/* GObject - GLib Type, Object, Parameter and Signal Library
* Copyright (C) 1998-1999, 2000-2001 Tim Janik and Red Hat, Inc.
*
* SPDX-License-Identifier: LGPL-2.1-or-later
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General
* Public License along with this library; if not, see .
*/
/*
* MT safe
*/
#include "config.h"
#include "../glib/gvalgrind.h"
#include
#include "gtype.h"
#include "gtype-private.h"
#include "gtypeplugin.h"
#include "gvaluecollector.h"
#include "gatomicarray.h"
#include "gobject_trace.h"
#include "glib-private.h"
#include "gconstructor.h"
#ifdef G_OS_WIN32
#include
#endif
#ifdef G_ENABLE_DEBUG
#define IF_DEBUG(debug_type) if (_g_type_debug_flags & G_TYPE_DEBUG_ ## debug_type)
#endif
/* NOTE: some functions (some internal variants and exported ones)
* invalidate data portions of the TypeNodes. if external functions/callbacks
* are called, pointers to memory maintained by TypeNodes have to be looked up
* again. this affects most of the struct TypeNode fields, e.g. ->children or
* CLASSED_NODE_IFACES_ENTRIES() respectively IFACE_NODE_PREREQUISITES() (but
* not ->supers[]), as all those memory portions can get realloc()ed during
* callback invocation.
*
* LOCKING:
* lock handling issues when calling static functions are indicated by
* uppercase letter postfixes, all static functions have to have
* one of the below postfixes:
* - _I: [Indifferent about locking]
* function doesn't care about locks at all
* - _U: [Unlocked invocation]
* no read or write lock has to be held across function invocation
* (locks may be acquired and released during invocation though)
* - _L: [Locked invocation]
* a write lock or more than 0 read locks have to be held across
* function invocation
* - _W: [Write-locked invocation]
* a write lock has to be held across function invocation
* - _Wm: [Write-locked invocation, mutatable]
* like _W, but the write lock might be released and reacquired
* during invocation, watch your pointers
* - _WmREC: [Write-locked invocation, mutatable, recursive]
* like _Wm, but also acquires recursive mutex class_init_rec_mutex
*/
#ifdef LOCK_DEBUG
#define G_READ_LOCK(rw_lock) do { g_printerr (G_STRLOC ": readL++\n"); g_rw_lock_reader_lock (rw_lock); } while (0)
#define G_READ_UNLOCK(rw_lock) do { g_printerr (G_STRLOC ": readL--\n"); g_rw_lock_reader_unlock (rw_lock); } while (0)
#define G_WRITE_LOCK(rw_lock) do { g_printerr (G_STRLOC ": writeL++\n"); g_rw_lock_writer_lock (rw_lock); } while (0)
#define G_WRITE_UNLOCK(rw_lock) do { g_printerr (G_STRLOC ": writeL--\n"); g_rw_lock_writer_unlock (rw_lock); } while (0)
#else
#define G_READ_LOCK(rw_lock) g_rw_lock_reader_lock (rw_lock)
#define G_READ_UNLOCK(rw_lock) g_rw_lock_reader_unlock (rw_lock)
#define G_WRITE_LOCK(rw_lock) g_rw_lock_writer_lock (rw_lock)
#define G_WRITE_UNLOCK(rw_lock) g_rw_lock_writer_unlock (rw_lock)
#endif
#define INVALID_RECURSION(func, arg, type_name) G_STMT_START{ \
static const gchar _action[] = " invalidly modified type "; \
gpointer _arg = (gpointer) (arg); const gchar *_tname = (type_name), *_fname = (func); \
if (_arg) \
g_error ("%s(%p)%s'%s'", _fname, _arg, _action, _tname); \
else \
g_error ("%s()%s'%s'", _fname, _action, _tname); \
}G_STMT_END
#define g_assert_type_system_initialized() \
g_assert (static_quark_type_flags)
/* Make sure G_TYPE_IS_*() macros still end up inlined */
#define g_type_test_flags(t,f) _g_type_test_flags(t,f)
#define TYPE_FUNDAMENTAL_FLAG_MASK (G_TYPE_FLAG_CLASSED | \
G_TYPE_FLAG_INSTANTIATABLE | \
G_TYPE_FLAG_DERIVABLE | \
G_TYPE_FLAG_DEEP_DERIVABLE)
#define TYPE_FLAG_MASK (G_TYPE_FLAG_ABSTRACT | G_TYPE_FLAG_VALUE_ABSTRACT | G_TYPE_FLAG_FINAL | G_TYPE_FLAG_DEPRECATED)
/* List the flags that are directly accessible via the TypeNode struct flags */
#define NODE_FLAG_MASK ( \
G_TYPE_FLAG_ABSTRACT | \
G_TYPE_FLAG_CLASSED | \
G_TYPE_FLAG_DEPRECATED | \
G_TYPE_FLAG_INSTANTIATABLE | \
G_TYPE_FLAG_FINAL)
#define SIZEOF_FUNDAMENTAL_INFO ((gssize) MAX (MAX (sizeof (GTypeFundamentalInfo), \
sizeof (gpointer)), \
sizeof (glong)))
/* The 2*sizeof(size_t) alignment here is borrowed from
* GNU libc, so it should be good most everywhere.
* It is more conservative than is needed on some 64-bit
* platforms, but ia64 does require a 16-byte alignment.
* The SIMD extensions for x86 and ppc32 would want a
* larger alignment than this, but we don't need to
* do better than malloc.
*/
#define STRUCT_ALIGNMENT (2 * sizeof (gsize))
#define ALIGN_STRUCT(offset) \
((offset + (STRUCT_ALIGNMENT - 1)) & -STRUCT_ALIGNMENT)
/* --- typedefs --- */
typedef struct _TypeNode TypeNode;
typedef struct _CommonData CommonData;
typedef struct _BoxedData BoxedData;
typedef struct _IFaceData IFaceData;
typedef struct _ClassData ClassData;
typedef struct _InstanceData InstanceData;
typedef union _TypeData TypeData;
typedef struct _IFaceEntries IFaceEntries;
typedef struct _IFaceEntry IFaceEntry;
typedef struct _IFaceHolder IFaceHolder;
/* --- prototypes --- */
static inline gboolean _g_type_test_flags (GType type,
guint flags);
static inline GTypeFundamentalInfo* type_node_fundamental_info_I (TypeNode *node);
static void type_add_flags_W (TypeNode *node,
GTypeFlags flags);
static void type_data_make_W (TypeNode *node,
const GTypeInfo *info,
const GTypeValueTable *value_table);
static inline void type_data_ref_Wm (TypeNode *node);
static inline void type_data_unref_U (TypeNode *node,
gboolean uncached);
static void type_data_last_unref_Wm (TypeNode * node,
gboolean uncached);
static inline gpointer type_get_qdata_L (TypeNode *node,
GQuark quark);
static inline void type_set_qdata_W (TypeNode *node,
GQuark quark,
gpointer data);
static IFaceHolder* type_iface_peek_holder_L (TypeNode *iface,
GType instance_type);
static gboolean type_iface_vtable_base_init_Wm (TypeNode *iface,
TypeNode *node);
static void type_iface_vtable_iface_init_Wm (TypeNode *iface,
TypeNode *node);
static gboolean type_node_is_a_L (TypeNode *node,
TypeNode *iface_node);
/* --- enumeration --- */
/* The InitState enumeration is used to track the progress of initializing
* both classes and interface vtables. Keeping the state of initialization
* is necessary to handle new interfaces being added while we are initializing
* the class or other interfaces.
*/
typedef enum
{
UNINITIALIZED,
BASE_CLASS_INIT,
BASE_IFACE_INIT,
CLASS_INIT,
IFACE_INIT,
INITIALIZED
} InitState;
/* --- structures --- */
struct _TypeNode
{
guint ref_count; /* (atomic) */
#ifdef G_ENABLE_DEBUG
guint instance_count; /* (atomic) */
#endif
GTypePlugin *plugin;
guint n_children; /* writable with lock */
guint n_supers : 8;
guint n_prerequisites : 9;
guint is_abstract : 1;
guint is_classed : 1;
guint is_deprecated : 1;
guint is_instantiatable : 1;
guint is_final : 1;
guint mutatable_check_cache : 1; /* combines some common path checks */
GType *children; /* writable with lock */
TypeData *data;
GQuark qname;
GData *global_gdata;
union {
GAtomicArray iface_entries; /* for !iface types */
GAtomicArray offsets;
} _prot;
GType *prerequisites;
GType supers[1]; /* flexible array */
};
#define SIZEOF_BASE_TYPE_NODE() (G_STRUCT_OFFSET (TypeNode, supers))
#define MAX_N_SUPERS (255)
#define MAX_N_CHILDREN (G_MAXUINT)
#define MAX_N_INTERFACES (255) /* Limited by offsets being 8 bits */
#define MAX_N_PREREQUISITES (511)
#define NODE_TYPE(node) (node->supers[0])
#define NODE_PARENT_TYPE(node) (node->supers[1])
#define NODE_FUNDAMENTAL_TYPE(node) (node->supers[node->n_supers])
#define NODE_NAME(node) (g_quark_to_string (node->qname))
#define NODE_REFCOUNT(node) ((guint) g_atomic_int_get ((int *) &(node)->ref_count))
#define NODE_IS_BOXED(node) (NODE_FUNDAMENTAL_TYPE (node) == G_TYPE_BOXED)
#define NODE_IS_IFACE(node) (NODE_FUNDAMENTAL_TYPE (node) == G_TYPE_INTERFACE)
#define CLASSED_NODE_IFACES_ENTRIES(node) (&(node)->_prot.iface_entries)
#define CLASSED_NODE_IFACES_ENTRIES_LOCKED(node)(G_ATOMIC_ARRAY_GET_LOCKED(CLASSED_NODE_IFACES_ENTRIES((node)), IFaceEntries))
#define IFACE_NODE_N_PREREQUISITES(node) ((node)->n_prerequisites)
#define IFACE_NODE_PREREQUISITES(node) ((node)->prerequisites)
#define iface_node_get_holders_L(node) ((IFaceHolder*) type_get_qdata_L ((node), static_quark_iface_holder))
#define iface_node_set_holders_W(node, holders) (type_set_qdata_W ((node), static_quark_iface_holder, (holders)))
#define iface_node_get_dependants_array_L(n) ((GType*) type_get_qdata_L ((n), static_quark_dependants_array))
#define iface_node_set_dependants_array_W(n,d) (type_set_qdata_W ((n), static_quark_dependants_array, (d)))
#define TYPE_ID_MASK ((GType) ((1 << G_TYPE_FUNDAMENTAL_SHIFT) - 1))
#define NODE_IS_ANCESTOR(ancestor, node) \
((ancestor)->n_supers <= (node)->n_supers && \
(node)->supers[(node)->n_supers - (ancestor)->n_supers] == NODE_TYPE (ancestor))
struct _IFaceHolder
{
GType instance_type;
GInterfaceInfo *info;
GTypePlugin *plugin;
IFaceHolder *next;
};
struct _IFaceEntry
{
GType iface_type;
GTypeInterface *vtable;
InitState init_state;
};
struct _IFaceEntries {
gsize offset_index;
IFaceEntry entry[1];
};
#define IFACE_ENTRIES_HEADER_SIZE (sizeof(IFaceEntries) - sizeof(IFaceEntry))
#define IFACE_ENTRIES_N_ENTRIES(_entries) ( (G_ATOMIC_ARRAY_DATA_SIZE((_entries)) - IFACE_ENTRIES_HEADER_SIZE) / sizeof(IFaceEntry) )
struct _CommonData
{
GTypeValueTable *value_table;
};
struct _BoxedData
{
CommonData data;
GBoxedCopyFunc copy_func;
GBoxedFreeFunc free_func;
};
struct _IFaceData
{
CommonData common;
guint16 vtable_size;
GBaseInitFunc vtable_init_base;
GBaseFinalizeFunc vtable_finalize_base;
GClassInitFunc dflt_init;
GClassFinalizeFunc dflt_finalize;
gconstpointer dflt_data;
gpointer dflt_vtable;
};
struct _ClassData
{
CommonData common;
guint16 class_size;
guint16 class_private_size;
int init_state; /* (atomic) - g_type_class_ref reads it unlocked */
GBaseInitFunc class_init_base;
GBaseFinalizeFunc class_finalize_base;
GClassInitFunc class_init;
GClassFinalizeFunc class_finalize;
gconstpointer class_data;
gpointer class;
};
struct _InstanceData
{
CommonData common;
guint16 class_size;
guint16 class_private_size;
int init_state; /* (atomic) - g_type_class_ref reads it unlocked */
GBaseInitFunc class_init_base;
GBaseFinalizeFunc class_finalize_base;
GClassInitFunc class_init;
GClassFinalizeFunc class_finalize;
gconstpointer class_data;
gpointer class;
guint16 instance_size;
guint16 private_size;
GInstanceInitFunc instance_init;
};
union _TypeData
{
CommonData common;
BoxedData boxed;
IFaceData iface;
ClassData class;
InstanceData instance;
};
typedef struct {
gpointer cache_data;
GTypeClassCacheFunc cache_func;
} ClassCacheFunc;
typedef struct {
gpointer check_data;
GTypeInterfaceCheckFunc check_func;
} IFaceCheckFunc;
/* --- variables --- */
static GRWLock type_rw_lock;
static GRecMutex class_init_rec_mutex;
static guint static_n_class_cache_funcs = 0;
static ClassCacheFunc *static_class_cache_funcs = NULL;
static guint static_n_iface_check_funcs = 0;
static IFaceCheckFunc *static_iface_check_funcs = NULL;
static GQuark static_quark_type_flags = 0;
static GQuark static_quark_iface_holder = 0;
static GQuark static_quark_dependants_array = 0;
static guint type_registration_serial = 0;
G_GNUC_BEGIN_IGNORE_DEPRECATIONS
GTypeDebugFlags _g_type_debug_flags = 0;
G_GNUC_END_IGNORE_DEPRECATIONS
/* --- type nodes --- */
static GHashTable *static_type_nodes_ht = NULL;
static TypeNode *static_fundamental_type_nodes[(G_TYPE_FUNDAMENTAL_MAX >> G_TYPE_FUNDAMENTAL_SHIFT) + 1] = { NULL, };
static GType static_fundamental_next = G_TYPE_RESERVED_USER_FIRST;
static inline TypeNode*
lookup_type_node_I (GType utype)
{
if (utype > G_TYPE_FUNDAMENTAL_MAX)
return (TypeNode*) (utype & ~TYPE_ID_MASK);
else
return static_fundamental_type_nodes[utype >> G_TYPE_FUNDAMENTAL_SHIFT];
}
/**
* g_type_get_type_registration_serial:
*
* Returns an opaque serial number that represents the state of the set
* of registered types. Any time a type is registered this serial changes,
* which means you can cache information based on type lookups (such as
* g_type_from_name()) and know if the cache is still valid at a later
* time by comparing the current serial with the one at the type lookup.
