/* GLIB - Library of useful routines for C programming * Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ /* * Modified by the GLib Team and others 1997-2000. See the AUTHORS * file for a list of people on the GLib Team. See the ChangeLog * files for a list of changes. These files are distributed with * GLib at ftp://ftp.gtk.org/pub/gtk/. */ /* * MT safe */ #include "config.h" #include #include #include #include "glib.h" /* notes on macros: * if ENABLE_GC_FRIENDLY is defined, freed memory should be 0-wiped. */ #define MEM_PROFILE_TABLE_SIZE 4096 #define MEM_AREA_SIZE 4L static guint mem_chunk_recursion = 0; # define MEM_CHUNK_ROUTINE_COUNT() (mem_chunk_recursion) # define ENTER_MEM_CHUNK_ROUTINE() (mem_chunk_recursion = MEM_CHUNK_ROUTINE_COUNT () + 1) # define LEAVE_MEM_CHUNK_ROUTINE() (mem_chunk_recursion = MEM_CHUNK_ROUTINE_COUNT () - 1) /* --- old memchunk prototypes --- */ GMemChunk* old_mem_chunk_new (const gchar *name, gint atom_size, gulong area_size, gint type); void old_mem_chunk_destroy (GMemChunk *mem_chunk); gpointer old_mem_chunk_alloc (GMemChunk *mem_chunk); gpointer old_mem_chunk_alloc0 (GMemChunk *mem_chunk); void old_mem_chunk_free (GMemChunk *mem_chunk, gpointer mem); void old_mem_chunk_clean (GMemChunk *mem_chunk); void old_mem_chunk_reset (GMemChunk *mem_chunk); void old_mem_chunk_print (GMemChunk *mem_chunk); void old_mem_chunk_info (void); /* --- MemChunks --- */ #ifndef G_ALLOC_AND_FREE typedef struct _GAllocator GAllocator; typedef struct _GMemChunk GMemChunk; #define G_ALLOC_ONLY 1 #define G_ALLOC_AND_FREE 2 #endif typedef struct _GFreeAtom GFreeAtom; typedef struct _GMemArea GMemArea; struct _GFreeAtom { GFreeAtom *next; }; struct _GMemArea { GMemArea *next; /* the next mem area */ GMemArea *prev; /* the previous mem area */ gulong index; /* the current index into the "mem" array */ gulong free; /* the number of free bytes in this mem area */ gulong allocated; /* the number of atoms allocated from this area */ gulong mark; /* is this mem area marked for deletion */ gchar mem[MEM_AREA_SIZE]; /* the mem array from which atoms get allocated * the actual size of this array is determined by * the mem chunk "area_size". ANSI says that it * must be declared to be the maximum size it * can possibly be (even though the actual size * may be less). */ }; struct _GMemChunk { const gchar *name; /* name of this MemChunk...used for debugging output */ gint type; /* the type of MemChunk: ALLOC_ONLY or ALLOC_AND_FREE */ gint num_mem_areas; /* the number of memory areas */ gint num_marked_areas; /* the number of areas marked for deletion */ guint atom_size; /* the size of an atom */ gulong area_size; /* the size of a memory area */ GMemArea *mem_area; /* the current memory area */ GMemArea *mem_areas; /* a list of all the mem areas owned by this chunk */ GMemArea *free_mem_area; /* the free area...which is about to be destroyed */ GFreeAtom *free_atoms; /* the free atoms list */ GTree *mem_tree; /* tree of mem areas sorted by memory address */ GMemChunk *next; /* pointer to the next chunk */ GMemChunk *prev; /* pointer to the previous chunk */ }; static gulong old_mem_chunk_compute_size (gulong size, gulong min_size) G_GNUC_CONST; static gint old_mem_chunk_area_compare (GMemArea *a, GMemArea *b); static gint old_mem_chunk_area_search (GMemArea *a, gchar *addr); /* here we can't use StaticMutexes, as they depend upon a working * g_malloc, the same holds true for