms. * * Returns: (type GObject.TypeInterface) (transfer none): the #GTypeInterface * structure of @iface_type if implemented by @instance_class, %NULL * otherwise */ gpointer g_type_interface_peek (gpointer instance_class, GType iface_type) { TypeNode *node; TypeNode *iface; gpointer vtable = NULL; GTypeClass *class = instance_class; g_return_val_if_fail (instance_class != NULL, NULL); node = lookup_type_node_I (class->g_type); iface = lookup_type_node_I (iface_type); if (node && node->is_instantiatable && iface) type_lookup_iface_vtable_I (node, iface, &vtable); else g_warning (G_STRLOC ": invalid class pointer '%p'", class); return vtable; } /** * g_type_interface_peek_parent: * @g_iface: (type GObject.TypeInterface): a #GTypeInterface structure * * Returns the corresponding #GTypeInterface structure of the parent type * of the instance type to which @g_iface belongs. This is useful when * deriving the implementation of an interface from the parent type and * then possibly overriding some methods. * * Returns: (transfer none) (type GObject.TypeInterface): the * corresponding #GTypeInterface structure of the parent type of the * instance type to which @g_iface belongs, or %NULL if the parent * type doesn't conform to the interface */ gpointer g_type_interface_peek_parent (gpointer g_iface) { TypeNode *node; TypeNode *iface; gpointer vtable = NULL; GTypeInterface *iface_class = g_iface; g_return_val_if_fail (g_iface != NULL, NULL); iface = lookup_type_node_I (iface_class->g_type); node = lookup_type_node_I (iface_class->g_instance_type); if (node) node = lookup_type_node_I (NODE_PARENT_TYPE (node)); if (node && node->is_instantiatable && iface) type_lookup_iface_vtable_I (node, iface, &vtable); else if (node) g_warning (G_STRLOC ": invalid interface pointer '%p'", g_iface); return vtable; } /** * g_type_default_interface_ref: * @g_type: an interface type * * Increments the reference count for the interface type @g_type, * and returns the default interface vtable for the type. * * If the type is not currently in use, then the default vtable * for the type will be created and initalized by calling * the base interface init and default vtable init functions for * the type (the @base_init and @class_init members of #GTypeInfo). * Calling g_type_default_interface_ref() is useful when you * want to make sure that signals and properties for an interface * have been installed. * * Since: 2.4 * * Returns: (type GObject.TypeInterface) (transfer none): the default * vtable for the interface; call g_type_default_interface_unref() * when you are done using the interface. */ gpointer g_type_default_interface_ref (GType g_type) { TypeNode *node; gpointer dflt_vtable; G_WRITE_LOCK (&type_rw_lock); node = lookup_type_node_I (g_type); if (!node || !NODE_IS_IFACE (node) || (node->data && NODE_REFCOUNT (node) == 0)) { G_WRITE_UNLOCK (&type_rw_lock); g_warning ("cannot retrieve default vtable for invalid or non-interface type '%s'", type_descriptive_name_I (g_type)); return NULL; } if (!node->data || !node->data->iface.dflt_vtable) { G_WRITE_UNLOCK (&type_rw_lock); g_rec_mutex_lock (&class_init_rec_mutex); /* required locking order: 1) class_init_rec_mutex, 2) type_rw_lock */ G_WRITE_LOCK (&type_rw_lock); node = lookup_type_node_I (g_type); type_data_ref_Wm (node); type_iface_ensure_dflt_vtable_Wm (node); g_rec_mutex_unlock (&class_init_rec_mutex); } else type_data_ref_Wm (node); /* ref_count >= 1 already */ dflt_vtable = node->data->iface.dflt_vtable; G_WRITE_UNLOCK (&type_rw_lock); return dflt_vtable; } /** * g_type_default_interface_peek: * @g_type: an interface type * * If the interface type @g_type is currently in use, returns its * default interface vtable. * * Since: 2.4 * * Returns: (type GObject.TypeInterface) (transfer none): the default * vtable for the interface, or %NULL if the type is not currently * in use */ gpointer g_type_default_interface_peek (GType g_type) { TypeNode *node; gpointer vtable; node = lookup_type_node_I (g_type); if (node && NODE_IS_IFACE (node) && NODE_REFCOUNT (node)) vtable = node->data->iface.dflt_vtable; else vtable = NULL; return vtable; } /** * g_type_default_interface_unref: * @g_iface: (type GObject.TypeInterface): the default vtable * structure for a interface, as returned by g_type_default_interface_ref() * * Decrements the reference count for the type corresponding to the * interface default vtable @g_iface. If the type is dynamic, then * when no one is using the interface and all references have * been released, the finalize function for the interface's default * vtable (the @class_finalize member of #GTypeInfo) will be called. * * Since: 2.4 */ void g_type_default_interface_unref (gpointer g_iface) { TypeNode *node; GTypeInterface *vtable = g_iface; g_return_if_fail (g_iface != NULL); node = lookup_type_node_I (vtable->g_type); if (node && NODE_IS_IFACE (node)) type_data_unref_U (node, FALSE); else g_warning ("cannot unreference invalid interface default vtable for '%s'", type_descriptive_name_I (vtable->g_type)); } /** * g_type_name: * @type: type to return name for * * Get the unique name that is assigned to a type ID. Note that this * function (like all other GType API) cannot cope with invalid type * IDs. %G_TYPE_INVALID may be passed to this function, as may be any * other validly registered type ID, but randomized type IDs should * not be passed in and will most likely lead to a crash. * * Returns: static type name or %NULL */ const gchar * g_type_name (GType type) { TypeNode *node; g_assert_type_system_initialized (); node = lookup_type_node_I (type); return node ? NODE_NAME (node) : NULL; } /** * g_type_qname: * @type: type to return quark of type name for * * Get the corresponding quark of the type IDs name. * * Returns: the type names quark or 0 */ GQuark g_type_qname (GType type) { TypeNode *node; node = lookup_type_node_I (type); return node ? node->qname : 0; } /** * g_type_from_name: * @name: type name to look up * * Look up the type ID from a given type name, returning 0 if no type * has been registered under this name (this is the preferred method * to find out by name whether a specific type has been registered * yet). * * Returns: corresponding type ID or 0 */ GType g_type_from_name (const gchar *name) { GType type = 0; g_return_val_if_fail (name != NULL, 0); G_READ_LOCK (&type_rw_lock); type = (GType) g_hash_table_lookup (static_type_nodes_ht, name); G_READ_UNLOCK (&type_rw_lock); return type; } /** * g_type_parent: * @type: the derived type * * Return the direct parent type of the passed in type. If the passed * in type has no parent, i.e. is a fundamental type, 0 is returned. * * Returns: the parent type */ GType g_type_parent (GType type) { TypeNode *node; node = lookup_type_node_I (type); return node ? NODE_PARENT_TYPE (node) : 0; } /** * g_type_depth: * @type: a #GType * * Returns the length of the ancestry of the passed in type. This * includes the type itself, so that e.g. a fundamental type has depth 1. * * Returns: the depth of @type */ guint g_type_depth (GType type) { TypeNode *node; node = lookup_type_node_I (type); return node ? node->n_supers + 1 : 0; } /** * g_type_next_base: * @leaf_type: descendant of @root_type and the type to be returned * @root_type: immediate parent of the returned type * * Given a @leaf_type and a @root_type which is contained in its * anchestry, return the type that @root_type is the immediate parent * of. In other words, this function determines the type that is * derived directly from @root_type which is also a base class of * @leaf_type. Given a root type and a leaf type, this function can * be used to determine the types and order in which the leaf type is * descended from the root type. * * Returns: immediate child of @root_type and anchestor of @leaf_type */ GType g_type_next_base (GType type, GType base_type) { GType atype = 0; TypeNode *node; node = lookup_type_node_I (type); if (node) { TypeNode *base_node = lookup_type_node_I (base_type); if (base_node && base_node->n_supers < node->n_supers) { guint n = node->n_supers - base_node->n_supers; if (node->supers[n] == base_type) atype = node->supers[n - 1]; } } return atype; } static inline gboolean type_node_check_conformities_UorL (TypeNode *node, TypeNode *iface_node, /* support_inheritance */ gboolean support_interfaces, gboolean support_prerequisites, gboolean have_lock) { gboolean match; if (/* support_inheritance && */ NODE_IS_ANCESTOR (iface_node, node)) return TRUE; support_interfaces = support_interfaces && node->is_instantiatable && NODE_IS_IFACE (iface_node); support_prerequisites = support_prerequisites && NODE_IS_IFACE (node); match = FALSE; if (support_interfaces) { if (have_lock) { if (type_lookup_iface_entry_L (node, iface_node)) match = TRUE; } else { if (type_lookup_iface_vtable_I (node, iface_node, NULL)) match = TRUE; } } if (!match && support_prerequisites) { if (!have_lock) G_READ_LOCK (&type_rw_lock); if (support_prerequisites && type_lookup_prerequisite_L (node, NODE_TYPE (iface_node))) match = TRUE; if (!have_lock) G_READ_UNLOCK (&type_rw_lock); } return match; } static gboolean type_node_is_a_L (TypeNode *node, TypeNode *iface_node) { return type_node_check_conformities_UorL (node, iface_node, TRUE, TRUE, TRUE); } static inline gboolean type_node_conforms_to_U (TypeNode *node, TypeNode *iface_node, gboolean support_interfaces, gboolean support_prerequisites) { return type_node_check_conformities_UorL (node, iface_node, support_interfaces, support_prerequisites, FALSE); } /** * g_type_is_a: * @type: type to check anchestry for * @is_a_type: possible anchestor of @type or interface that @type * could conform to * * If @is_a_type is a derivable type, check whether @type is a * descendant of @is_a_type. If @is_a_type is an interface, check * whether @type conforms to it. * * Returns: %TRUE if @type is a @is_a_type */ gboolean g_type_is_a (GType type, GType iface_type) { TypeNode *node, *iface_node; gboolean is_a; if (type == iface_type) return TRUE; node = lookup_type_node_I (type); iface_node = lookup_type_node_I (iface_type); is_a = node && iface_node && type_node_conforms_to_U (node, iface_node, TRUE, TRUE); return is_a; } /** * g_type_children: * @type: the parent type * @n_children: (out) (optional): location to store the length of * the returned array, or %NULL * * Return a newly allocated and 0-terminated array of type IDs, listing * the child types of @type. * * Returns: (array length=n_children) (transfer full): Newly allocated * and 0-terminated array of child types, free with g_free() */ GType* g_type_children (GType type, guint *n_children) { TypeNode *node; node = lookup_type_node_I (type); if (node) { GType *children; G_READ_LOCK (&type_rw_lock); /* ->children is relocatable */ children = g_new (GType, node->n_children + 1); if (node->n_children != 0) memcpy (children, node->children, sizeof (GType) * node->n_children); children[node->n_children] = 0; if (n_children) *n_children = node->n_children; G_READ_UNLOCK (&type_rw_lock); return children; } else { if (n_children) *n_children = 0; return NULL; } } /** * g_type_interfaces: * @type: the type to list interface types for * @n_interfaces: (out) (optional): location to store the length of * the returned array, or %NULL * * Return a newly allocated and 0-terminated array of type IDs, listing * the interface types that @type conforms to. * * Returns: (array length=n_interfaces) (transfer full): Newly allocated * and 0-terminated array of interface types, free with g_free() */ GType* g_type_interfaces (GType type, guint *n_interfaces) { TypeNode *node; node = lookup_type_node_I (type); if (node && node->is_instantiatable) { IFaceEntries *entries; GType *ifaces; guint i; G_READ_LOCK (&type_rw_lock); entries = CLASSED_NODE_IFACES_ENTRIES_LOCKED (node); if (entries) { ifaces = g_new (GType, IFACE_ENTRIES_N_ENTRIES (entries) + 1); for (i = 0; i < IFACE_ENTRIES_N_ENTRIES (entries); i++) ifaces[i] = entries->entry[i].iface_type; } else { ifaces = g_new (GType, 1); i = 0; } ifaces[i] = 0; if (n_interfaces) *n_interfaces = i; G_READ_UNLOCK (&type_rw_lock); return ifaces; } else { if (n_interfaces) *n_interfaces = 0; return NULL; } } typedef struct _QData QData; struct _GData { guint n_qdatas; QData *qdatas; }; struct _QData { GQuark quark; gpointer data; }; static inline gpointer type_get_qdata_L (TypeNode *node, GQuark quark) { GData *gdata = node->global_gdata; if (quark && gdata && gdata->n_qdatas) { QData *qdatas = gdata->qdatas - 1; guint n_qdatas = gdata->n_qdatas; do { guint i; QData *check; i = (n_qdatas + 1) / 2; check = qdatas + i; if (quark == check->quark) return check->data; else if (quark > check->quark) { n_qdatas -= i; qdatas = check; } else /* if (quark < check->quark) */ n_qdatas = i - 1; } while (n_qdatas); } return NULL; } /** * g_type_get_qdata: * @type: a #GType * @quark: a #GQuark id to identify the data * * Obtains data which has previously been attached to @type * with g_type_set_qdata(). * * Note that this does not take subtyping into account; data * attached to one type with g_type_set_qdata() cannot * be retrieved from a subtype using g_type_get_qdata(). * * Returns: (transfer none): the data, or %NULL if no data was found */ gpointer g_type_get_qdata (GType type, GQuark quark) { TypeNode *node; gpointer data; node = lookup_type_node_I (type); if (node) { G_READ_LOCK (&type_rw_lock); data = type_get_qdata_L (node, quark); G_READ_UNLOCK (&type_rw_lock); } else { g_return_val_if_fail (node != NULL, NULL); data = NULL; } return data; } static inline void type_set_qdata_W (TypeNode *node, GQuark quark, gpointer data) { GData *gdata; QData *qdata; guint i; /* setup qdata list if necessary */ if (!node->global_gdata) node->global_gdata = g_new0 (GData, 1); gdata = node->global_gdata; /* try resetting old data */ qdata = gdata->qdatas; for (i = 0; i < gdata->n_qdatas; i++) if (qdata[i].quark == quark) { qdata[i].data = data; return; } /* add new entry */ gdata->n_qdatas++; gdata->qdatas = g_renew (QData, gdata->qdatas, gdata->n_qdatas); qdata = gdata->qdatas; for (i = 0; i < gdata->n_qdatas - 1; i++) if (qdata[i].quark > quark) break; memmove (qdata + i + 1, qdata + i, sizeof (qdata[0]) * (gdata->n_qdatas - i - 1)); qdata[i].quark = quark; qdata[i].data = data; } /** * g_type_set_qdata: * @type: a #GType * @quark: a #GQuark id to identify the data * @data: the data * * Attaches arbitrary data to a type. */ void g_type_set_qdata (GType type, GQuark quark, gpointer data) { TypeNode *node; g_return_if_fail (quark != 0); node = lookup_type_node_I (type); if (node) { G_WRITE_LOCK (&type_rw_lock); type_set_qdata_W (node, quark, data); G_WRITE_UNLOCK (&type_rw_lock); } else g_return_if_fail (node != NULL); } static void type_add_flags_W (TypeNode *node, GTypeFlags flags) { guint dflags; g_return_if_fail ((flags & ~TYPE_FLAG_MASK) == 0); g_return_if_fail (node != NULL); if ((flags & TYPE_FLAG_MASK) && node->is_classed && node->data && node->data->class.class) g_warning ("tagging type '%s' as abstract after class initialization", NODE_NAME (node)); dflags = GPOINTER_TO_UINT (type_get_qdata_L (node, static_quark_type_flags)); dflags |= flags; type_set_qdata_W (node, static_quark_type_flags, GUINT_TO_POINTER (dflags)); } /** * g_type_query: * @type: #GType of a static, classed type * @query: (out caller-allocates): a user provided structure that is * filled in with constant values upon success * * Queries the type system for information about a specific type. * This function will fill in a user-provided structure to hold * type-specific information. If an invalid #GType is passed in, the * @type member of the #GTypeQuery is 0. All members filled into the * #GTypeQuery structure should be considered constant and have to be * left untouched. */ void g_type_query (GType type, GTypeQuery *query) { TypeNode *node; g_return_if_fail (query != NULL); /* if node is not static and classed, we won't allow query */ query->type = 0; node = lookup_type_node_I (type); if (node && node->is_classed && !node->plugin) { /* type is classed and probably even instantiatable */ G_READ_LOCK (&type_rw_lock); if (node->data) /* type is static or referenced */ { query->type = NODE_TYPE (node); query->type_name = NODE_NAME (node); query->class_size = node->data->class.class_size; query->instance_size = node->is_instantiatable ? node->data->instance.instance_size : 0; } G_READ_UNLOCK (&type_rw_lock); } } /** * g_type_get_instance_count: * @type: a #GType * * Returns the number of instances allocated of the particular type; * this is only available if GLib is built with debugging support and * the instance_count debug flag is set (by setting the GOBJECT_DEBUG * variable to include instance-count). * * Returns: the number of instances allocated of the given type; * if instance counts are not available, returns 0. * * Since: 2.44 */ int g_type_get_instance_count (GType type) { #ifdef G_ENABLE_DEBUG TypeNode *node; node = lookup_type_node_I (type); g_return_val_if_fail (node != NULL, 0); return g_atomic_int_get (&node->instance_count); #else return 0; #endif } /* --- implementation details --- */ gboolean g_type_test_flags (GType type, guint flags) { TypeNode *node; gboolean result = FALSE; node = lookup_type_node_I (type); if (node) { guint fflags = flags & TYPE_FUNDAMENTAL_FLAG_MASK; guint tflags = flags & TYPE_FLAG_MASK; if (fflags) { GTypeFundamentalInfo *finfo = type_node_fundamental_info_I (node); fflags = (finfo->type_flags & fflags) == fflags; } else fflags = TRUE; if (tflags) { G_READ_LOCK (&type_rw_lock); tflags = (tflags & GPOINTER_TO_UINT (type_get_qdata_L (node, static_quark_type_flags))) == tflags; G_READ_UNLOCK (&type_rw_lock); } else tflags = TRUE; result = tflags && fflags; } return result; } /** * g_type_get_plugin: * @type: #GType to retrieve the plugin for * * Returns the #GTypePlugin structure for @type. * * Returns: (transfer none): the corresponding plugin * if @type is a dynamic type, %NULL otherwise */ GTypePlugin* g_type_get_plugin (GType type) { TypeNode *node; node = lookup_type_node_I (type); return node ? node->plugin : NULL; } /** * g_type_interface_get_plugin: * @instance_type: #GType of an instantiatable type * @interface_type: #GType of an interface type * * Returns the #GTypePlugin structure for the dynamic interface * @interface_type which has been added to @instance_type, or %NULL * if @interface_type has not been added to @instance_type or does * not have a #GTypePlugin structure. See g_type_add_interface_dynamic(). * * Returns: (transfer none): the #GTypePlugin for the dynamic * interface @interface_type of @instance_type */ GTypePlugin* g_type_interface_get_plugin (GType instance_type, GType interface_type) { TypeNode *node; TypeNode *iface; g_return_val_if_fail (G_TYPE_IS_INTERFACE (interface_type), NULL); /* G_TYPE_IS_INTERFACE() is an external call: _U */ node = lookup_type_node_I (instance_type); iface = lookup_type_node_I (interface_type); if (node && iface) { IFaceHolder *iholder; GTypePlugin *plugin; G_READ_LOCK (&type_rw_lock); iholder = iface_node_get_holders_L (iface); while (iholder && iholder->instance_type != instance_type) iholder = iholder->next; plugin = iholder ? iholder->plugin : NULL; G_READ_UNLOCK (&type_rw_lock); return plugin; } g_return_val_if_fail (node == NULL, NULL); g_return_val_if_fail (iface == NULL, NULL); g_warning (G_STRLOC ": attempt to look up plugin for invalid instance/interface type pair."); return NULL; } /** * g_type_fundamental_next: * * Returns the next free fundamental type id which can be used to * register a new fundamental type with g_type_register_fundamental(). * The returned type ID represents the highest currently registered * fundamental type identifier. * * Returns: the next available fundamental type ID to be registered, * or 0 if the type system ran out of fundamental type IDs */ GType g_type_fundamental_next (void) { GType type; G_READ_LOCK (&type_rw_lock); type = static_fundamental_next; G_READ_UNLOCK (&type_rw_lock); type = G_TYPE_MAKE_FUNDAMENTAL (type); return type <= G_TYPE_FUNDAMENTAL_MAX ? type : 0; } /** * g_type_fundamental: * @type_id: valid type ID * * Internal function, used to extract the fundamental type ID portion. * Use G_TYPE_FUNDAMENTAL() instead. * * Returns: fundamental type ID */ GType g_type_fundamental (GType type_id) { TypeNode *node = lookup_type_node_I (type_id); return node ? NODE_FUNDAMENTAL_TYPE (node) : 0; } gboolean g_type_check_instance_is_a (GTypeInstance *type_instance, GType iface_type) { TypeNode *node, *iface; gboolean check; if (!type_instance || !type_instance->g_class) return FALSE; node = lookup_type_node_I (type_instance->g_class->g_type); iface = lookup_type_node_I (iface_type); check = node && node->is_instantiatable && iface && type_node_conforms_to_U (node, iface, TRUE, FALSE); return check; } gboolean g_type_check_instance_is_fundamentally_a (GTypeInstance *type_instance, GType fundamental_type) { TypeNode *node; if (!type_instance || !type_instance->g_class) return FALSE; node = lookup_type_node_I (type_instance->g_class->g_type); return node && (NODE_FUNDAMENTAL_TYPE(node) == fundamental_type); } gboolean g_type_check_class_is_a (GTypeClass *type_class, GType is_a_type) { TypeNode *node, *iface; gboolean check; if (!type_class) return FALSE; node = lookup_type_node_I (type_class->g_type); iface = lookup_type_node_I (is_a_type); check = node && node->is_classed && iface && type_node_conforms_to_U (node, iface, FALSE, FALSE); return check; } GTypeInstance* g_type_check_instance_cast (GTypeInstance *type_instance, GType iface_type) { if (type_instance) { if (type_instance->g_class) { TypeNode *node, *iface; gboolean is_instantiatable, check; node = lookup_type_node_I (type_instance->g_class->g_type); is_instantiatable = node && node->is_instantiatable; iface = lookup_type_node_I (iface_type); check = is_instantiatable && iface && type_node_conforms_to_U (node, iface, TRUE, FALSE); if (check) return type_instance; if (is_instantiatable) g_warning ("invalid cast from '%s' to '%s'", type_descriptive_name_I (type_instance->g_class->g_type), type_descriptive_name_I (iface_type)); else g_warning ("invalid uninstantiatable type '%s' in cast to '%s'", type_descriptive_name_I (type_instance->g_class->g_type), type_descriptive_name_I (iface_type)); } else g_warning ("invalid unclassed pointer in cast to '%s'", type_descriptive_name_I (iface_type)); } return type_instance; } GTypeClass* g_type_check_class_cast (GTypeClass *type_class, GType is_a_type) { if (type_class) { TypeNode *node, *iface; gboolean is_classed, check; node = lookup_type_node_I (type_class->g_type); is_classed = node && node->is_classed; iface = lookup_type_node_I (is_a_type); check = is_classed && iface && type_node_conforms_to_U (node, iface, FALSE, FALSE); if (check) return type_class; if (is_classed) g_warning ("invalid class cast from '%s' to '%s'", type_descriptive_name_I (type_class->g_type), type_descriptive_name_I (is_a_type)); else g_warning ("invalid unclassed type '%s' in class cast to '%s'", type_descriptive_name_I (type_class->g_type), type_descriptive_name_I (is_a_type)); } else g_warning ("invalid class cast from (NULL) pointer to '%s'", type_descriptive_name_I (is_a_type)); return type_class; } /** * g_type_check_instance: * @instance: a valid #GTypeInstance structure * * Private helper function to aid implementation of the * G_TYPE_CHECK_INSTANCE() macro. * * Returns: %TRUE if @instance is valid, %FALSE otherwise */ gboolean g_type_check_instance (GTypeInstance *type_instance) { /* this function is just here to make the signal system * conveniently elaborated on instance checks */ if (type_instance) { if (type_instance->g_class) { TypeNode *node = lookup_type_node_I (type_instance->g_class->g_type); if (node && node->is_instantiatable) return TRUE; g_warning ("instance of invalid non-instantiatable type '%s'", type_descriptive_name_I (type_instance->g_class->g_type)); } else g_warning ("instance with invalid (NULL) class pointer"); } else g_warning ("invalid (NULL) pointer instance"); return FALSE; } static inline gboolean type_check_is_value_type_U (GType type) { GTypeFlags tflags = G_TYPE_FLAG_VALUE_ABSTRACT; TypeNode *node; /* common path speed up */ node = lookup_type_node_I (type); if (node && node->mutatable_check_cache) return TRUE; G_READ_LOCK (&type_rw_lock); restart_check: if (node) { if (node->data && NODE_REFCOUNT (node) > 0 && node->data->common.value_table->value_init) tflags = GPOINTER_TO_UINT (type_get_qdata_L (node, static_quark_type_flags)); else if (NODE_IS_IFACE (node)) { guint i; for (i = 0; i < IFACE_NODE_N_PREREQUISITES (node); i++) { GType prtype = IFACE_NODE_PREREQUISITES (node)[i]; TypeNode *prnode = lookup_type_node_I (prtype); if (prnode->is_instantiatable) { type = prtype; node = lookup_type_node_I (type); goto restart_check; } } } } G_READ_UNLOCK (&type_rw_lock); return !(tflags & G_TYPE_FLAG_VALUE_ABSTRACT); } gboolean g_type_check_is_value_type (GType type) { return type_check_is_value_type_U (type); } gboolean g_type_check_value (const GValue *value) { return value && type_check_is_value_type_U (value->g_type); } gboolean g_type_check_value_holds (const GValue *value, GType type) { return value && type_check_is_value_type_U (value->g_type) && g_type_is_a (value->g_type, type); } /** * g_type_value_table_peek: (skip) * @type: a #GType * * Returns the location of the #GTypeValueTable associated with @type. * * Note that this function should only be used from source code * that implements or has internal knowledge of the implementation of * @type. * * Returns: location of the #GTypeValueTable associated with @type or * %NULL if there is no #GTypeValueTable associated with @type */ GTypeValueTable* g_type_value_table_peek (GType type) { GTypeValueTable *vtable = NULL; TypeNode *node = lookup_type_node_I (type); gboolean has_refed_data, has_table; if (node && NODE_REFCOUNT (node) && node->mutatable_check_cache) return node->data->common.value_table; G_READ_LOCK (&type_rw_lock); restart_table_peek: has_refed_data = node && node->data && NODE_REFCOUNT (node) > 0; has_table = has_refed_data && node->data->common.value_table->value_init; if (has_refed_data) { if (has_table) vtable = node->data->common.value_table; else if (NODE_IS_IFACE (node)) { guint i; for (i = 0; i < IFACE_NODE_N_PREREQUISITES (node); i++) { GType prtype = IFACE_NODE_PREREQUISITES (node)[i]; TypeNode *prnode = lookup_type_node_I (prtype); if (prnode->is_instantiatable) { type = prtype; node = lookup_type_node_I (type); goto restart_table_peek; } } } } G_READ_UNLOCK (&type_rw_lock); if (vtable) return vtable; if (!node) g_warning (G_STRLOC ": type id '%" G_GSIZE_FORMAT "' is invalid", type); if (!has_refed_data) g_warning ("can't peek value table for type '%s' which is not currently referenced", type_descriptive_name_I (type)); return NULL; } const gchar * g_type_name_from_instance (GTypeInstance *instance) { if (!instance) return ""; else return g_type_name_from_class (instance->g_class); } const gchar * g_type_name_from_class (GTypeClass *g_class) { if (!g_class) return ""; else return g_type_name (g_class->g_type); } /* --- private api for gboxed.c --- */ gpointer _g_type_boxed_copy (GType type, gpointer value) { TypeNode *node = lookup_type_node_I (type); return node->data->boxed.copy_func (value); } void _g_type_boxed_free (GType