*
* Since: 2.36
*
* Returns: An unsigned int, representing the state of type registrations
*/
guint
g_type_get_type_registration_serial (void)
{
return (guint)g_atomic_int_get ((gint *)&type_registration_serial);
}
static TypeNode*
type_node_any_new_W (TypeNode *pnode,
GType ftype,
const gchar *name,
GTypePlugin *plugin,
GTypeFundamentalFlags type_flags)
{
guint n_supers;
GType type;
TypeNode *node;
guint i, node_size = 0;
n_supers = pnode ? pnode->n_supers + 1 : 0;
if (!pnode)
node_size += SIZEOF_FUNDAMENTAL_INFO; /* fundamental type info */
node_size += SIZEOF_BASE_TYPE_NODE (); /* TypeNode structure */
node_size += (sizeof (GType) * (1 + n_supers + 1)); /* self + ancestors + (0) for ->supers[] */
node = g_malloc0 (node_size);
if (!pnode) /* offset fundamental types */
{
node = G_STRUCT_MEMBER_P (node, SIZEOF_FUNDAMENTAL_INFO);
static_fundamental_type_nodes[ftype >> G_TYPE_FUNDAMENTAL_SHIFT] = node;
type = ftype;
#if ENABLE_VALGRIND
VALGRIND_MALLOCLIKE_BLOCK (node, node_size - SIZEOF_FUNDAMENTAL_INFO, FALSE, TRUE);
#endif
}
else
type = (GType) node;
g_assert ((type & TYPE_ID_MASK) == 0);
node->n_supers = n_supers;
if (!pnode)
{
node->supers[0] = type;
node->supers[1] = 0;
node->is_abstract = (type_flags & G_TYPE_FLAG_ABSTRACT) != 0;
node->is_classed = (type_flags & G_TYPE_FLAG_CLASSED) != 0;
node->is_deprecated = (type_flags & G_TYPE_FLAG_DEPRECATED) != 0;
node->is_instantiatable = (type_flags & G_TYPE_FLAG_INSTANTIATABLE) != 0;
if (NODE_IS_IFACE (node))
{
IFACE_NODE_N_PREREQUISITES (node) = 0;
IFACE_NODE_PREREQUISITES (node) = NULL;
}
else
_g_atomic_array_init (CLASSED_NODE_IFACES_ENTRIES (node));
}
else
{
node->supers[0] = type;
memcpy (node->supers + 1, pnode->supers, sizeof (GType) * (1 + pnode->n_supers + 1));
node->is_abstract = (type_flags & G_TYPE_FLAG_ABSTRACT) != 0;
node->is_classed = pnode->is_classed;
node->is_deprecated = (type_flags & G_TYPE_FLAG_DEPRECATED) != 0;
node->is_instantiatable = pnode->is_instantiatable;
node->is_deprecated |= pnode->is_deprecated;
if (NODE_IS_IFACE (node))
{
IFACE_NODE_N_PREREQUISITES (node) = 0;
IFACE_NODE_PREREQUISITES (node) = NULL;
}
else
{
guint j;
IFaceEntries *entries;
entries = _g_atomic_array_copy (CLASSED_NODE_IFACES_ENTRIES (pnode),
IFACE_ENTRIES_HEADER_SIZE,
0);
if (entries)
{
for (j = 0; j < IFACE_ENTRIES_N_ENTRIES (entries); j++)
{
entries->entry[j].vtable = NULL;
entries->entry[j].init_state = UNINITIALIZED;
}
_g_atomic_array_update (CLASSED_NODE_IFACES_ENTRIES (node),
entries);
}
}
i = pnode->n_children++;
pnode->children = g_renew (GType, pnode->children, pnode->n_children);
pnode->children[i] = type;
}
TRACE(GOBJECT_TYPE_NEW(name, node->supers[1], type));
node->plugin = plugin;
node->n_children = 0;
node->children = NULL;
node->data = NULL;
node->qname = g_quark_from_string (name);
node->global_gdata = NULL;
g_hash_table_insert (static_type_nodes_ht,
(gpointer) g_quark_to_string (node->qname),
(gpointer) type);
g_atomic_int_inc ((gint *)&type_registration_serial);
return node;
}
static inline GTypeFundamentalInfo*
type_node_fundamental_info_I (TypeNode *node)
{
GType ftype = NODE_FUNDAMENTAL_TYPE (node);
if (ftype != NODE_TYPE (node))
node = lookup_type_node_I (ftype);
return node ? G_STRUCT_MEMBER_P (node, -SIZEOF_FUNDAMENTAL_INFO) : NULL;
}
static TypeNode*
type_node_fundamental_new_W (GType ftype,
const gchar *name,
GTypeFundamentalFlags type_flags)
{
GTypeFundamentalInfo *finfo;
TypeNode *node;
g_assert ((ftype & TYPE_ID_MASK) == 0);
g_assert (ftype <= G_TYPE_FUNDAMENTAL_MAX);
if (ftype >> G_TYPE_FUNDAMENTAL_SHIFT == static_fundamental_next)
static_fundamental_next++;
node = type_node_any_new_W (NULL, ftype, name, NULL, type_flags);
finfo = type_node_fundamental_info_I (node);
finfo->type_flags = type_flags & TYPE_FUNDAMENTAL_FLAG_MASK;
return node;
}
static TypeNode*
type_node_new_W (TypeNode *pnode,
const gchar *name,
GTypePlugin *plugin)
{
g_assert (pnode);
g_assert (pnode->n_supers < MAX_N_SUPERS);
g_assert (pnode->n_children < MAX_N_CHILDREN);
return type_node_any_new_W (pnode, NODE_FUNDAMENTAL_TYPE (pnode), name, plugin, 0);
}
static inline IFaceEntry*
lookup_iface_entry_I (IFaceEntries *entries,
TypeNode *iface_node)
{
guint8 *offsets;
gsize offset_index;
IFaceEntry *check;
gsize index;
IFaceEntry *entry;
if (entries == NULL)
return NULL;
G_ATOMIC_ARRAY_DO_TRANSACTION
(&iface_node->_prot.offsets, guint8,
entry = NULL;
offsets = transaction_data;
offset_index = entries->offset_index;
if (offsets != NULL &&
offset_index < G_ATOMIC_ARRAY_DATA_SIZE(offsets))
{
index = offsets[offset_index];
if (index > 0)
{
/* zero means unset, subtract one to get real index */
index -= 1;
if (index < IFACE_ENTRIES_N_ENTRIES (entries))
{
check = (IFaceEntry *)&entries->entry[index];
if (check->iface_type == NODE_TYPE (iface_node))
entry = check;
}
}
}
);
return entry;
}
static inline IFaceEntry*
type_lookup_iface_entry_L (TypeNode *node,
TypeNode *iface_node)
{
if (!NODE_IS_IFACE (iface_node))
return NULL;
return lookup_iface_entry_I (CLASSED_NODE_IFACES_ENTRIES_LOCKED (node),
iface_node);
}
static inline gboolean
type_lookup_iface_vtable_I (TypeNode *node,
TypeNode *iface_node,
gpointer *vtable_ptr)
{
IFaceEntry *entry;
gboolean res;
if (!NODE_IS_IFACE (iface_node))
{
if (vtable_ptr)
*vtable_ptr = NULL;
return FALSE;
}
G_ATOMIC_ARRAY_DO_TRANSACTION
(CLASSED_NODE_IFACES_ENTRIES (node), IFaceEntries,
entry = lookup_iface_entry_I (transaction_data, iface_node);
res = entry != NULL;
if (vtable_ptr)
{
if (entry)
*vtable_ptr = entry->vtable;
else
*vtable_ptr = NULL;
}
);
return res;
}
static inline gboolean
type_lookup_prerequisite_L (TypeNode *iface,
GType prerequisite_type)
{
if (NODE_IS_IFACE (iface) && IFACE_NODE_N_PREREQUISITES (iface))
{
GType *prerequisites = IFACE_NODE_PREREQUISITES (iface) - 1;
guint n_prerequisites = IFACE_NODE_N_PREREQUISITES (iface);
do
{
guint i;
GType *check;
i = (n_prerequisites + 1) >> 1;
check = prerequisites + i;
if (prerequisite_type == *check)
return TRUE;
else if (prerequisite_type > *check)
{
n_prerequisites -= i;
prerequisites = check;
}
else /* if (prerequisite_type < *check) */
n_prerequisites = i - 1;
}
while (n_prerequisites);
}
return FALSE;
}
static const gchar*
type_descriptive_name_I (GType type)
{
if (type)
{
TypeNode *node = lookup_type_node_I (type);
return node ? NODE_NAME (node) : "";
}
else
return "";
}
/* --- type consistency checks --- */
static gboolean
check_plugin_U (GTypePlugin *plugin,
gboolean need_complete_type_info,
gboolean need_complete_interface_info,
const gchar *type_name)
{
/* G_IS_TYPE_PLUGIN() and G_TYPE_PLUGIN_GET_CLASS() are external calls: _U
*/
if (!plugin)
{
g_critical ("plugin handle for type '%s' is NULL",
type_name);
return FALSE;
}
if (!G_IS_TYPE_PLUGIN (plugin))
{
g_critical ("plugin pointer (%p) for type '%s' is invalid",
plugin, type_name);
return FALSE;
}
if (need_complete_type_info && !G_TYPE_PLUGIN_GET_CLASS (plugin)->complete_type_info)
{
g_critical ("plugin for type '%s' has no complete_type_info() implementation",
type_name);
return FALSE;
}
if (need_complete_interface_info && !G_TYPE_PLUGIN_GET_CLASS (plugin)->complete_interface_info)
{
g_critical ("plugin for type '%s' has no complete_interface_info() implementation",
type_name);
return FALSE;
}
return TRUE;
}
static gboolean
check_type_name_I (const gchar *type_name)
{
static const gchar extra_chars[] = "-_+";
const gchar *p = type_name;
gboolean name_valid;
if (!type_name[0] || !type_name[1] || !type_name[2])
{
g_critical ("type name '%s' is too short", type_name);
return FALSE;
}
/* check the first letter */
name_valid = (p[0] >= 'A' && p[0] <= 'Z') || (p[0] >= 'a' && p[0] <= 'z') || p[0] == '_';
for (p = type_name + 1; *p; p++)
name_valid &= ((p[0] >= 'A' && p[0] <= 'Z') ||
(p[0] >= 'a' && p[0] <= 'z') ||
(p[0] >= '0' && p[0] <= '9') ||
strchr (extra_chars, p[0]));
if (!name_valid)
{
g_critical ("type name '%s' contains invalid characters", type_name);
return FALSE;
}
if (g_type_from_name (type_name))
{
g_critical ("cannot register existing type '%s'", type_name);
return FALSE;
}
return TRUE;
}
static gboolean
check_derivation_I (GType parent_type,
const gchar *type_name)
{
TypeNode *pnode;
GTypeFundamentalInfo* finfo;
pnode = lookup_type_node_I (parent_type);
if (!pnode)
{
g_critical ("cannot derive type '%s' from invalid parent type '%s'",
type_name,
type_descriptive_name_I (parent_type));
return FALSE;
}
if (pnode->is_final)
{
g_critical ("cannot derive '%s' from final parent type '%s'",
type_name,
NODE_NAME (pnode));
return FALSE;
}
finfo = type_node_fundamental_info_I (pnode);
/* ensure flat derivability */
if (!(finfo->type_flags & G_TYPE_FLAG_DERIVABLE))
{
g_critical ("cannot derive '%s' from non-derivable parent type '%s'",
type_name,
NODE_NAME (pnode));
return FALSE;
}
/* ensure deep derivability */
if (parent_type != NODE_FUNDAMENTAL_TYPE (pnode) &&
!(finfo->type_flags & G_TYPE_FLAG_DEEP_DERIVABLE))
{
g_critical ("cannot derive '%s' from non-fundamental parent type '%s'",
type_name,
NODE_NAME (pnode));
return FALSE;
}
return TRUE;
}
static gboolean
check_collect_format_I (const gchar *collect_format)
{
const gchar *p = collect_format;
gchar valid_format[] = { G_VALUE_COLLECT_INT, G_VALUE_COLLECT_LONG,
G_VALUE_COLLECT_INT64, G_VALUE_COLLECT_DOUBLE,
G_VALUE_COLLECT_POINTER, 0 };
while (*p)
if (!strchr (valid_format, *p++))
return FALSE;
return p - collect_format <= G_VALUE_COLLECT_FORMAT_MAX_LENGTH;
}
static gboolean
check_value_table_I (const gchar *type_name,
const GTypeValueTable *value_table)
{
if (!value_table)
return FALSE;
else if (value_table->value_init == NULL)
{
if (value_table->value_free || value_table->value_copy ||
value_table->value_peek_pointer ||
value_table->collect_format || value_table->collect_value ||
value_table->lcopy_format || value_table->lcopy_value)
g_critical ("cannot handle uninitializable values of type '%s'",
type_name);
return FALSE;
}
else /* value_table->value_init != NULL */
{
if (!value_table->value_free)
{
/* +++ optional +++
* g_critical ("missing 'value_free()' for type '%s'", type_name);
* return FALSE;
*/
}
if (!value_table->value_copy)
{
g_critical ("missing 'value_copy()' for type '%s'", type_name);
return FALSE;
}
if ((value_table->collect_format || value_table->collect_value) &&
(!value_table->collect_format || !value_table->collect_value))
{
g_critical ("one of 'collect_format' and 'collect_value()' is unspecified for type '%s'",
type_name);
return FALSE;
}
if (value_table->collect_format && !check_collect_format_I (value_table->collect_format))
{
g_critical ("the '%s' specification for type '%s' is too long or invalid",
"collect_format",
type_name);
return FALSE;
}
if ((value_table->lcopy_format || value_table->lcopy_value) &&
(!value_table->lcopy_format || !value_table->lcopy_value))
{
g_critical ("one of 'lcopy_format' and 'lcopy_value()' is unspecified for type '%s'",
type_name);
return FALSE;
}
if (value_table->lcopy_format && !check_collect_format_I (value_table->lcopy_format))
{
g_critical ("the '%s' specification for type '%s' is too long or invalid",
"lcopy_format",
type_name);
return FALSE;
}
}
return TRUE;
}
static gboolean
check_type_info_I (TypeNode *pnode,
GType ftype,
const gchar *type_name,
const GTypeInfo *info)
{
GTypeFundamentalInfo *finfo = type_node_fundamental_info_I (lookup_type_node_I (ftype));
gboolean is_interface = ftype == G_TYPE_INTERFACE;
g_assert (ftype <= G_TYPE_FUNDAMENTAL_MAX && !(ftype & TYPE_ID_MASK));
/* check instance members */
if (!(finfo->type_flags & G_TYPE_FLAG_INSTANTIATABLE) &&
(info->instance_size || info->instance_init))
{
if (pnode)
g_critical ("cannot instantiate '%s', derived from non-instantiatable parent type '%s'",
type_name,
NODE_NAME (pnode));
else
g_critical ("cannot instantiate '%s' as non-instantiatable fundamental",
type_name);
return FALSE;
}
/* check class & interface members */
if (!((finfo->type_flags & G_TYPE_FLAG_CLASSED) || is_interface) &&
(info->class_init || info->class_finalize || info->class_data ||
info->class_size || info->base_init || info->base_finalize))
{
if (pnode)
g_critical ("cannot create class for '%s', derived from non-classed parent type '%s'",
type_name,
NODE_NAME (pnode));
else
g_critical ("cannot create class for '%s' as non-classed fundamental",
type_name);