StaticPrivate */ static GMutex mem_chunks_lock; static GMemChunk *mem_chunks = NULL; GMemChunk* old_mem_chunk_new (const gchar *name, gint atom_size, gulong area_size, gint type) { GMemChunk *mem_chunk; gulong rarea_size; g_return_val_if_fail (atom_size > 0, NULL); g_return_val_if_fail (area_size >= atom_size, NULL); ENTER_MEM_CHUNK_ROUTINE (); area_size = (area_size + atom_size - 1) / atom_size; area_size *= atom_size; mem_chunk = g_new (GMemChunk, 1); mem_chunk->name = name; mem_chunk->type = type; mem_chunk->num_mem_areas = 0; mem_chunk->num_marked_areas = 0; mem_chunk->mem_area = NULL; mem_chunk->free_mem_area = NULL; mem_chunk->free_atoms = NULL; mem_chunk->mem_tree = NULL; mem_chunk->mem_areas = NULL; mem_chunk->atom_size = atom_size; if (mem_chunk->type == G_ALLOC_AND_FREE) mem_chunk->mem_tree = g_tree_new ((GCompareFunc) old_mem_chunk_area_compare); if (mem_chunk->atom_size % G_MEM_ALIGN) mem_chunk->atom_size += G_MEM_ALIGN - (mem_chunk->atom_size % G_MEM_ALIGN); rarea_size = area_size + sizeof (GMemArea) - MEM_AREA_SIZE; rarea_size = old_mem_chunk_compute_size (rarea_size, atom_size + sizeof (GMemArea) - MEM_AREA_SIZE); mem_chunk->area_size = rarea_size - (sizeof (GMemArea) - MEM_AREA_SIZE); g_mutex_lock (&mem_chunks_lock); mem_chunk->next = mem_chunks; mem_chunk->prev = NULL; if (mem_chunks) mem_chunks->prev = mem_chunk; mem_chunks = mem_chunk; g_mutex_unlock (&mem_chunks_lock); LEAVE_MEM_CHUNK_ROUTINE (); return mem_chunk; } void old_mem_chunk_destroy (GMemChunk *mem_chunk) { GMemArea *mem_areas; GMemArea *temp_area; g_return_if_fail (mem_chunk != NULL); ENTER_MEM_CHUNK_ROUTINE (); mem_areas = mem_chunk->mem_areas; while (mem_areas) { temp_area = mem_areas; mem_areas = mem_areas->next; g_free (temp_area); } g_mutex_lock (&mem_chunks_lock); if (mem_chunk->next) mem_chunk->next->prev = mem_chunk->prev; if (mem_chunk->prev) mem_chunk->prev->next = mem_chunk->next; if (mem_chunk == mem_chunks) mem_chunks = mem_chunks->next; g_mutex_unlock (&mem_chunks_lock); if (mem_chunk->type == G_ALLOC_AND_FREE) g_tree_destroy (mem_chunk->mem_tree); g_free (mem_chunk); LEAVE_MEM_CHUNK_ROUTINE (); } gpointer old_mem_chunk_alloc (GMemChunk *mem_chunk) { GMemArea *temp_area; gpointer mem; ENTER_MEM_CHUNK_ROUTINE (); g_return_val_if_fail (mem_chunk != NULL, NULL); while (mem_chunk->free_atoms) { /* Get the first piece of memory on the "free_atoms" list. * We can go ahead and destroy the list node we used to keep * track of it with and to update the "free_atoms" list to * point to its next element. */ mem = mem_chunk->free_atoms; mem_chunk->free_atoms = mem_chunk->free_atoms->next; /* Determine which area this piece of memory is allocated from */ temp_area = g_tree_search (mem_chunk->mem_tree, (GCompareFunc) old_mem_chunk_area_search, mem); /* If the area has been marked, then it is being destroyed. * (ie marked to be destroyed). * We check to see if all of the segments on the free list that * reference this area have been removed. This occurs when * the amount of free memory is less than the allocatable size. * If the chunk should be freed, then we place it in the "free_mem_area". * This is so we make sure not to free the mem area here and then * allocate it again a few lines down. * If we don't allocate a chunk a few lines down then the "free_mem_area" * will be freed. * If there is already a "free_mem_area" then we'll just free this mem area. */ if (temp_area->mark) { /* Update the "free" memory