type, gpointer value) { TypeNode *node = lookup_type_node_I (type); node->data->boxed.free_func (value); } void _g_type_boxed_init (GType type, GBoxedCopyFunc copy_func, GBoxedFreeFunc free_func) { TypeNode *node = lookup_type_node_I (type); node->data->boxed.copy_func = copy_func; node->data->boxed.free_func = free_func; } /* --- initialization --- */ /** * g_type_init_with_debug_flags: * @debug_flags: bitwise combination of #GTypeDebugFlags values for * debugging purposes * * This function used to initialise the type system with debugging * flags. Since GLib 2.36, the type system is initialised automatically * and this function does nothing. * * If you need to enable debugging features, use the GOBJECT_DEBUG * environment variable. * * Deprecated: 2.36: the type system is now initialised automatically */ void g_type_init_with_debug_flags (GTypeDebugFlags debug_flags) { g_assert_type_system_initialized (); if (debug_flags) g_message ("g_type_init_with_debug_flags() is no longer supported. Use the GOBJECT_DEBUG environment variable."); } /** * g_type_init: * * This function used to initialise the type system. Since GLib 2.36, * the type system is initialised automatically and this function does * nothing. * * Deprecated: 2.36: the type system is now initialised automatically */ void g_type_init (void) { g_assert_type_system_initialized (); } static void gobject_init (void) { const gchar *env_string; GTypeInfo info; TypeNode *node; GType type G_GNUC_UNUSED /* when compiling with G_DISABLE_ASSERT */; /* Ensure GLib is initialized first, see * https://bugzilla.gnome.org/show_bug.cgi?id=756139 */ GLIB_PRIVATE_CALL (glib_init) (); G_WRITE_LOCK (&type_rw_lock); /* setup GObject library wide debugging flags */ env_string = g_getenv ("GOBJECT_DEBUG"); if (env_string != NULL) { GDebugKey debug_keys[] = { { "objects", G_TYPE_DEBUG_OBJECTS }, { "instance-count", G_TYPE_DEBUG_INSTANCE_COUNT }, { "signals", G_TYPE_DEBUG_SIGNALS }, }; _g_type_debug_flags = g_parse_debug_string (env_string, debug_keys, G_N_ELEMENTS (debug_keys)); } /* quarks */ static_quark_type_flags = g_quark_from_static_string ("-g-type-private--GTypeFlags"); static_quark_iface_holder = g_quark_from_static_string ("-g-type-private--IFaceHolder"); static_quark_dependants_array = g_quark_from_static_string ("-g-type-private--dependants-array"); /* type qname hash table */ static_type_nodes_ht = g_hash_table_new (g_str_hash, g_str_equal); /* invalid type G_TYPE_INVALID (0) */ static_fundamental_type_nodes[0] = NULL; /* void type G_TYPE_NONE */ node = type_node_fundamental_new_W (G_TYPE_NONE, g_intern_static_string ("void"), 0); type = NODE_TYPE (node); g_assert (type == G_TYPE_NONE); /* interface fundamental type G_TYPE_INTERFACE (!classed) */ memset (&info, 0, sizeof (info)); node = type_node_fundamental_new_W (G_TYPE_INTERFACE, g_intern_static_string ("GInterface"), G_TYPE_FLAG_DERIVABLE); type = NODE_TYPE (node); type_data_make_W (node, &info, NULL); g_assert (type == G_TYPE_INTERFACE); G_WRITE_UNLOCK (&type_rw_lock); _g_value_c_init (); /* G_TYPE_TYPE_PLUGIN */ g_type_ensure (g_type_plugin_get_type ()); /* G_TYPE_* value types */ _g_value_types_init (); /* G_TYPE_ENUM & G_TYPE_FLAGS */ _g_enum_types_init (); /* G_TYPE_BOXED */ _g_boxed_type_init (); /* G_TYPE_PARAM */ _g_param_type_init (); /* G_TYPE_OBJECT */ _g_object_type_init (); /* G_TYPE_PARAM_* pspec types */ _g_param_spec_types_init (); /* Value Transformations */ _g_value_transforms_init (); /* Signal system */ _g_signal_init (); } #if defined (G_OS_WIN32) BOOL WINAPI DllMain (HINSTANCE hinstDLL, DWORD fdwReason, LPVOID lpvReserved); BOOL WINAPI DllMain (HINSTANCE hinstDLL, DWORD fdwReason, LPVOID lpvReserved) { switch (fdwReason) { case DLL_PROCESS_ATTACH: gobject_init (); break; default: /* do nothing */ ; } return TRUE; } #elif defined (G_HAS_CONSTRUCTORS) #ifdef G_DEFINE_CONSTRUCTOR_NEEDS_PRAGMA #pragma G_DEFINE_CONSTRUCTOR_PRAGMA_ARGS(gobject_init_ctor) #endif G_DEFINE_CONSTRUCTOR(gobject_init_ctor) static void gobject_init_ctor (void) { gobject_init (); } #else # error Your platform/compiler is missing constructor support #endif /** * g_type_class_add_private: * @g_class: (type GObject.TypeClass): class structure for an instantiatable * type * @private_size: size of private structure * * Registers a private structure for an instantiatable type. * * When an object is allocated, the private structures for * the type and all of its parent types are allocated * sequentially in the same memory block as the public * structures, and are zero-filled. * * Note that the accumulated size of the private structures of * a type and all its parent types cannot exceed 64 KiB. * * This function should be called in the type's class_init() function. * The private structure can be retrieved using the * G_TYPE_INSTANCE_GET_PRIVATE() macro. * * The following example shows attaching a private structure * MyObjectPrivate to an object MyObject defined in the standard * GObject fashion in the type's class_init() function. * * Note the use of a structure member "priv" to avoid the overhead * of repeatedly calling MY_OBJECT_GET_PRIVATE(). * * |[ * typedef struct _MyObject MyObject; * typedef struct _MyObjectPrivate MyObjectPrivate; * * struct _MyObject { * GObject parent; * * MyObjectPrivate *priv; * }; * * struct _MyObjectPrivate { * int some_field; * }; * * static void * my_object_class_init (MyObjectClass *klass) * { * g_type_class_add_private (klass, sizeof (MyObjectPrivate)); * } * * static void * my_object_init (MyObject *my_object) * { * my_object->priv = G_TYPE_INSTANCE_GET_PRIVATE (my_object, * MY_TYPE_OBJECT, * MyObjectPrivate); * // my_object->priv->some_field will be automatically initialised to 0 * } * * static int * my_object_get_some_field (MyObject *my_object) * { * MyObjectPrivate *priv; * * g_return_val_if_fail (MY_IS_OBJECT (my_object), 0); * * priv = my_object->priv; * * return priv->some_field; * } * ]| * * Since: 2.4 * Deprecated: 2.58: Use the G_ADD_PRIVATE() macro with the `G_DEFINE_*` * family of macros to add instance private data to a type */ void g_type_class_add_private (gpointer g_class, gsize private_size) { GType instance_type = ((GTypeClass *)g_class)->g_type; TypeNode *node = lookup_type_node_I (instance_type); g_return_if_fail (private_size > 0); g_return_if_fail (private_size <= 0xffff); if (!node || !node->is_instantiatable || !node->data || node->data->class.class != g_class) { g_warning ("cannot add private field to invalid (non-instantiatable) type '%s'", type_descriptive_name_I (instance_type)); return; } if (NODE_PARENT_TYPE (node)) { TypeNode *pnode = lookup_type_node_I (NODE_PARENT_TYPE (node)); if (node->data->instance.private_size != pnode->data->instance.private_size) { g_warning ("g_type_class_add_private() called multiple times for the same type"); return; } } G_WRITE_LOCK (&type_rw_lock); private_size = ALIGN_STRUCT (node->data->instance.private_size + private_size); g_assert (private_size <= 0xffff); node->data->instance.private_size = private_size; G_WRITE_UNLOCK (&type_rw_lock); } /* semi-private, called only by the G_ADD_PRIVATE macro */ gint g_type_add_instance_private (GType class_gtype, gsize private_size) { TypeNode *node = lookup_type_node_I (class_gtype); g_return_val_if_fail (private_size > 0, 0); g_return_val_if_fail (private_size <= 0xffff, 0); if (!node || !node->is_classed || !node->is_instantiatable || !node->data) { g_warning ("cannot add private field to invalid (non-instantiatable) type '%s'", type_descriptive_name_I (class_gtype)); return 0; } if (node->plugin != NULL) { g_warning ("cannot use g_type_add_instance_private() with dynamic type '%s'", type_descriptive_name_I (class_gtype)); return 0; } /* in the future, we want to register the private data size of a type * directly from the get_type() implementation so that we can take full * advantage of the type definition macros that we already have. * * unfortunately, this does not behave correctly if a class in the middle * of the type hierarchy uses the "old style" of private data registration * from the class_init() implementation, as the private data offset is not * going to be known until the full class hierarchy is initialized. * * in order to transition our code to the Glorious New Future™, we proceed * with a two-step implementation: first, we provide this new function to * register the private data size in the get_type() implementation and we * hide it behind a macro. the function will return the private size, instead * of the offset, which will be stored inside a static variable defined by * the G_DEFINE_TYPE_EXTENDED macro. the G_DEFINE_TYPE_EXTENDED macro will * check the variable and call g_type_class_add_instance_private(), which * will use the data size and actually register the private data, then * return the computed offset of the private data, which will be stored * inside the static variable, so we can use it to retrieve the pointer * to the private data structure. * * once all our code has been migrated to the new idiomatic form of private * data registration, we will change the g_type_add_instance_private() * function to actually perform the registration and return the offset * of the private data; g_type_class_add_instance_private() already checks * if the passed argument is negative (meaning that it's an offset in the * GTypeInstance allocation) and becomes a no-op if that's the case. this * should make the migration fully transparent even if we're effectively * copying this macro into everybody's code. */ return private_size; } /* semi-private function, should only be used by G_DEFINE_TYPE_EXTENDED */ void g_type_class_adjust_private_offset (gpointer g_class, gint *private_size_or_offset) { GType class_gtype = ((GTypeClass *) g_class)->g_type; TypeNode *node = lookup_type_node_I (class_gtype); gssize private_size; g_return_if_fail (private_size_or_offset != NULL); /* if we have been passed the offset instead of the private data size, * then we consider this as a no-op, and just return the value. see the * comment in g_type_add_instance_private() for the full explanation. */ if (*private_size_or_offset > 0) g_return_if_fail (*private_size_or_offset <= 0xffff); else return; if (!node || !node->is_classed || !node->is_instantiatable || !node->data) { g_warning ("cannot add private field to invalid (non-instantiatable) type '%s'", type_descriptive_name_I (class_gtype)); *private_size_or_offset = 0; return; } if (NODE_PARENT_TYPE (node)) { TypeNode *pnode = lookup_type_node_I (NODE_PARENT_TYPE (node)); if (node->data->instance.private_size != pnode->data->instance.private_size) { g_warning ("g_type_add_instance_private() called multiple times for the same type"); *private_size_or_offset = 0; return; } } G_WRITE_LOCK (&type_rw_lock); private_size = ALIGN_STRUCT (node->data->instance.private_size + *private_size_or_offset); g_assert (private_size <= 0xffff); node->data->instance.private_size = private_size; *private_size_or_offset = -(gint) node->data->instance.private_size; G_WRITE_UNLOCK (&type_rw_lock); } gpointer g_type_instance_get_private (GTypeInstance *instance, GType private_type) { TypeNode *node; g_return_val_if_fail (instance != NULL && instance->g_class != NULL, NULL); node = lookup_type_node_I (private_type); if (G_UNLIKELY (!node || !node->is_instantiatable)) { g_warning ("instance of invalid non-instantiatable type '%s'", type_descriptive_name_I (instance->g_class->g_type)); return NULL; } return ((gchar *) instance) - node->data->instance.private_size; } /** * g_type_class_get_instance_private_offset: (skip) * @g_class: (type GObject.TypeClass): a #GTypeClass * * Gets the offset of the private data for instances of @g_class. * * This is how many bytes you should add to the instance pointer of a * class in order to get the private data for the type represented by * @g_class. * * You can only call this function after you have registered a private * data area for @g_class using g_type_class_add_private(). * * Returns: the offset, in bytes * * Since: 2.38 **/ gint g_type_class_get_instance_private_offset (gpointer g_class) { GType instance_type; guint16 parent_size; TypeNode *node; g_assert (g_class != NULL); instance_type = ((GTypeClass *) g_class)->g_type; node = lookup_type_node_I (instance_type); g_assert (node != NULL); g_assert (node->is_instantiatable); if (NODE_PARENT_TYPE (node)) { TypeNode *pnode = lookup_type_node_I (NODE_PARENT_TYPE (node)); parent_size = pnode->data->instance.private_size; } else parent_size = 0; if (node->data->instance.private_size == parent_size) g_error ("g_type_class_get_instance_private_offset() called on class %s but it has no private data", g_type_name (instance_type)); return -(gint) node->data->instance.private_size; } /** * g_type_add_class_private: * @class_type: GType of an classed type * @private_size: size of private structure * * Registers a private class structure for a classed type; * when the class is allocated, the private structures for * the class and all of its parent types are allocated * sequentially in the same memory block as the public * structures, and are zero-filled. * * This function should be called in the * type's get_type() function after the type is registered. * The private structure can be retrieved using the * G_TYPE_CLASS_GET_PRIVATE() macro. * * Since: 2.24 */ void g_type_add_class_private (GType class_type, gsize private_size) { TypeNode *node = lookup_type_node_I (class_type); gsize offset; g_return_if_fail (private_size > 0); if (!node || !node->is_classed || !node->data) { g_warning ("cannot add class private field to invalid type '%s'", type_descriptive_name_I (class_type)); return; } if (NODE_PARENT_TYPE (node)) { TypeNode *pnode = lookup_type_node_I (NODE_PARENT_TYPE (node)); if (node->data->class.class_private_size != pnode->data->class.class_private_size) { g_warning ("g_type_add_class_private() called multiple times for the same type"); return; } } G_WRITE_LOCK (&type_rw_lock); offset = ALIGN_STRUCT (node->data->class.class_private_size); node->data->class.class_private_size = offset + private_size; G_WRITE_UNLOCK (&type_rw_lock); } gpointer g_type_class_get_private (GTypeClass *klass, GType private_type) { TypeNode *class_node; TypeNode *private_node; TypeNode *parent_node; gsize offset; g_return_val_if_fail (klass != NULL, NULL); class_node = lookup_type_node_I (klass->g_type); if (G_UNLIKELY (!class_node || !class_node->is_classed)) { g_warning ("class of invalid type '%s'", type_descriptive_name_I (klass->g_type)); return NULL; } private_node = lookup_type_node_I (private_type); if (G_UNLIKELY (!private_node || !NODE_IS_ANCESTOR (private_node, class_node))) { g_warning ("attempt to retrieve private data for invalid type '%s'", type_descriptive_name_I (private_type)); return NULL; } offset = ALIGN_STRUCT (class_node->data->class.class_size); if (NODE_PARENT_TYPE (private_node)) { parent_node = lookup_type_node_I (NODE_PARENT_TYPE (private_node)); g_assert (parent_node->data && NODE_REFCOUNT (parent_node) > 0); if (G_UNLIKELY (private_node->data->class.class_private_size == parent_node->data->class.class_private_size)) { g_warning ("g_type_instance_get_class_private() requires a prior call to g_type_add_class_private()"); return NULL; } offset += ALIGN_STRUCT (parent_node->data->class.class_private_size); } return G_STRUCT_MEMBER_P (klass, offset); } /** * g_type_ensure: * @type: a #GType * * Ensures that the indicated @type has been registered with the * type system, and its _class_init() method has been run. * * In theory, simply calling the type's _get_type() method (or using * the corresponding macro) is supposed take care of this. However, * _get_type() methods are often marked %G_GNUC_CONST for performance * reasons, even though this is technically incorrect (since * %G_GNUC_CONST requires that the function not have side effects, * which _get_type() methods do on the first call). As a result, if * you write a bare call to a _get_type() macro, it may get optimized * out by the compiler. Using g_type_ensure() guarantees that the * type's _get_type() method is called. * * Since: 2.34 */ void g_type_ensure (GType type) { /* In theory, @type has already been resolved and so there's nothing * to do here. But this protects us in the case where the function * gets inlined (as it might in gobject_init_ctor() above). */ if (G_UNLIKELY (type == (GType)-1)) g_error ("can't happen"); }