return FALSE;
}
/* check interface size */
if (is_interface && info->class_size < sizeof (GTypeInterface))
{
g_critical ("specified interface size for type '%s' is smaller than 'GTypeInterface' size",
type_name);
return FALSE;
}
/* check class size */
if (finfo->type_flags & G_TYPE_FLAG_CLASSED)
{
if (info->class_size < sizeof (GTypeClass))
{
g_critical ("specified class size for type '%s' is smaller than 'GTypeClass' size",
type_name);
return FALSE;
}
if (pnode && info->class_size < pnode->data->class.class_size)
{
g_critical ("specified class size for type '%s' is smaller "
"than the parent type's '%s' class size",
type_name,
NODE_NAME (pnode));
return FALSE;
}
}
/* check instance size */
if (finfo->type_flags & G_TYPE_FLAG_INSTANTIATABLE)
{
if (info->instance_size < sizeof (GTypeInstance))
{
g_critical ("specified instance size for type '%s' is smaller than 'GTypeInstance' size",
type_name);
return FALSE;
}
if (pnode && info->instance_size < pnode->data->instance.instance_size)
{
g_critical ("specified instance size for type '%s' is smaller "
"than the parent type's '%s' instance size",
type_name,
NODE_NAME (pnode));
return FALSE;
}
}
return TRUE;
}
static TypeNode*
find_conforming_child_type_L (TypeNode *pnode,
TypeNode *iface)
{
TypeNode *node = NULL;
guint i;
if (type_lookup_iface_entry_L (pnode, iface))
return pnode;
for (i = 0; i < pnode->n_children && !node; i++)
node = find_conforming_child_type_L (lookup_type_node_I (pnode->children[i]), iface);
return node;
}
static gboolean
check_add_interface_L (GType instance_type,
GType iface_type)
{
TypeNode *node = lookup_type_node_I (instance_type);
TypeNode *iface = lookup_type_node_I (iface_type);
IFaceEntry *entry;
TypeNode *tnode;
GType *prerequisites;
guint i;
if (!node || !node->is_instantiatable)
{
g_critical ("cannot add interfaces to invalid (non-instantiatable) type '%s'",
type_descriptive_name_I (instance_type));
return FALSE;
}
if (!iface || !NODE_IS_IFACE (iface))
{
g_critical ("cannot add invalid (non-interface) type '%s' to type '%s'",
type_descriptive_name_I (iface_type),
NODE_NAME (node));
return FALSE;
}
if (node->data && node->data->class.class)
{
g_critical ("attempting to add an interface (%s) to class (%s) after class_init",
NODE_NAME (iface), NODE_NAME (node));
return FALSE;
}
tnode = lookup_type_node_I (NODE_PARENT_TYPE (iface));
if (NODE_PARENT_TYPE (tnode) && !type_lookup_iface_entry_L (node, tnode))
{
/* 2001/7/31:timj: erk, i guess this warning is junk as interface derivation is flat */
g_critical ("cannot add sub-interface '%s' to type '%s' which does not conform to super-interface '%s'",
NODE_NAME (iface),
NODE_NAME (node),
NODE_NAME (tnode));
return FALSE;
}
/* allow overriding of interface type introduced for parent type */
entry = type_lookup_iface_entry_L (node, iface);
if (entry && entry->vtable == NULL && !type_iface_peek_holder_L (iface, NODE_TYPE (node)))
{
/* ok, we do conform to this interface already, but the interface vtable was not
* yet initialized, and we just conform to the interface because it got added to
* one of our parents. so we allow overriding of holder info here.
*/
return TRUE;
}
/* check whether one of our children already conforms (or whether the interface
* got added to this node already)
*/
tnode = find_conforming_child_type_L (node, iface); /* tnode is_a node */
if (tnode)
{
g_critical ("cannot add interface type '%s' to type '%s', since type '%s' already conforms to interface",
NODE_NAME (iface),
NODE_NAME (node),
NODE_NAME (tnode));
return FALSE;
}
prerequisites = IFACE_NODE_PREREQUISITES (iface);
for (i = 0; i < IFACE_NODE_N_PREREQUISITES (iface); i++)
{
tnode = lookup_type_node_I (prerequisites[i]);
if (!type_node_is_a_L (node, tnode))
{
g_critical ("cannot add interface type '%s' to type '%s' which does not conform to prerequisite '%s'",
NODE_NAME (iface),
NODE_NAME (node),
NODE_NAME (tnode));
return FALSE;
}
}
return TRUE;
}
static gboolean
check_interface_info_I (TypeNode *iface,
GType instance_type,
const GInterfaceInfo *info)
{
if ((info->interface_finalize || info->interface_data) && !info->interface_init)
{
g_critical ("interface type '%s' for type '%s' comes without initializer",
NODE_NAME (iface),
type_descriptive_name_I (instance_type));
return FALSE;
}
return TRUE;
}
/* --- type info (type node data) --- */
static void
type_data_make_W (TypeNode *node,
const GTypeInfo *info,
const GTypeValueTable *value_table)
{
TypeData *data;
GTypeValueTable *vtable = NULL;
guint vtable_size = 0;
g_assert (node->data == NULL && info != NULL);
if (!value_table)
{
TypeNode *pnode = lookup_type_node_I (NODE_PARENT_TYPE (node));
if (pnode)
vtable = pnode->data->common.value_table;
else
{
static const GTypeValueTable zero_vtable =
{ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL };
value_table = &zero_vtable;
}
}
if (value_table)
{
/* need to setup vtable_size since we have to allocate it with data in one chunk */
vtable_size = sizeof (GTypeValueTable);
if (value_table->collect_format)
vtable_size += strlen (value_table->collect_format);
if (value_table->lcopy_format)
vtable_size += strlen (value_table->lcopy_format);
vtable_size += 2;
}
if (node->is_instantiatable) /* careful, is_instantiatable is also is_classed */
{
TypeNode *pnode = lookup_type_node_I (NODE_PARENT_TYPE (node));
data = g_malloc0 (sizeof (InstanceData) + vtable_size);
if (vtable_size)
vtable = G_STRUCT_MEMBER_P (data, sizeof (InstanceData));
data->instance.class_size = info->class_size;
data->instance.class_init_base = info->base_init;
data->instance.class_finalize_base = info->base_finalize;
data->instance.class_init = info->class_init;
data->instance.class_finalize = info->class_finalize;
data->instance.class_data = info->class_data;
data->instance.class = NULL;
data->instance.init_state = UNINITIALIZED;
data->instance.instance_size = info->instance_size;
/* We'll set the final value for data->instance.private size
* after the parent class has been initialized
*/
data->instance.private_size = 0;
data->instance.class_private_size = 0;
if (pnode)
data->instance.class_private_size = pnode->data->instance.class_private_size;
data->instance.instance_init = info->instance_init;
}
else if (node->is_classed) /* only classed */
{
TypeNode *pnode = lookup_type_node_I (NODE_PARENT_TYPE (node));
data = g_malloc0 (sizeof (ClassData) + vtable_size);
if (vtable_size)
vtable = G_STRUCT_MEMBER_P (data, sizeof (ClassData));
data->class.class_size = info->class_size;
data->class.class_init_base = info->base_init;
data->class.class_finalize_base = info->base_finalize;
data->class.class_init = info->class_init;
data->class.class_finalize = info->class_finalize;
data->class.class_data = info->class_data;
data->class.class = NULL;
data->class.class_private_size = 0;
if (pnode)
data->class.class_private_size = pnode->data->class.class_private_size;
data->class.init_state = UNINITIALIZED;
}
else if (NODE_IS_IFACE (node))
{
data = g_malloc0 (sizeof (IFaceData) + vtable_size);
if (vtable_size)
vtable = G_STRUCT_MEMBER_P (data, sizeof (IFaceData));
data->iface.vtable_size = info->class_size;
data->iface.vtable_init_base = info->base_init;
data->iface.vtable_finalize_base = info->base_finalize;
data->iface.dflt_init = info->class_init;
data->iface.dflt_finalize = info->class_finalize;
data->iface.dflt_data = info->class_data;
data->iface.dflt_vtable = NULL;
}
else if (NODE_IS_BOXED (node))
{
data = g_malloc0 (sizeof (BoxedData) + vtable_size);
if (vtable_size)
vtable = G_STRUCT_MEMBER_P (data, sizeof (BoxedData));
}
else
{
data = g_malloc0 (sizeof (CommonData) + vtable_size);
if (vtable_size)
vtable = G_STRUCT_MEMBER_P (data, sizeof (CommonData));
}
node->data = data;
if (vtable_size)
{
gchar *p;
/* we allocate the vtable and its strings together with the type data, so
* children can take over their parent's vtable pointer, and we don't
* need to worry freeing it or not when the child data is destroyed
*/
*vtable = *value_table;
p = G_STRUCT_MEMBER_P (vtable, sizeof (*vtable));
p[0] = 0;
vtable->collect_format = p;
if (value_table->collect_format)
{
strcat (p, value_table->collect_format);
p += strlen (value_table->collect_format);
}
p++;
p[0] = 0;
vtable->lcopy_format = p;
if (value_table->lcopy_format)
strcat (p, value_table->lcopy_format);
}
node->data->common.value_table = vtable;
node->mutatable_check_cache = (node->data->common.value_table->value_init != NULL &&
!((G_TYPE_FLAG_VALUE_ABSTRACT | G_TYPE_FLAG_ABSTRACT) &
GPOINTER_TO_UINT (type_get_qdata_L (node, static_quark_type_flags))));
g_assert (node->data->common.value_table != NULL); /* paranoid */
g_atomic_int_set ((int *) &node->ref_count, 1);
}
static inline void
type_data_ref_Wm (TypeNode *node)
{
if (!node->data)
{
TypeNode *pnode = lookup_type_node_I (NODE_PARENT_TYPE (node));
GTypeInfo tmp_info;
GTypeValueTable tmp_value_table;
g_assert (node->plugin != NULL);
if (pnode)
{
type_data_ref_Wm (pnode);
if (node->data)
INVALID_RECURSION ("g_type_plugin_*", node->plugin, NODE_NAME (node));
}
memset (&tmp_info, 0, sizeof (tmp_info));
memset (&tmp_value_table, 0, sizeof (tmp_value_table));
G_WRITE_UNLOCK (&type_rw_lock);
g_type_plugin_use (node->plugin);
g_type_plugin_complete_type_info (node->plugin, NODE_TYPE (node), &tmp_info, &tmp_value_table);
G_WRITE_LOCK (&type_rw_lock);
if (node->data)
INVALID_RECURSION ("g_type_plugin_*", node->plugin, NODE_NAME (node));
check_type_info_I (pnode, NODE_FUNDAMENTAL_TYPE (node), NODE_NAME (node), &tmp_info);
type_data_make_W (node, &tmp_info,
check_value_table_I (NODE_NAME (node),
&tmp_value_table) ? &tmp_value_table : NULL);
}
else
{
g_assert (NODE_REFCOUNT (node) > 0);
g_atomic_int_inc ((int *) &node->ref_count);
}
}
static inline gboolean
type_data_ref_U (TypeNode *node)
{
guint current;
do {
current = NODE_REFCOUNT (node);
if (current < 1)
return FALSE;
} while (!g_atomic_int_compare_and_exchange ((int *) &node->ref_count, current, current + 1));
return TRUE;
}
static gboolean
iface_node_has_available_offset_L (TypeNode *iface_node,
gsize offset,
int for_index)
{
guint8 *offsets;
offsets = G_ATOMIC_ARRAY_GET_LOCKED (&iface_node->_prot.offsets, guint8);
if (offsets == NULL)
return TRUE;
if (G_ATOMIC_ARRAY_DATA_SIZE (offsets) <= offset)
return TRUE;
if (offsets[offset] == 0 ||
offsets[offset] == for_index+1)
return TRUE;
return FALSE;
}
static gsize
find_free_iface_offset_L (IFaceEntries *entries)
{
IFaceEntry *entry;
TypeNode *iface_node;
gsize offset;
int i;
int n_entries;
n_entries = IFACE_ENTRIES_N_ENTRIES (entries);
offset = 0;
do
{
for (i = 0; i < n_entries; i++)
{
entry = &entries->entry[i];
iface_node = lookup_type_node_I (entry->iface_type);
if (!iface_node_has_available_offset_L (iface_node, offset, i))
{
offset++;
break;
}
}
}
while (i != n_entries);
return offset;
}
static void
iface_node_set_offset_L (TypeNode *iface_node,
gsize offset,
int index)
{
guint8 *offsets, *old_offsets;
gsize new_size, old_size;
gsize i;
old_offsets = G_ATOMIC_ARRAY_GET_LOCKED (&iface_node->_prot.offsets, guint8);
if (old_offsets == NULL)
old_size = 0;
else
{
old_size = G_ATOMIC_ARRAY_DATA_SIZE (old_offsets);
if (offset < old_size &&
old_offsets[offset] == index + 1)
return; /* Already set to this index, return */
}
new_size = MAX (old_size, offset + 1);
offsets = _g_atomic_array_copy (&iface_node->_prot.offsets,
0, new_size - old_size);
/* Mark new area as unused */
for (i = old_size; i < new_size; i++)
offsets[i] = 0;
offsets[offset] = index + 1;
_g_atomic_array_update (&iface_node->_prot.offsets, offsets);
}
static void
type_node_add_iface_entry_W (TypeNode *node,
GType iface_type,
IFaceEntry *parent_entry)
{
IFaceEntries *entries;
IFaceEntry *entry;
TypeNode *iface_node;
guint i, j;
guint num_entries;
g_assert (node->is_instantiatable);
entries = CLASSED_NODE_IFACES_ENTRIES_LOCKED (node);
if (entries != NULL)
{
num_entries = IFACE_ENTRIES_N_ENTRIES (entries);
g_assert (num_entries < MAX_N_INTERFACES);
for (i = 0; i < num_entries; i++)
{
entry = &entries->entry[i];
if (entry->iface_type == iface_type)
{
/* this can happen in two cases:
* - our parent type already conformed to iface_type and node
* got its own holder info. here, our children already have
* entries and NULL vtables, since this will only work for
* uninitialized classes.