available in that area */ temp_area->free += mem_chunk->atom_size; if (temp_area->free == mem_chunk->area_size) { if (temp_area == mem_chunk->mem_area) mem_chunk->mem_area = NULL; if (mem_chunk->free_mem_area) { mem_chunk->num_mem_areas -= 1; if (temp_area->next) temp_area->next->prev = temp_area->prev; if (temp_area->prev) temp_area->prev->next = temp_area->next; if (temp_area == mem_chunk->mem_areas) mem_chunk->mem_areas = mem_chunk->mem_areas->next; if (mem_chunk->type == G_ALLOC_AND_FREE) g_tree_remove (mem_chunk->mem_tree, temp_area); g_free (temp_area); } else mem_chunk->free_mem_area = temp_area; mem_chunk->num_marked_areas -= 1; } } else { /* Update the number of allocated atoms count. */ temp_area->allocated += 1; /* The area wasn't marked...return the memory */ goto outa_here; } } /* If there isn't a current mem area or the current mem area is out of space * then allocate a new mem area. We'll first check and see if we can use * the "free_mem_area". Otherwise we'll just malloc the mem area. */ if ((!mem_chunk->mem_area) || ((mem_chunk->mem_area->index + mem_chunk->atom_size) > mem_chunk->area_size)) { if (mem_chunk->free_mem_area) { mem_chunk->mem_area = mem_chunk->free_mem_area; mem_chunk->free_mem_area = NULL; } else { #ifdef ENABLE_GC_FRIENDLY mem_chunk->mem_area = (GMemArea*) g_malloc0 (sizeof (GMemArea) - MEM_AREA_SIZE + mem_chunk->area_size); #else /* !ENABLE_GC_FRIENDLY */ mem_chunk->mem_area = (GMemArea*) g_malloc (sizeof (GMemArea) - MEM_AREA_SIZE + mem_chunk->area_size); #endif /* ENABLE_GC_FRIENDLY */ mem_chunk->num_mem_areas += 1; mem_chunk->mem_area->next = mem_chunk->mem_areas; mem_chunk->mem_area->prev = NULL; if (mem_chunk->mem_areas) mem_chunk->mem_areas->prev = mem_chunk->mem_area; mem_chunk->mem_areas = mem_chunk->mem_area; if (mem_chunk->type == G_ALLOC_AND_FREE) g_tree_insert (mem_chunk->mem_tree, mem_chunk->mem_area, mem_chunk->mem_area); } mem_chunk->mem_area->index = 0; mem_chunk->mem_area->free = mem_chunk->area_size; mem_chunk->mem_area->allocated = 0; mem_chunk->mem_area->mark = 0; } /* Get the memory and modify the state variables appropriately. */ mem = (gpointer) &mem_chunk->mem_area->mem[mem_chunk->mem_area->index]; mem_chunk->mem_area->index += mem_chunk->atom_size; mem_chunk->mem_area->free -= mem_chunk->atom_size; mem_chunk->mem_area->allocated += 1; outa_here: LEAVE_MEM_CHUNK_ROUTINE (); return mem; } gpointer old_mem_chunk_alloc0 (GMemChunk *mem_chunk) { gpointer mem; mem = old_mem_chunk_alloc (mem_chunk); if (mem) { memset (mem, 0, mem_chunk->atom_size); } return mem; } void old_mem_chunk_free (GMemChunk *mem_chunk, gpointer mem) { GMemArea *temp_area; GFreeAtom *free_atom; g_return_if_fail (mem_chunk != NULL); g_return_if_fail (mem != NULL); ENTER_MEM_CHUNK_ROUTINE (); #ifdef ENABLE_GC_FRIENDLY memset (mem, 0, mem_chunk->atom_size); #endif /* ENABLE_GC_FRIENDLY */ /* Don't do anything if this is an ALLOC_ONLY chunk */ if (mem_chunk->type == G_ALLOC_AND_FREE) { /* Place the memory on the "free_atoms" list */ free_atom = (GFreeAtom*) mem; free_atom->next = mem_chunk->free_atoms; mem_chunk->free_atoms = free_atom; temp_area = g_tree_search (mem_chunk->mem_tree, (GCompareFunc) old_mem_chunk_area_search, mem); temp_area->allocated -= 1; if (temp_area->allocated == 0) { temp_area->mark = 1; mem_chunk->num_marked_areas += 1; } } LEAVE_MEM_CHUNK_ROUTINE (); } /* This doesn't free the free_area if there is one */ void old_mem_chunk_clean (GMemChunk *mem_chunk) { GMemArea *mem_area; GFreeAtom *prev_free_atom; GFreeAtom *temp_free_atom; gpointer mem; g_return_if_fail (mem_chunk != NULL); ENTER_MEM_CHUNK_ROUTINE (); if (mem_chunk->type == G_ALLOC_AND_FREE) { prev_free_atom = NULL; temp_free_atom = mem_chunk->free_atoms; while (temp_free_atom) { mem = (gpointer) temp_free_atom; mem_area = g_tree_search (mem_chunk->mem_tree, (GCompareFunc) old_mem_chunk_area_search, mem); /* If this mem area is marked for destruction then delete the * area and list node and decrement the free mem. */ if (mem_area->mark) { if (prev_free_atom) prev_free_atom->next = temp_free_atom->next; else mem_chunk->free_atoms = temp_free_atom->next; temp_free_atom = temp_free_atom->next; mem_area->free += mem_chunk->atom_size; if (mem_area->free == mem_chunk->area_size) { mem_chunk->num_mem_areas -= 1; mem_chunk->num_marked_areas -= 1; if (mem_area->next) mem_area->next->prev = mem_area->prev; if (mem_area->prev) mem_area->prev->next = mem_area->next; if (mem_area == mem_chunk->mem_areas) mem_chunk->mem_areas = mem_chunk->mem_areas->next; if (mem_area == mem_chunk->mem_area) mem_chunk->mem_area = NULL; if (mem_chunk->type == G_ALLOC_AND_FREE) g_tree_remove (mem_chunk->mem_tree, mem_area); g_free (mem_area); } } else { prev_free_atom = temp_free_atom; temp_free_atom = temp_free_atom->next; } } } LEAVE_MEM_CHUNK_ROUTINE (); } void old_mem_chunk_reset (GMemChunk *mem_chunk) { GMemArea *mem_areas; GMemArea *temp_area; g_return_if_fail (mem_chunk != NULL); ENTER_MEM_CHUNK_ROUTINE (); mem_areas = mem_chunk->mem_areas; mem_chunk->num_mem_areas = 0; mem_chunk->mem_areas = NULL; mem_chunk->mem_area = NULL; while (mem_areas) { temp_area = mem_areas; mem_areas = mem_areas->next; g_free (temp_area); } mem_chunk->free_atoms = NULL; if (mem_chunk->mem_tree) { g_tree_destroy (mem_chunk->mem_tree); mem_chunk->mem_tree = g_tree_new ((GCompareFunc) old_mem_chunk_area_compare); } LEAVE_MEM_CHUNK_ROUTINE (); } void old_mem_chunk_print (GMemChunk *mem_chunk) { GMemArea *mem_areas; gulong mem; g_return_if_fail (mem_chunk != NULL); mem_areas = mem_chunk->mem_areas; mem = 0; while (mem_areas) { mem += mem_chunk->area_size - mem_areas->free; mem_areas = mem_areas->next; } g_log (G_LOG_DOMAIN, G_LOG_LEVEL_INFO, "%s: %ld bytes using %d mem areas", mem_chunk->name, mem, mem_chunk->num_mem_areas); } void old_mem_chunk_info (void) { GMemChunk *mem_chunk; gint count; count = 0; g_mutex_lock (&mem_chunks_lock); mem_chunk = mem_chunks; while (mem_chunk) { count += 1; mem_chunk = mem_chunk->next; } g_mutex_unlock (&mem_chunks_lock); g_log (G_LOG_DOMAIN, G_LOG_LEVEL_INFO, "%d mem chunks", count); g_mutex_lock (&mem_chunks_lock); mem_chunk = mem_chunks; g_mutex_unlock (&mem_chunks_lock); while (mem_chunk) { old_mem_chunk_print ((GMemChunk*) mem_chunk); mem_chunk = mem_chunk->next; } } static gulong old_mem_chunk_compute_size (gulong size, gulong min_size) { gulong power_of_2; gulong lower, upper; power_of_2 = 16; while (power_of_2 < size) power_of_2 <<= 1; lower = power_of_2 >> 1; upper = power_of_2; if (size - lower < upper - size && lower >= min_size) return lower; else return upper; } static gint old_mem_chunk_area_compare (GMemArea *a, GMemArea *b) { if (a->mem > b->mem) return 1; else if (a->mem < b->mem) return -1; return 0; } static gint old_mem_chunk_area_search (GMemArea *a, gchar *addr) { if (a->mem <= addr) { if (addr < &a->mem[a->index]) return 0; return 1; } return -1; }