* - an interface type is added to an ancestor after it was
* added to a child type.
*/
if (!parent_entry)
g_assert (entry->vtable == NULL && entry->init_state == UNINITIALIZED);
else
{
/* sick, interface is added to ancestor *after* child type;
* nothing todo, the entry and our children were already setup correctly
*/
}
return;
}
}
}
entries = _g_atomic_array_copy (CLASSED_NODE_IFACES_ENTRIES (node),
IFACE_ENTRIES_HEADER_SIZE,
sizeof (IFaceEntry));
num_entries = IFACE_ENTRIES_N_ENTRIES (entries);
i = num_entries - 1;
if (i == 0)
entries->offset_index = 0;
entries->entry[i].iface_type = iface_type;
entries->entry[i].vtable = NULL;
entries->entry[i].init_state = UNINITIALIZED;
if (parent_entry)
{
if (node->data && g_atomic_int_get (&node->data->class.init_state) >= BASE_IFACE_INIT)
{
entries->entry[i].init_state = INITIALIZED;
entries->entry[i].vtable = parent_entry->vtable;
}
}
/* Update offsets in iface */
iface_node = lookup_type_node_I (iface_type);
if (iface_node_has_available_offset_L (iface_node,
entries->offset_index,
i))
{
iface_node_set_offset_L (iface_node,
entries->offset_index, i);
}
else
{
entries->offset_index =
find_free_iface_offset_L (entries);
for (j = 0; j < IFACE_ENTRIES_N_ENTRIES (entries); j++)
{
entry = &entries->entry[j];
iface_node =
lookup_type_node_I (entry->iface_type);
iface_node_set_offset_L (iface_node,
entries->offset_index, j);
}
}
_g_atomic_array_update (CLASSED_NODE_IFACES_ENTRIES (node), entries);
if (parent_entry)
{
for (i = 0; i < node->n_children; i++)
type_node_add_iface_entry_W (lookup_type_node_I (node->children[i]), iface_type, &entries->entry[i]);
}
}
static void
type_add_interface_Wm (TypeNode *node,
TypeNode *iface,
const GInterfaceInfo *info,
GTypePlugin *plugin)
{
IFaceHolder *iholder = g_new0 (IFaceHolder, 1);
IFaceEntry *entry;
guint i;
g_assert (node->is_instantiatable && NODE_IS_IFACE (iface) && ((info && !plugin) || (!info && plugin)));
iholder->next = iface_node_get_holders_L (iface);
iface_node_set_holders_W (iface, iholder);
iholder->instance_type = NODE_TYPE (node);
iholder->info = info ? g_memdup2 (info, sizeof (*info)) : NULL;
iholder->plugin = plugin;
/* create an iface entry for this type */
type_node_add_iface_entry_W (node, NODE_TYPE (iface), NULL);
/* if the class is already (partly) initialized, we may need to base
* initialize and/or initialize the new interface.
*/
if (node->data)
{
InitState class_state = g_atomic_int_get (&node->data->class.init_state);
if (class_state >= BASE_IFACE_INIT)
type_iface_vtable_base_init_Wm (iface, node);
if (class_state >= IFACE_INIT)
type_iface_vtable_iface_init_Wm (iface, node);
}
/* create iface entries for children of this type */
entry = type_lookup_iface_entry_L (node, iface);
for (i = 0; i < node->n_children; i++)
type_node_add_iface_entry_W (lookup_type_node_I (node->children[i]), NODE_TYPE (iface), entry);
}
static void
type_iface_add_prerequisite_W (TypeNode *iface,
TypeNode *prerequisite_node)
{
GType prerequisite_type = NODE_TYPE (prerequisite_node);
GType *prerequisites, *dependants;
guint n_dependants, i;
g_assert (NODE_IS_IFACE (iface) &&
IFACE_NODE_N_PREREQUISITES (iface) < MAX_N_PREREQUISITES &&
(prerequisite_node->is_instantiatable || NODE_IS_IFACE (prerequisite_node)));
prerequisites = IFACE_NODE_PREREQUISITES (iface);
for (i = 0; i < IFACE_NODE_N_PREREQUISITES (iface); i++)
if (prerequisites[i] == prerequisite_type)
return; /* we already have that prerequisiste */
else if (prerequisites[i] > prerequisite_type)
break;
IFACE_NODE_N_PREREQUISITES (iface) += 1;
IFACE_NODE_PREREQUISITES (iface) = g_renew (GType,
IFACE_NODE_PREREQUISITES (iface),
IFACE_NODE_N_PREREQUISITES (iface));
prerequisites = IFACE_NODE_PREREQUISITES (iface);
memmove (prerequisites + i + 1, prerequisites + i,
sizeof (prerequisites[0]) * (IFACE_NODE_N_PREREQUISITES (iface) - i - 1));
prerequisites[i] = prerequisite_type;
/* we want to get notified when prerequisites get added to prerequisite_node */
if (NODE_IS_IFACE (prerequisite_node))
{
dependants = iface_node_get_dependants_array_L (prerequisite_node);
n_dependants = dependants ? dependants[0] : 0;
n_dependants += 1;
dependants = g_renew (GType, dependants, n_dependants + 1);
dependants[n_dependants] = NODE_TYPE (iface);
dependants[0] = n_dependants;
iface_node_set_dependants_array_W (prerequisite_node, dependants);
}
/* we need to notify all dependants */
dependants = iface_node_get_dependants_array_L (iface);
n_dependants = dependants ? dependants[0] : 0;
for (i = 1; i <= n_dependants; i++)
type_iface_add_prerequisite_W (lookup_type_node_I (dependants[i]), prerequisite_node);
}
/**
* g_type_interface_add_prerequisite:
* @interface_type: #GType value of an interface type
* @prerequisite_type: #GType value of an interface or instantiatable type
*
* Adds @prerequisite_type to the list of prerequisites of @interface_type.
* This means that any type implementing @interface_type must also implement
* @prerequisite_type. Prerequisites can be thought of as an alternative to
* interface derivation (which GType doesn't support). An interface can have
* at most one instantiatable prerequisite type.
*/
void
g_type_interface_add_prerequisite (GType interface_type,
GType prerequisite_type)
{
TypeNode *iface, *prerequisite_node;
IFaceHolder *holders;
g_return_if_fail (G_TYPE_IS_INTERFACE (interface_type)); /* G_TYPE_IS_INTERFACE() is an external call: _U */
g_return_if_fail (!g_type_is_a (interface_type, prerequisite_type));
g_return_if_fail (!g_type_is_a (prerequisite_type, interface_type));
iface = lookup_type_node_I (interface_type);
prerequisite_node = lookup_type_node_I (prerequisite_type);
if (!iface || !prerequisite_node || !NODE_IS_IFACE (iface))
{
g_critical ("interface type '%s' or prerequisite type '%s' invalid",
type_descriptive_name_I (interface_type),
type_descriptive_name_I (prerequisite_type));
return;
}
G_WRITE_LOCK (&type_rw_lock);
holders = iface_node_get_holders_L (iface);
if (holders)
{
G_WRITE_UNLOCK (&type_rw_lock);
g_critical ("unable to add prerequisite '%s' to interface '%s' which is already in use for '%s'",
type_descriptive_name_I (prerequisite_type),
type_descriptive_name_I (interface_type),
type_descriptive_name_I (holders->instance_type));
return;
}
if (prerequisite_node->is_instantiatable)
{
guint i;
/* can have at most one publicly installable instantiatable prerequisite */
for (i = 0; i < IFACE_NODE_N_PREREQUISITES (iface); i++)
{
TypeNode *prnode = lookup_type_node_I (IFACE_NODE_PREREQUISITES (iface)[i]);
if (prnode->is_instantiatable)
{
G_WRITE_UNLOCK (&type_rw_lock);
g_critical ("adding prerequisite '%s' to interface '%s' conflicts with existing prerequisite '%s'",
type_descriptive_name_I (prerequisite_type),
type_descriptive_name_I (interface_type),
type_descriptive_name_I (NODE_TYPE (prnode)));
return;
}
}
for (i = 0; i < prerequisite_node->n_supers + 1u; i++)
type_iface_add_prerequisite_W (iface, lookup_type_node_I (prerequisite_node->supers[i]));
G_WRITE_UNLOCK (&type_rw_lock);
}
else if (NODE_IS_IFACE (prerequisite_node))
{
GType *prerequisites;
guint i;
prerequisites = IFACE_NODE_PREREQUISITES (prerequisite_node);
for (i = 0; i < IFACE_NODE_N_PREREQUISITES (prerequisite_node); i++)
type_iface_add_prerequisite_W (iface, lookup_type_node_I (prerequisites[i]));
type_iface_add_prerequisite_W (iface, prerequisite_node);
G_WRITE_UNLOCK (&type_rw_lock);
}
else
{
G_WRITE_UNLOCK (&type_rw_lock);
g_critical ("prerequisite '%s' for interface '%s' is neither instantiatable nor interface",
type_descriptive_name_I (prerequisite_type),
type_descriptive_name_I (interface_type));
}
}
/**
* g_type_interface_prerequisites:
* @interface_type: an interface type
* @n_prerequisites: (out) (optional): location to return the number
* of prerequisites, or %NULL
*
* Returns the prerequisites of an interfaces type.
*
* Since: 2.2
*
* Returns: (array length=n_prerequisites) (transfer full): a
* newly-allocated zero-terminated array of #GType containing
* the prerequisites of @interface_type
*/
GType*
g_type_interface_prerequisites (GType interface_type,
guint *n_prerequisites)
{
TypeNode *iface;
g_return_val_if_fail (G_TYPE_IS_INTERFACE (interface_type), NULL);
iface = lookup_type_node_I (interface_type);
if (iface)
{
GType *types;
TypeNode *inode = NULL;
guint i, n = 0;
G_READ_LOCK (&type_rw_lock);
types = g_new0 (GType, IFACE_NODE_N_PREREQUISITES (iface) + 1);
for (i = 0; i < IFACE_NODE_N_PREREQUISITES (iface); i++)
{
GType prerequisite = IFACE_NODE_PREREQUISITES (iface)[i];
TypeNode *node = lookup_type_node_I (prerequisite);
if (node->is_instantiatable)
{
if (!inode || type_node_is_a_L (node, inode))
inode = node;
}
else
types[n++] = NODE_TYPE (node);
}
if (inode)
types[n++] = NODE_TYPE (inode);
if (n_prerequisites)
*n_prerequisites = n;
G_READ_UNLOCK (&type_rw_lock);
return types;
}
else
{
if (n_prerequisites)
*n_prerequisites = 0;
return NULL;
}
}
/**
* g_type_interface_instantiatable_prerequisite:
* @interface_type: an interface type
*
* Returns the most specific instantiatable prerequisite of an
* interface type. If the interface type has no instantiatable
* prerequisite, %G_TYPE_INVALID is returned.
*
* See g_type_interface_add_prerequisite() for more information
* about prerequisites.
*
* Returns: the instantiatable prerequisite type or %G_TYPE_INVALID if none
*
* Since: 2.68
**/
GType
g_type_interface_instantiatable_prerequisite (GType interface_type)
{
TypeNode *inode = NULL;
TypeNode *iface;
guint i;
g_return_val_if_fail (G_TYPE_IS_INTERFACE (interface_type), G_TYPE_INVALID);
iface = lookup_type_node_I (interface_type);
if (iface == NULL)
return G_TYPE_INVALID;
G_READ_LOCK (&type_rw_lock);
for (i = 0; i < IFACE_NODE_N_PREREQUISITES (iface); i++)
{
GType prerequisite = IFACE_NODE_PREREQUISITES (iface)[i];
TypeNode *node = lookup_type_node_I (prerequisite);
if (node->is_instantiatable)
{
if (!inode || type_node_is_a_L (node, inode))
inode = node;
}
}
G_READ_UNLOCK (&type_rw_lock);
if (inode)
return NODE_TYPE (inode);
else
return G_TYPE_INVALID;
}
static IFaceHolder*
type_iface_peek_holder_L (TypeNode *iface,
GType instance_type)
{
IFaceHolder *iholder;
g_assert (NODE_IS_IFACE (iface));
iholder = iface_node_get_holders_L (iface);
while (iholder && iholder->instance_type != instance_type)
iholder = iholder->next;
return iholder;
}
static IFaceHolder*
type_iface_retrieve_holder_info_Wm (TypeNode *iface,
GType instance_type,
gboolean need_info)
{
IFaceHolder *iholder = type_iface_peek_holder_L (iface, instance_type);
if (iholder && !iholder->info && need_info)
{
GInterfaceInfo tmp_info;
g_assert (iholder->plugin != NULL);
type_data_ref_Wm (iface);
if (iholder->info)
INVALID_RECURSION ("g_type_plugin_*", iface->plugin, NODE_NAME (iface));
memset (&tmp_info, 0, sizeof (tmp_info));
G_WRITE_UNLOCK (&type_rw_lock);
g_type_plugin_use (iholder->plugin);
g_type_plugin_complete_interface_info (iholder->plugin, instance_type, NODE_TYPE (iface), &tmp_info);
G_WRITE_LOCK (&type_rw_lock);
if (iholder->info)
INVALID_RECURSION ("g_type_plugin_*", iholder->plugin, NODE_NAME (iface));
check_interface_info_I (iface, instance_type, &tmp_info);
iholder->info = g_memdup2 (&tmp_info, sizeof (tmp_info));
}
return iholder; /* we don't modify write lock upon returning NULL */
}
static void
type_iface_blow_holder_info_Wm (TypeNode *iface,
GType instance_type)
{
IFaceHolder *iholder = iface_node_get_holders_L (iface);
g_assert (NODE_IS_IFACE (iface));
while (iholder->instance_type != instance_type)
iholder = iholder->next;
if (iholder->info && iholder->plugin)
{
g_free (iholder->info);
iholder->info = NULL;
G_WRITE_UNLOCK (&type_rw_lock);
g_type_plugin_unuse (iholder->plugin);
type_data_unref_U (iface, FALSE);
G_WRITE_LOCK (&type_rw_lock);
}
}
static void
maybe_issue_deprecation_warning (GType type)
{
static GHashTable *already_warned_table;
static const gchar *enable_diagnostic;
static GMutex already_warned_lock;
gboolean already;
const char *name;
if (g_once_init_enter_pointer (&enable_diagnostic))
{
const gchar *value = g_getenv ("G_ENABLE_DIAGNOSTIC");
if (!value)
value = "0";
g_once_init_leave_pointer (&enable_diagnostic, value);
}
if (enable_diagnostic[0] == '0')
return;
g_mutex_lock (&already_warned_lock);
if (already_warned_table == NULL)
already_warned_table = g_hash_table_new (NULL, NULL);
name = g_type_name (type);
already = g_hash_table_contains (already_warned_table, (gpointer) name);
if (!already)
g_hash_table_add (already_warned_table, (gpointer) name);
g_mutex_unlock (&already_warned_lock);
if (!already)
g_warning ("The type %s is deprecated and shouldn’t be used "
"any more. It may be removed in a future version.",
name);
}
/**
* g_type_create_instance: (skip)
* @type: an instantiatable type to create an instance for
*
* Creates and initializes an instance of @type if @type is valid and
* can be instantiated. The type system only performs basic allocation
* and structure setups for instances: actual instance creation should
* happen through functions supplied by the type's fundamental type
* implementation. So use of g_type_create_instance() is reserved for
* implementers of fundamental types only. E.g. instances of the
* #GObject hierarchy should be created via g_object_new() and never
* directly through g_type_create_instance() which doesn't handle things
* like singleton objects or object construction.
*
* The extended members of the returned instance are guaranteed to be filled
* with zeros.
*
* Note: Do not use this function, unless you're implementing a
* fundamental type. Also language bindings should not use this
* function, but g_object_new() instead.
*
* Returns: an allocated and initialized instance, subject to further
* treatment by the fundamental type implementation
*/
GTypeInstance*
g_type_create_instance (GType type)
{
TypeNode *node;
GTypeInstance *instance;
GTypeClass *class;
gchar *allocated;
gint private_size;
gint ivar_size;
guint i;
node = lookup_type_node_I (type);
if (G_UNLIKELY (!node || !node->is_instantiatable))
{
g_error ("cannot create new instance of invalid (non-instantiatable) type '%s'",
type_descriptive_name_I (type));
}
/* G_TYPE_IS_ABSTRACT() is an external call: _U */
if (G_UNLIKELY (!node->mutatable_check_cache && G_TYPE_IS_ABSTRACT (type)))
{
g_error ("cannot create instance of abstract (non-instantiatable) type '%s'",
type_descriptive_name_I (type));
}
if (G_UNLIKELY (G_TYPE_IS_DEPRECATED (type)))
{
maybe_issue_deprecation_warning (type);
}
class = g_type_class_ref (type);
/* We allocate the 'private' areas before the normal instance data, in
* reverse order. This allows the private area of a particular class
* to always be at a constant relative address to the instance data.
* If we stored the private data after the instance data this would
* not be the case (since a subclass that added more instance
* variables would push the private data further along).
*
* This presents problems for valgrindability, of course, so we do a
* workaround for that case. We identify the start of the object to
* valgrind as an allocated block (so that pointers to objects show up
* as 'reachable' instead of 'possibly lost'). We then add an extra
* pointer at the end of the object, after all instance data, back to
* the start of the private area so that it is also recorded as
* reachable. We also add extra private space at the start because
* valgrind doesn't seem to like us claiming to have allocated an
* address that it saw allocated by malloc().
*/
private_size = node->data->instance.private_size;
ivar_size = node->data->instance.instance_size;
#ifdef ENABLE_VALGRIND
if (G_UNLIKELY (private_size && RUNNING_ON_VALGRIND))
{
private_size += ALIGN_STRUCT (1);
/* Allocate one extra pointer size... */
allocated = g_malloc0 (private_size + ivar_size + sizeof (gpointer));
/* ... and point it back to the start of the private data. */
*(gpointer *) (allocated + private_size + ivar_size) = allocated + ALIGN_STRUCT (1);
/* Tell valgrind that it should treat the object itself as such */
VALGRIND_MALLOCLIKE_BLOCK (allocated + private_size, ivar_size + sizeof (gpointer), 0, TRUE);
VALGRIND_MALLOCLIKE_BLOCK (allocated + ALIGN_STRUCT (1), private_size - ALIGN_STRUCT (1), 0, TRUE);
}
else
#endif
allocated = g_malloc0 (private_size + ivar_size);
instance = (GTypeInstance *) (allocated + private_size);
for (i = node->n_supers; i > 0; i--)
{
TypeNode *pnode;
pnode = lookup_type_node_I (node->supers[i]);
if (pnode->data->instance.instance_init)
{
instance->g_class = pnode->data->instance.class;
pnode->data->instance.instance_init (instance, class);
}
}
instance->g_class = class;
if (node->data->instance.instance_init)
node->data->instance.instance_init (instance, class);
#ifdef G_ENABLE_DEBUG
IF_DEBUG (INSTANCE_COUNT)
{
g_atomic_int_inc ((int *) &node->instance_count);
}
#endif
TRACE(GOBJECT_OBJECT_NEW(instance, type));
return instance;
}
/**
* g_type_free_instance:
* @instance: an instance of a type
*
* Frees an instance of a type, returning it to the instance pool for
* the type, if there is one.
*
* Like g_type_create_instance(), this function is reserved for
* implementors of fundamental types.
*/
void
g_type_free_instance (GTypeInstance *instance)
{
TypeNode *node;
GTypeClass *class;
gchar *allocated;
gint private_size;
gint ivar_size;
g_return_if_fail (instance != NULL && instance->g_class != NULL);
class = instance->g_class;
node = lookup_type_node_I (class->g_type);
if (G_UNLIKELY (!node || !node->is_instantiatable || !node->data || node->data->class.class != (gpointer) class))
{
g_critical ("cannot free instance of invalid (non-instantiatable) type '%s'",
type_descriptive_name_I (class->g_type));
return;
}
/* G_TYPE_IS_ABSTRACT() is an external call: _U */
if (G_UNLIKELY (!node->mutatable_check_cache && G_TYPE_IS_ABSTRACT (NODE_TYPE (node))))
{
g_critical ("cannot free instance of abstract (non-instantiatable) type '%s'",
NODE_NAME (node));
return;
}
instance->g_class = NULL;
private_size = node->data->instance.private_size;
ivar_size = node->data->instance.instance_size;
allocated = ((gchar *) instance) - private_size;
#ifdef G_ENABLE_DEBUG
memset (allocated, 0xaa, ivar_size + private_size);
#endif
#ifdef ENABLE_VALGRIND
/* See comment in g_type_create_instance() about what's going on here.
* We're basically unwinding what we put into motion there.
*/
if (G_UNLIKELY (private_size && RUNNING_ON_VALGRIND))
{
private_size += ALIGN_STRUCT (1);
allocated -= ALIGN_STRUCT (1);
/* Clear out the extra pointer... */
*(gpointer *) (allocated + private_size + ivar_size) = NULL;
/* ... and ensure we include it in the size we free. */
g_free_sized (allocated, private_size + ivar_size + sizeof (gpointer));
VALGRIND_FREELIKE_BLOCK (allocated + ALIGN_STRUCT (1), 0);
VALGRIND_FREELIKE_BLOCK (instance, 0);
}
else
#endif
g_free_sized (allocated, private_size + ivar_size);
#ifdef G_ENABLE_DEBUG
IF_DEBUG (INSTANCE_COUNT)
{
g_atomic_int_add ((int *) &node->instance_count, -1);
}
#endif
g_type_class_unref (class);
}
static void
type_iface_ensure_dflt_vtable_Wm (TypeNode *iface)
{
g_assert (iface->data);
if (!iface->data->iface.dflt_vtable)
{
GTypeInterface *vtable = g_malloc0 (iface->data->iface.vtable_size);
iface->data->iface.dflt_vtable = vtable;
vtable->g_type = NODE_TYPE (iface);
vtable->g_instance_type = 0;
if (iface->data->iface.vtable_init_base ||
iface->data->iface.dflt_init)
{
G_WRITE_UNLOCK (&type_rw_lock);
if (iface->data->iface.vtable_init_base)
iface->data->iface.vtable_init_base (vtable);
if (iface->data->iface.dflt_init)
iface->data->iface.dflt_init (vtable, (gpointer) iface->data->iface.dflt_data);
G_WRITE_LOCK (&type_rw_lock);
}
}
}
/* This is called to allocate and do the first part of initializing
* the interface vtable; type_iface_vtable_iface_init_Wm() does the remainder.
*
* A FALSE return indicates that we didn't find an init function for
* this type/iface pair, so the vtable from the parent type should
* be used. Note that the write lock is not modified upon a FALSE
* return.
*/
static gboolean
type_iface_vtable_base_init_Wm (TypeNode *iface,
TypeNode *node)
{
IFaceEntry *entry;
IFaceHolder *iholder;
GTypeInterface *vtable = NULL;
TypeNode *pnode;
/* type_iface_retrieve_holder_info_Wm() doesn't modify write lock for returning NULL */
iholder = type_iface_retrieve_holder_info_Wm (iface, NODE_TYPE (node), TRUE);
if (!iholder)
return FALSE; /* we don't modify write lock upon FALSE */
type_iface_ensure_dflt_vtable_Wm (iface);
entry = type_lookup_iface_entry_L (node, iface);
g_assert (iface->data && entry && entry->vtable == NULL && iholder && iholder->info);
entry->init_state = IFACE_INIT;
pnode = lookup_type_node_I (NODE_PARENT_TYPE (node));
if (pnode) /* want to copy over parent iface contents */
{
IFaceEntry *pentry = type_lookup_iface_entry_L (pnode, iface);
if (pentry)
vtable = g_memdup2 (pentry->vtable, iface->data->iface.vtable_size);
}
if (!vtable)
vtable = g_memdup2 (iface->data->iface.dflt_vtable, iface->data->iface.vtable_size);
entry->vtable = vtable;
vtable->g_type = NODE_TYPE (iface);
vtable->g_instance_type = NODE_TYPE (node);
if (iface->data->iface.vtable_init_base)
{
G_WRITE_UNLOCK (&type_rw_lock);
iface->data->iface.vtable_init_base (vtable);
G_WRITE_LOCK (&type_rw_lock);
}
return TRUE; /* initialized the vtable */
}
/* Finishes what type_iface_vtable_base_init_Wm started by
* calling the interface init function.
* this function may only be called for types with their
* own interface holder info, i.e. types for which
* g_type_add_interface*() was called and not children thereof.
*/
static void
type_iface_vtable_iface_init_Wm (TypeNode *iface,
TypeNode *node)
{
IFaceEntry *entry = type_lookup_iface_entry_L (node, iface);
IFaceHolder *iholder = type_iface_peek_holder_L (iface, NODE_TYPE (node));
GTypeInterface *vtable = NULL;
guint i;
/* iholder->info should have been filled in by type_iface_vtable_base_init_Wm() */
g_assert (iface->data && entry && iholder && iholder->info);
g_assert (entry->init_state == IFACE_INIT); /* assert prior base_init() */
entry->init_state = INITIALIZED;
vtable = entry->vtable;
if (iholder->info->interface_init)
{
G_WRITE_UNLOCK (&type_rw_lock);
if (iholder->info->interface_init)
iholder->info->interface_init (vtable, iholder->info->interface_data);
G_WRITE_LOCK (&type_rw_lock);
}
for (i = 0; i < static_n_iface_check_funcs; i++)
{
GTypeInterfaceCheckFunc check_func = static_iface_check_funcs[i].check_func;
gpointer check_data = static_iface_check_funcs[i].check_data;
G_WRITE_UNLOCK (&type_rw_lock);
check_func (check_data, (gpointer)vtable);
G_WRITE_LOCK (&type_rw_lock);
}
}
static gboolean
type_iface_vtable_finalize_Wm (TypeNode *iface,
TypeNode *node,
GTypeInterface *vtable)
{
IFaceEntry *entry = type_lookup_iface_entry_L (node, iface);
IFaceHolder *iholder;
/* type_iface_retrieve_holder_info_Wm() doesn't modify write lock for returning NULL */
iholder = type_iface_retrieve_holder_info_Wm (iface, NODE_TYPE (node), FALSE);
if (!iholder)
return FALSE; /* we don't modify write lock upon FALSE */
g_assert (entry && entry->vtable == vtable && iholder->info);
entry->vtable = NULL;
entry->init_state = UNINITIALIZED;
if (iholder->info->interface_finalize || iface->data->iface.vtable_finalize_base)
{
G_WRITE_UNLOCK (&type_rw_lock);
if (iholder->info->interface_finalize)
iholder->info->interface_finalize (vtable, iholder->info->interface_data);
if (iface->data->iface.vtable_finalize_base)
iface->data->iface.vtable_finalize_base (vtable);
G_WRITE_LOCK (&type_rw_lock);
}
vtable->g_type = 0;
vtable->g_instance_type = 0;
g_free (vtable);
type_iface_blow_holder_info_Wm (iface, NODE_TYPE (node));
return TRUE; /* write lock modified */
}
static void
type_class_init_Wm (TypeNode *node,
GTypeClass *pclass)
{
GSList *slist, *init_slist = NULL;
GTypeClass *class;
IFaceEntries *entries;
IFaceEntry *entry;
TypeNode *bnode, *pnode;
guint i;
/* Accessing data->class will work for instantiatable types
* too because ClassData is a subset of InstanceData
*/
g_assert (node->is_classed && node->data &&
node->data->class.class_size &&
!node->data->class.class &&
g_atomic_int_get (&node->data->class.init_state) == UNINITIALIZED);
if (node->data->class.class_private_size)
class = g_malloc0 (ALIGN_STRUCT (node->data->class.class_size) + node->data->class.class_private_size);
else
class = g_malloc0 (node->data->class.class_size);
node->data->class.class = class;
g_atomic_int_set (&node->data->class.init_state, BASE_CLASS_INIT);
if (pclass)
{
pnode = lookup_type_node_I (pclass->g_type);
memcpy (class, pclass, pnode->data->class.class_size);
memcpy (G_STRUCT_MEMBER_P (class, ALIGN_STRUCT (node->data->class.class_size)), G_STRUCT_MEMBER_P (pclass, ALIGN_STRUCT (pnode->data->class.class_size)), pnode->data->class.class_private_size);
if (node->is_instantiatable)
{
/* We need to initialize the private_size here rather than in
* type_data_make_W() since the class init for the parent
* class may have changed pnode->data->instance.private_size.
*/
node->data->instance.private_size = pnode->data->instance.private_size;
}
}
class->g_type = NODE_TYPE (node);
G_WRITE_UNLOCK (&type_rw_lock);
/* stack all base class initialization functions, so we
* call them in ascending order.
*/
for (bnode = node; bnode; bnode = lookup_type_node_I (NODE_PARENT_TYPE (bnode)))
if (bnode->data->class.class_init_base)
init_slist = g_slist_prepend (init_slist, (gpointer) bnode->data->class.class_init_base);
for (slist = init_slist; slist; slist = slist->next)
{
GBaseInitFunc class_init_base = (GBaseInitFunc) slist->data;
class_init_base (class);
}
g_slist_free (init_slist);
G_WRITE_LOCK (&type_rw_lock);
g_atomic_int_set (&node->data->class.init_state, BASE_IFACE_INIT);
/* Before we initialize the class, base initialize all interfaces, either
* from parent, or through our holder info
*/
pnode = lookup_type_node_I (NODE_PARENT_TYPE (node));
i = 0;
while ((entries = CLASSED_NODE_IFACES_ENTRIES_LOCKED (node)) != NULL &&
i < IFACE_ENTRIES_N_ENTRIES (entries))
{
entry = &entries->entry[i];
while (i < IFACE_ENTRIES_N_ENTRIES (entries) &&
entry->init_state == IFACE_INIT)
{
entry++;
i++;
}
if (i == IFACE_ENTRIES_N_ENTRIES (entries))
break;
if (!type_iface_vtable_base_init_Wm (lookup_type_node_I (entry->iface_type), node))
{
guint j;
IFaceEntries *pentries = CLASSED_NODE_IFACES_ENTRIES_LOCKED (pnode);
/* need to get this interface from parent, type_iface_vtable_base_init_Wm()
* doesn't modify write lock upon FALSE, so entry is still valid;
*/
g_assert (pnode != NULL);
if (pentries)
for (j = 0; j < IFACE_ENTRIES_N_ENTRIES (pentries); j++)
{
IFaceEntry *pentry = &pentries->entry[j];
if (pentry->iface_type == entry->iface_type)
{
entry->vtable = pentry->vtable;
entry->init_state = INITIALIZED;
break;
}
}
g_assert (entry->vtable != NULL);
}
/* If the write lock was released, additional interface entries might
* have been inserted into CLASSED_NODE_IFACES_ENTRIES (node); they'll
* be base-initialized when inserted, so we don't have to worry that
* we might miss them. Uninitialized entries can only be moved higher
* when new ones are inserted.
*/
i++;
}
g_atomic_int_set (&node->data->class.init_state, CLASS_INIT);
G_WRITE_UNLOCK (&type_rw_lock);
if (node->data->class.class_init)
node->data->class.class_init (class, (gpointer) node->data->class.class_data);
G_WRITE_LOCK (&type_rw_lock);
g_atomic_int_set (&node->data->class.init_state, IFACE_INIT);
/* finish initializing the interfaces through our holder info.
* inherited interfaces are already init_state == INITIALIZED, because
* they either got setup in the above base_init loop, or during
* class_init from within type_add_interface_Wm() for this or
* an ancestor type.
*/
i = 0;
while ((entries = CLASSED_NODE_IFACES_ENTRIES_LOCKED (node)) != NULL)
{
entry = &entries->entry[i];
while (i < IFACE_ENTRIES_N_ENTRIES (entries) &&
entry->init_state == INITIALIZED)
{
entry++;
i++;
}
if (i == IFACE_ENTRIES_N_ENTRIES (entries))
break;
type_iface_vtable_iface_init_Wm (lookup_type_node_I (entry->iface_type), node);
/* As in the loop above, additional initialized entries might be inserted
* if the write lock is released, but that's harmless because the entries
* we need to initialize only move higher in the list.
*/
i++;
}
g_atomic_int_set (&node->data->class.init_state, INITIALIZED);
}
static void
type_data_finalize_class_ifaces_Wm (TypeNode *node)
{
guint i;
IFaceEntries *entries;
g_assert (node->is_instantiatable && node->data && node->data->class.class && NODE_REFCOUNT (node) == 0);
reiterate:
entries = CLASSED_NODE_IFACES_ENTRIES_LOCKED (node);
for (i = 0; entries != NULL && i < IFACE_ENTRIES_N_ENTRIES (entries); i++)
{
IFaceEntry *entry = &entries->entry[i];
if (entry->vtable)
{
if (type_iface_vtable_finalize_Wm (lookup_type_node_I (entry->iface_type), node, entry->vtable))
{
/* refetch entries, IFACES_ENTRIES might be modified */
goto reiterate;
}
else
{
/* type_iface_vtable_finalize_Wm() doesn't modify write lock upon FALSE,
* iface vtable came from parent
*/
entry->vtable = NULL;
entry->init_state = UNINITIALIZED;
}
}
}
}
static void
type_data_finalize_class_U (TypeNode *node,
ClassData *cdata)
{
GTypeClass *class = cdata->class;
TypeNode *bnode;
g_assert (cdata->class && NODE_REFCOUNT (node) == 0);
if (cdata->class_finalize)
cdata->class_finalize (class, (gpointer) cdata->class_data);
/* call all base class destruction functions in descending order
*/
if (cdata->class_finalize_base)
cdata->class_finalize_base (class);
for (bnode = lookup_type_node_I (NODE_PARENT_TYPE (node)); bnode; bnode = lookup_type_node_I (NODE_PARENT_TYPE (bnode)))
if (bnode->data->class.class_finalize_base)
bnode->data->class.class_finalize_base (class);
g_free (cdata->class);
}
static void
type_data_last_unref_Wm (TypeNode *node,
gboolean uncached)
{
g_return_if_fail (node != NULL && node->plugin != NULL);
if (!node->data || NODE_REFCOUNT (node) == 0)
{
g_critical ("cannot drop last reference to unreferenced type '%s'",
NODE_NAME (node));
return;
}
/* call class cache hooks */
if (node->is_classed && node->data && node->data->class.class && static_n_class_cache_funcs && !uncached)
{
guint i;
G_WRITE_UNLOCK (&type_rw_lock);
G_READ_LOCK (&type_rw_lock);
for (i = 0; i < static_n_class_cache_funcs; i++)
{
GTypeClassCacheFunc cache_func = static_class_cache_funcs[i].cache_func;
gpointer cache_data = static_class_cache_funcs[i].cache_data;
gboolean need_break;
G_READ_UNLOCK (&type_rw_lock);
need_break = cache_func (cache_data, node->data->class.class);
G_READ_LOCK (&type_rw_lock);
if (!node->data || NODE_REFCOUNT (node) == 0)
INVALID_RECURSION ("GType class cache function ", cache_func, NODE_NAME (node));
if (need_break)
break;
}
G_READ_UNLOCK (&type_rw_lock);
G_WRITE_LOCK (&type_rw_lock);
}
/* may have been re-referenced meanwhile */
if (g_atomic_int_dec_and_test ((int *) &node->ref_count))
{
GType ptype = NODE_PARENT_TYPE (node);
TypeData *tdata;
if (node->is_instantiatable)
{
/* destroy node->data->instance.mem_chunk */
}
tdata = node->data;
if (node->is_classed && tdata->class.class)
{
if (CLASSED_NODE_IFACES_ENTRIES_LOCKED (node) != NULL)
type_data_finalize_class_ifaces_Wm (node);
node->mutatable_check_cache = FALSE;
node->data = NULL;
G_WRITE_UNLOCK (&type_rw_lock);
type_data_finalize_class_U (node, &tdata->class);
G_WRITE_LOCK (&type_rw_lock);
}
else if (NODE_IS_IFACE (node) && tdata->iface.dflt_vtable)
{
node->mutatable_check_cache = FALSE;
node->data = NULL;
if (tdata->iface.dflt_finalize || tdata->iface.vtable_finalize_base)
{
G_WRITE_UNLOCK (&type_rw_lock);
if (tdata->iface.dflt_finalize)
tdata->iface.dflt_finalize (tdata->iface.dflt_vtable, (gpointer) tdata->iface.dflt_data);
if (tdata->iface.vtable_finalize_base)
tdata->iface.vtable_finalize_base (tdata->iface.dflt_vtable);
G_WRITE_LOCK (&type_rw_lock);
}
g_free (tdata->iface.dflt_vtable);
}
else
{
node->mutatable_check_cache = FALSE;
node->data = NULL;
}
/* freeing tdata->common.value_table and its contents is taken care of
* by allocating it in one chunk with tdata
*/
g_free (tdata);
G_WRITE_UNLOCK (&type_rw_lock);
g_type_plugin_unuse (node->plugin);
if (ptype)
type_data_unref_U (lookup_type_node_I (ptype), FALSE);
G_WRITE_LOCK (&type_rw_lock);
}
}
static inline void
type_data_unref_U (TypeNode *node,
gboolean uncached)
{
guint current;
do {
current = NODE_REFCOUNT (node);
if (current <= 1)
{
if (!node->plugin)
{
g_critical ("static type '%s' unreferenced too often",
NODE_NAME (node));
return;
}
else
{
/* This is the last reference of a type from a plugin. We are
* experimentally disabling support for unloading type
* plugins, so don't allow the last ref to drop.
*/
return;
}
g_assert (current > 0);
g_rec_mutex_lock (&class_init_rec_mutex); /* required locking order: 1) class_init_rec_mutex, 2) type_rw_lock */
G_WRITE_LOCK (&type_rw_lock);
type_data_last_unref_Wm (node, uncached);
G_WRITE_UNLOCK (&type_rw_lock);
g_rec_mutex_unlock (&class_init_rec_mutex);
return;
}
} while (!g_atomic_int_compare_and_exchange ((int *) &node->ref_count, current, current - 1));
}
/**
* g_type_add_class_cache_func: (skip)
* @cache_data: data to be passed to @cache_func
* @cache_func: a #GTypeClassCacheFunc
*
* Adds a #GTypeClassCacheFunc to be called before the reference count of a
* class goes from one to zero. This can be used to prevent premature class
* destruction. All installed #GTypeClassCacheFunc functions will be chained
* until one of them returns %TRUE. The functions have to check the class id
* passed in to figure whether they actually want to cache the class of this
* type, since all classes are routed through the same #GTypeClassCacheFunc
* chain.
*/
void
g_type_add_class_cache_func (gpointer cache_data,
GTypeClassCacheFunc cache_func)
{
guint i;
g_return_if_fail (cache_func != NULL);
G_WRITE_LOCK (&type_rw_lock);
i = static_n_class_cache_funcs++;
static_class_cache_funcs = g_renew (ClassCacheFunc, static_class_cache_funcs, static_n_class_cache_funcs);
static_class_cache_funcs[i].cache_data = cache_data;
static_class_cache_funcs[i].cache_func = cache_func;
G_WRITE_UNLOCK (&type_rw_lock);
}
/**
* g_type_remove_class_cache_func: (skip)
* @cache_data: data that was given when adding @cache_func
* @cache_func: a #GTypeClassCacheFunc
*
* Removes a previously installed #GTypeClassCacheFunc. The cache
* maintained by @cache_func has to be empty when calling
* g_type_remove_class_cache_func() to avoid leaks.
*/
void
g_type_remove_class_cache_func (gpointer cache_data,
GTypeClassCacheFunc cache_func)
{
gboolean found_it = FALSE;
guint i;
g_return_if_fail (cache_func != NULL);
G_WRITE_LOCK (&type_rw_lock);
for (i = 0; i < static_n_class_cache_funcs; i++)
if (static_class_cache_funcs[i].cache_data == cache_data &&
static_class_cache_funcs[i].cache_func == cache_func)
{
static_n_class_cache_funcs--;
memmove (static_class_cache_funcs + i,
static_class_cache_funcs + i + 1,
sizeof (static_class_cache_funcs[0]) * (static_n_class_cache_funcs - i));
static_class_cache_funcs = g_renew (ClassCacheFunc, static_class_cache_funcs, static_n_class_cache_funcs);
found_it = TRUE;
break;
}
G_WRITE_UNLOCK (&type_rw_lock);
if (!found_it)
g_critical (G_STRLOC ": cannot remove unregistered class cache func %p with data %p",
cache_func, cache_data);
}
/**
* g_type_add_interface_check: (skip)
* @check_data: data to pass to @check_func
* @check_func: function to be called after each interface
* is initialized
*
* Adds a function to be called after an interface vtable is
* initialized for any class (i.e. after the @interface_init
* member of #GInterfaceInfo has been called).
*
* This function is useful when you want to check an invariant
* that depends on the interfaces of a class. For instance, the
* implementation of #GObject uses this facility to check that an
* object implements all of the properties that are defined on its
* interfaces.
*
* Since: 2.4
*/
void
g_type_add_interface_check (gpointer check_data,
GTypeInterfaceCheckFunc check_func)
{
guint i;
g_return_if_fail (check_func != NULL);
G_WRITE_LOCK (&type_rw_lock);
i = static_n_iface_check_funcs++;
static_iface_check_funcs = g_renew (IFaceCheckFunc, static_iface_check_funcs, static_n_iface_check_funcs);
static_iface_check_funcs[i].check_data = check_data;
static_iface_check_funcs[i].check_func = check_func;
G_WRITE_UNLOCK (&type_rw_lock);
}
/**
* g_type_remove_interface_check: (skip)
* @check_data: callback data passed to g_type_add_interface_check()
* @check_func: callback function passed to g_type_add_interface_check()
*
* Removes an interface check function added with
* g_type_add_interface_check().
*
* Since: 2.4
*/
void
g_type_remove_interface_check (gpointer check_data,
GTypeInterfaceCheckFunc check_func)
{
gboolean found_it = FALSE;
guint i;
g_return_if_fail (check_func != NULL);
G_WRITE_LOCK (&type_rw_lock);
for (i = 0; i < static_n_iface_check_funcs; i++)
if (static_iface_check_funcs[i].check_data == check_data &&
static_iface_check_funcs[i].check_func == check_func)
{
static_n_iface_check_funcs--;
memmove (static_iface_check_funcs + i,
static_iface_check_funcs + i + 1,
sizeof (static_iface_check_funcs[0]) * (static_n_iface_check_funcs - i));
static_iface_check_funcs = g_renew (IFaceCheckFunc, static_iface_check_funcs, static_n_iface_check_funcs);
found_it = TRUE;
break;
}
G_WRITE_UNLOCK (&type_rw_lock);
if (!found_it)
g_critical (G_STRLOC ": cannot remove unregistered class check func %p with data %p",
check_func, check_data);
}
/* --- type registration --- */
/**
* g_type_register_fundamental:
* @type_id: a predefined type identifier
* @type_name: 0-terminated string used as the name of the new type
* @info: #GTypeInfo structure for this type
* @finfo: #GTypeFundamentalInfo structure for this type
* @flags: bitwise combination of #GTypeFlags values
*
* Registers @type_id as the predefined identifier and @type_name as the
* name of a fundamental type. If @type_id is already registered, or a
* type named @type_name is already registered, the behaviour is undefined.
* The type system uses the information contained in the #GTypeInfo structure
* pointed to by @info and the #GTypeFundamentalInfo structure pointed to by
* @finfo to manage the type and its instances. The value of @flags determines
* additional characteristics of the fundamental type.
*
* Returns: the predefined type identifier
*/
GType
g_type_register_fundamental (GType type_id,
const gchar *type_name,
const GTypeInfo *info,
const GTypeFundamentalInfo *finfo,
GTypeFlags flags)
{
TypeNode *node;
g_assert_type_system_initialized ();
g_return_val_if_fail (type_id > 0, 0);
g_return_val_if_fail (type_name != NULL, 0);
g_return_val_if_fail (info != NULL, 0);
g_return_val_if_fail (finfo != NULL, 0);
if (!check_type_name_I (type_name))
return 0;
if ((type_id & TYPE_ID_MASK) ||
type_id > G_TYPE_FUNDAMENTAL_MAX)
{
g_critical ("attempt to register fundamental type '%s' with invalid type id (%" G_GSIZE_FORMAT ")",
type_name,
type_id);
return 0;
}
if ((finfo->type_flags & G_TYPE_FLAG_INSTANTIATABLE) &&
!(finfo->type_flags & G_TYPE_FLAG_CLASSED))
{
g_critical ("cannot register instantiatable fundamental type '%s' as non-classed",
type_name);
return 0;
}
if (lookup_type_node_I (type_id))
{
g_critical ("cannot register existing fundamental type '%s' (as '%s')",
type_descriptive_name_I (type_id),
type_name);
return 0;
}
G_WRITE_LOCK (&type_rw_lock);
node = type_node_fundamental_new_W (type_id, type_name, finfo->type_flags);
type_add_flags_W (node, flags);
if (check_type_info_I (NULL, NODE_FUNDAMENTAL_TYPE (node), type_name, info))
type_data_make_W (node, info,
check_value_table_I (type_name, info->value_table) ? info->value_table : NULL);
G_WRITE_UNLOCK (&type_rw_lock);
return NODE_TYPE (node);
}
/**
* g_type_register_static_simple: (skip)
* @parent_type: type from which this type will be derived
* @type_name: 0-terminated string used as the name of the new type
* @class_size: size of the class structure (see #GTypeInfo)
* @class_init: location of the class initialization function (see #GTypeInfo)
* @instance_size: size of the instance structure (see #GTypeInfo)
* @instance_init: location of the instance initialization function (see #GTypeInfo)
* @flags: bitwise combination of #GTypeFlags values
*
* Registers @type_name as the name of a new static type derived from
* @parent_type. The value of @flags determines the nature (e.g.
* abstract or not) of the type. It works by filling a #GTypeInfo
* struct and calling g_type_register_static().
*
* Since: 2.12
*
* Returns: the new type identifier
*/
GType
g_type_register_static_simple (GType parent_type,
const gchar *type_name,
guint class_size,
GClassInitFunc class_init,
guint instance_size,
GInstanceInitFunc instance_init,
GTypeFlags flags)
{
GTypeInfo info;
/* Instances are not allowed to be larger than this. If you have a big
* fixed-length array or something, point to it instead.
*/
g_return_val_if_fail (class_size <= G_MAXUINT16, G_TYPE_INVALID);
g_return_val_if_fail (instance_size <= G_MAXUINT16, G_TYPE_INVALID);
info.class_size = class_size;
info.base_init = NULL;
info.base_finalize = NULL;
info.class_init = class_init;
info.class_finalize = NULL;
info.class_data = NULL;
info.instance_size = instance_size;
info.n_preallocs = 0;
info.instance_init = instance_init;
info.value_table = NULL;
return g_type_register_static (parent_type, type_name, &info, flags);
}
/**
* g_type_register_static:
* @parent_type: type from which this type will be derived
* @type_name: 0-terminated string used as the name of the new type
* @info: #GTypeInfo structure for this type
* @flags: bitwise combination of #GTypeFlags values
*
* Registers @type_name as the name of a new static type derived from
* @parent_type. The type system uses the information contained in the
* #GTypeInfo structure pointed to by @info to manage the type and its
* instances (if not abstract). The value of @flags determines the nature
* (e.g. abstract or not) of the type.
*
* Returns: the new type identifier
*/
GType
g_type_register_static (GType parent_type,
const gchar *type_name,
const GTypeInfo *info,
GTypeFlags flags)
{
TypeNode *pnode, *node;
GType type = 0;
g_assert_type_system_initialized ();
g_return_val_if_fail (parent_type > 0, 0);
g_return_val_if_fail (type_name != NULL, 0);
g_return_val_if_fail (info != NULL, 0);
if (!check_type_name_I (type_name) ||
!check_derivation_I (parent_type, type_name))
return 0;
if (info->class_finalize)
{
g_critical ("class finalizer specified for static type '%s'",
type_name);
return 0;
}
pnode = lookup_type_node_I (parent_type);
G_WRITE_LOCK (&type_rw_lock);
type_data_ref_Wm (pnode);
if (check_type_info_I (pnode, NODE_FUNDAMENTAL_TYPE (pnode), type_name, info))
{
node = type_node_new_W (pnode, type_name, NULL);
type_add_flags_W (node, flags);
type = NODE_TYPE (node);
type_data_make_W (node, info,
check_value_table_I (type_name, info->value_table) ? info->value_table : NULL);
}
G_WRITE_UNLOCK (&type_rw_lock);
return type;
}
/**
* g_type_register_dynamic:
* @parent_type: type from which this type will be derived
* @type_name: 0-terminated string used as the name of the new type
* @plugin: #GTypePlugin structure to retrieve the #GTypeInfo from
* @flags: bitwise combination of #GTypeFlags values
*
* Registers @type_name as the name of a new dynamic type derived from
* @parent_type. The type system uses the information contained in the
* #GTypePlugin structure pointed to by @plugin to manage the type and its
* instances (if not abstract). The value of @flags determines the nature
* (e.g. abstract or not) of the type.
*
* Returns: the new type identifier or %G_TYPE_INVALID if registration failed
*/
GType
g_type_register_dynamic (GType parent_type,
const gchar *type_name,
GTypePlugin *plugin,
GTypeFlags flags)
{
TypeNode *pnode, *node;
GType type;
g_assert_type_system_initialized ();
g_return_val_if_fail (parent_type > 0, 0);
g_return_val_if_fail (type_name != NULL, 0);
g_return_val_if_fail (plugin != NULL, 0);
if (!check_type_name_I (type_name) ||
!check_derivation_I (parent_type, type_name) ||
!check_plugin_U (plugin, TRUE, FALSE, type_name))
return 0;
G_WRITE_LOCK (&type_rw_lock);
pnode = lookup_type_node_I (parent_type);
node = type_node_new_W (pnode, type_name, plugin);
type_add_flags_W (node, flags);
type = NODE_TYPE (node);
G_WRITE_UNLOCK (&type_rw_lock);
return type;
}
/**
* g_type_add_interface_static:
* @instance_type: #GType value of an instantiatable type
* @interface_type: #GType value of an interface type
* @info: #GInterfaceInfo structure for this
* (@instance_type, @interface_type) combination
*
* Adds @interface_type to the static @instance_type.
* The information contained in the #GInterfaceInfo structure
* pointed to by @info is used to manage the relationship.
*/
void
g_type_add_interface_static (GType instance_type,
GType interface_type,
const GInterfaceInfo *info)
{
/* G_TYPE_IS_INSTANTIATABLE() is an external call: _U */
g_return_if_fail (G_TYPE_IS_INSTANTIATABLE (instance_type));
g_return_if_fail (g_type_parent (interface_type) == G_TYPE_INTERFACE);
/* we only need to lock class_init_rec_mutex if instance_type already has its
* class initialized, however this function is rarely enough called to take
* the simple route and always acquire class_init_rec_mutex.
*/
g_rec_mutex_lock (&class_init_rec_mutex); /* required locking order: 1) class_init_rec_mutex, 2) type_rw_lock */
G_WRITE_LOCK (&type_rw_lock);
if (check_add_interface_L (instance_type, interface_type))
{
TypeNode *node = lookup_type_node_I (instance_type);
TypeNode *iface = lookup_type_node_I (interface_type);
if (check_interface_info_I (iface, NODE_TYPE (node), info))
type_add_interface_Wm (node, iface, info, NULL);
}
G_WRITE_UNLOCK (&type_rw_lock);
g_rec_mutex_unlock (&class_init_rec_mutex);
}
/**
* g_type_add_interface_dynamic:
* @instance_type: #GType value of an instantiatable type
* @interface_type: #GType value of an interface type
* @plugin: #GTypePlugin structure to retrieve the #GInterfaceInfo from
*
* Adds @interface_type to the dynamic @instance_type. The information
* contained in the #GTypePlugin structure pointed to by @plugin
* is used to manage the relationship.
*/
void
g_type_add_interface_dynamic (GType instance_type,
GType interface_type,
GTypePlugin *plugin)
{
TypeNode *node;
/* G_TYPE_IS_INSTANTIATABLE() is an external call: _U */
g_return_if_fail (G_TYPE_IS_INSTANTIATABLE (instance_type));
g_return_if_fail (g_type_parent (interface_type) == G_TYPE_INTERFACE);
node = lookup_type_node_I (instance_type);
if (!check_plugin_U (plugin, FALSE, TRUE, NODE_NAME (node)))
return;
/* see comment in g_type_add_interface_static() about class_init_rec_mutex */
g_rec_mutex_lock (&class_init_rec_mutex); /* required locking order: 1) class_init_rec_mutex, 2) type_rw_lock */
G_WRITE_LOCK (&type_rw_lock);
if (check_add_interface_L (instance_type, interface_type))
{
TypeNode *iface = lookup_type_node_I (interface_type);
type_add_interface_Wm (node, iface, NULL, plugin);
}
G_WRITE_UNLOCK (&type_rw_lock);
g_rec_mutex_unlock (&class_init_rec_mutex);
}
/* --- public API functions --- */
/**
* g_type_class_ref:
* @type: type ID of a classed type
*
* Increments the reference count of the class structure belonging to
* @type. This function will demand-create the class if it doesn't
* exist already.
*
* Returns: (type GObject.TypeClass) (transfer none): the #GTypeClass
* structure for the given type ID
*/
gpointer
g_type_class_ref (GType type)
{
TypeNode *node;
GType ptype;
gboolean holds_ref;
GTypeClass *pclass;
/* optimize for common code path */
node = lookup_type_node_I (type);
if (!node || !node->is_classed)
{
g_critical ("cannot retrieve class for invalid (unclassed) type '%s'",
type_descriptive_name_I (type));
return NULL;
}
if (G_LIKELY (type_data_ref_U (node)))
{
if (G_LIKELY (g_atomic_int_get (&node->data->class.init_state) == INITIALIZED))
return node->data->class.class;
holds_ref = TRUE;
}
else
holds_ref = FALSE;
/* here, we either have node->data->class.class == NULL, or a recursive
* call to g_type_class_ref() with a partly initialized class, or
* node->data->class.init_state == INITIALIZED, because any
* concurrently running initialization was guarded by class_init_rec_mutex.
*/
g_rec_mutex_lock (&class_init_rec_mutex); /* required locking order: 1) class_init_rec_mutex, 2) type_rw_lock */
/* we need an initialized parent class for initializing derived classes */
ptype = NODE_PARENT_TYPE (node);
pclass = ptype ? g_type_class_ref (ptype) : NULL;
G_WRITE_LOCK (&type_rw_lock);
if (!holds_ref)
type_data_ref_Wm (node);
if (!node->data->class.class) /* class uninitialized */
type_class_init_Wm (node, pclass);
G_WRITE_UNLOCK (&type_rw_lock);
if (pclass)
g_type_class_unref (pclass);
g_rec_mutex_unlock (&class_init_rec_mutex);
return node->data->class.class;
}
/**
* g_type_class_unref:
* @g_class: (type GObject.TypeClass): a #GTypeClass structure to unref
*
* Decrements the reference count of the class structure being passed in.
* Once the last reference count of a class has been released, classes
* may be finalized by the type system, so further dereferencing of a
* class pointer after g_type_class_unref() are invalid.
*/
void
g_type_class_unref (gpointer g_class)
{
TypeNode *node;
GTypeClass *class = g_class;
g_return_if_fail (g_class != NULL);
node = lookup_type_node_I (class->g_type);
if (node && node->is_classed && NODE_REFCOUNT (node))
type_data_unref_U (node, FALSE);
else
g_critical ("cannot unreference class of invalid (unclassed) type '%s'",
type_descriptive_name_I (class->g_type));
}
/**
* g_type_class_unref_uncached: (skip)
* @g_class: (type GObject.TypeClass): a #GTypeClass structure to unref
*
* A variant of g_type_class_unref() for use in #GTypeClassCacheFunc
* implementations. It unreferences a class without consulting the chain
* of #GTypeClassCacheFuncs, avoiding the recursion which would occur
* otherwise.
*/
void
g_type_class_unref_uncached (gpointer g_class)
{
TypeNode *node;
GTypeClass *class = g_class;
g_return_if_fail (g_class != NULL);
node = lookup_type_node_I (class->g_type);
if (node && node->is_classed && NODE_REFCOUNT (node))
type_data_unref_U (node, TRUE);
else
g_critical ("cannot unreference class of invalid (unclassed) type '%s'",
type_descriptive_name_I (class->g_type));
}
/**
* g_type_class_peek:
* @type: type ID of a classed type
*
* This function is essentially the same as g_type_class_ref(),
* except that the classes reference count isn't incremented.
* As a consequence, this function may return %NULL if the class
* of the type passed in does not currently exist (hasn't been
* referenced before).
*
* Returns: (type GObject.TypeClass) (transfer none): the #GTypeClass
* structure for the given type ID or %NULL if the class does not
* currently exist
*/
gpointer
g_type_class_peek (GType type)
{
TypeNode *node;
gpointer class;
node = lookup_type_node_I (type);
if (node && node->is_classed && NODE_REFCOUNT (node) &&
g_atomic_int_get (&node->data->class.init_state) == INITIALIZED)
/* ref_count _may_ be 0 */
class = node->data->class.class;
else
class = NULL;
return class;
}
/**
* g_type_class_peek_static:
* @type: type ID of a classed type
*
* A more efficient version of g_type_class_peek() which works only for
* static types.
*
* Returns: (type GObject.TypeClass) (transfer none): the #GTypeClass
* structure for the given type ID or %NULL if the class does not
* currently exist or is dynamically loaded
*
* Since: 2.4
*/
gpointer
g_type_class_peek_static (GType type)
{
TypeNode *node;
gpointer class;
node = lookup_type_node_I (type);
if (node && node->is_classed && NODE_REFCOUNT (node) &&
/* peek only static types: */ node->plugin == NULL &&
g_atomic_int_get (&node->data->class.init_state) == INITIALIZED)
/* ref_count _may_ be 0 */
class = node->data->class.class;
else
class = NULL;
return class;
}
/**
* g_type_class_peek_parent:
* @g_class: (type GObject.TypeClass): the #GTypeClass structure to
* retrieve the parent class for
*
* This is a convenience function often needed in class initializers.
* It returns the class structure of the immediate parent type of the
* class passed in. Since derived classes hold a reference count on
* their parent classes as long as they are instantiated, the returned
* class will always exist.
*
* This function is essentially equivalent to:
* g_type_class_peek (g_type_parent (G_TYPE_FROM_CLASS (g_class)))
*
* Returns: (type GObject.TypeClass) (transfer none): the parent class
* of @g_class
*/
gpointer
g_type_class_peek_parent (gpointer g_class)
{
TypeNode *node;
gpointer class = NULL;
g_return_val_if_fail (g_class != NULL, NULL);
node = lookup_type_node_I (G_TYPE_FROM_CLASS (g_class));
g_return_val_if_fail (node != NULL, NULL);
/* We used to acquire a read lock here. That is not necessary, since
* parent->data->class.class is constant as long as the derived class
* exists.
*/
if (node->is_classed && node->data && NODE_PARENT_TYPE (node))
{
node = lookup_type_node_I (NODE_PARENT_TYPE (node));
class = node->data->class.class;
}
else if (NODE_PARENT_TYPE (node))
g_critical (G_STRLOC ": invalid class pointer '%p'", g_class);
return class;
}
/**
* g_type_interface_peek:
* @instance_class: (type GObject.TypeClass): a #GTypeClass structure
* @iface_type: an interface ID which this class conforms to
*
* Returns the #GTypeInterface structure of an interface to which the
* passed in class conforms.
*
* Returns: (type GObject.TypeInterface) (transfer none): the #GTypeInterface
* structure of @iface_type if implemented by @instance_class, %NULL
* otherwise
*/
gpointer
g_type_interface_peek (gpointer instance_class,
GType iface_type)
{
TypeNode *node;
TypeNode *iface;
gpointer vtable = NULL;
GTypeClass *class = instance_class;
g_return_val_if_fail (instance_class != NULL, NULL);
node = lookup_type_node_I (class->g_type);
iface = lookup_type_node_I (iface_type);
if (node && node->is_instantiatable && iface)
type_lookup_iface_vtable_I (node, iface, &vtable);
else
g_critical (G_STRLOC ": invalid class pointer '%p'", class);
return vtable;
}
/**
* g_type_interface_peek_parent:
* @g_iface: (type GObject.TypeInterface): a #GTypeInterface structure
*
* Returns the corresponding #GTypeInterface structure of the parent type
* of the instance type to which @g_iface belongs. This is useful when
* deriving the implementation of an interface from the parent type and
* then possibly overriding some methods.
*
* Returns: (transfer none) (type GObject.TypeInterface): the
* corresponding #GTypeInterface structure of the parent type of the
* instance type to which @g_iface belongs, or %NULL if the parent
* type doesn't conform to the interface
*/
gpointer
g_type_interface_peek_parent (gpointer g_iface)
{
TypeNode *node;
TypeNode *iface;
gpointer vtable = NULL;
GTypeInterface *iface_class = g_iface;
g_return_val_if_fail (g_iface != NULL, NULL);
iface = lookup_type_node_I (iface_class->g_type);
node = lookup_type_node_I (iface_class->g_instance_type);
if (node)
node = lookup_type_node_I (NODE_PARENT_TYPE (node));
if (node && node->is_instantiatable && iface)
type_lookup_iface_vtable_I (node, iface, &vtable);
else if (node)
g_critical (G_STRLOC ": invalid interface pointer '%p'", g_iface);
return vtable;
}
/**
* g_type_default_interface_ref:
* @g_type: an interface type
*
* Increments the reference count for the interface type @g_type,
* and returns the default interface vtable for the type.
*
* If the type is not currently in use, then the default vtable
* for the type will be created and initialized by calling
* the base interface init and default vtable init functions for
* the type (the @base_init and @class_init members of #GTypeInfo).
* Calling g_type_default_interface_ref() is useful when you
* want to make sure that signals and properties for an interface
* have been installed.
*
* Since: 2.4
*
* Returns: (type GObject.TypeInterface) (transfer none): the default
* vtable for the interface; call g_type_default_interface_unref()
* when you are done using the interface.
*/
gpointer
g_type_default_interface_ref (GType g_type)
{
TypeNode *node;
gpointer dflt_vtable;
G_WRITE_LOCK (&type_rw_lock);
node = lookup_type_node_I (g_type);
if (!node || !NODE_IS_IFACE (node) ||
(node->data && NODE_REFCOUNT (node) == 0))
{
G_WRITE_UNLOCK (&type_rw_lock);
g_critical ("cannot retrieve default vtable for invalid or non-interface type '%s'",
type_descriptive_name_I (g_type));
return NULL;
}
if (!node->data || !node->data->iface.dflt_vtable)
{
G_WRITE_UNLOCK (&type_rw_lock);
g_rec_mutex_lock (&class_init_rec_mutex); /* required locking order: 1) class_init_rec_mutex, 2) type_rw_lock */
G_WRITE_LOCK (&type_rw_lock);
node = lookup_type_node_I (g_type);
type_data_ref_Wm (node);
type_iface_ensure_dflt_vtable_Wm (node);
g_rec_mutex_unlock (&class_init_rec_mutex);
}
else
type_data_ref_Wm (node); /* ref_count >= 1 already */
dflt_vtable = node->data->iface.dflt_vtable;
G_WRITE_UNLOCK (&type_rw_lock);
return dflt_vtable;
}
/**
* g_type_default_interface_peek:
* @g_type: an interface type
*
* If the interface type @g_type is currently in use, returns its
* default interface vtable.
*
* Since: 2.4
*
* Returns: (type GObject.TypeInterface) (transfer none): the default
* vtable for the interface, or %NULL if the type is not currently
* in use
*/
gpointer
g_type_default_interface_peek (GType g_type)
{
TypeNode *node;
gpointer vtable;
node = lookup_type_node_I (g_type);
if (node && NODE_IS_IFACE (node) && NODE_REFCOUNT (node))
vtable = node->data->iface.dflt_vtable;
else
vtable = NULL;
return vtable;
}
/**
* g_type_default_interface_unref:
* @g_iface: (type GObject.TypeInterface): the default vtable
* structure for an interface, as returned by g_type_default_interface_ref()
*
* Decrements the reference count for the type corresponding to the
* interface default vtable @g_iface. If the type is dynamic, then
* when no one is using the interface and all references have
* been released, the finalize function for the interface's default
* vtable (the @class_finalize member of #GTypeInfo) will be called.
*
* Since: 2.4
*/
void
g_type_default_interface_unref (gpointer g_iface)
{
TypeNode *node;
GTypeInterface *vtable = g_iface;
g_return_if_fail (g_iface != NULL);
node = lookup_type_node_I (vtable->g_type);
if (node && NODE_IS_IFACE (node))
type_data_unref_U (node, FALSE);
else
g_critical ("cannot unreference invalid interface default vtable for '%s'",
type_descriptive_name_I (vtable->g_type));
}
/**
* g_type_name:
* @type: type to return name for
*
* Get the unique name that is assigned to a type ID. Note that this
* function (like all other GType API) cannot cope with invalid type
* IDs. %G_TYPE_INVALID may be passed to this function, as may be any
* other validly registered type ID, but randomized type IDs should
* not be passed in and will most likely lead to a crash.
*
* Returns: (nullable): static type name or %NULL
*/
const gchar *
g_type_name (GType type)
{
TypeNode *node;
g_assert_type_system_initialized ();
node = lookup_type_node_I (type);
return node ? NODE_NAME (node) : NULL;
}
/**
* g_type_qname:
* @type: type to return quark of type name for
*
* Get the corresponding quark of the type IDs name.
*
* Returns: the type names quark or 0
*/
GQuark
g_type_qname (GType type)
{
TypeNode *node;
node = lookup_type_node_I (type);
return node ? node->qname : 0;
}
/**
* g_type_from_name:
* @name: type name to look up
*
* Look up the type ID from a given type name, returning 0 if no type
* has been registered under this name (this is the preferred method
* to find out by name whether a specific type has been registered
* yet).
*
* Returns: corresponding type ID or 0
*/
GType
g_type_from_name (const gchar *name)
{
GType type = 0;
g_return_val_if_fail (name != NULL, 0);
G_READ_LOCK (&type_rw_lock);
type = (GType) g_hash_table_lookup (static_type_nodes_ht, name);
G_READ_UNLOCK (&type_rw_lock);
return type;
}
/**
* g_type_parent:
* @type: the derived type
*
* Return the direct parent type of the passed in type. If the passed
* in type has no parent, i.e. is a fundamental type, 0 is returned.
*
* Returns: the parent type
*/
GType
g_type_parent (GType type)
{
TypeNode *node;
node = lookup_type_node_I (type);
return node ? NODE_PARENT_TYPE (node) : 0;
}
/**
* g_type_depth:
* @type: a #GType
*
* Returns the length of the ancestry of the passed in type. This
* includes the type itself, so that e.g. a fundamental type has depth 1.
*
* Returns: the depth of @type
*/
guint
g_type_depth (GType type)
{
TypeNode *node;
node = lookup_type_node_I (type);
return node ? node->n_supers + 1 : 0;
}
/**
* g_type_next_base:
* @leaf_type: descendant of @root_type and the type to be returned
* @root_type: immediate parent of the returned type
*
* Given a @leaf_type and a @root_type which is contained in its
* ancestry, return the type that @root_type is the immediate parent
* of. In other words, this function determines the type that is
* derived directly from @root_type which is also a base class of
* @leaf_type. Given a root type and a leaf type, this function can
* be used to determine the types and order in which the leaf type is
* descended from the root type.
*
* Returns: immediate child of @root_type and ancestor of @leaf_type
*/
GType
g_type_next_base (GType type,
GType base_type)
{
GType atype = 0;
TypeNode *node;
node = lookup_type_node_I (type);
if (node)
{
TypeNode *base_node = lookup_type_node_I (base_type);
if (base_node && base_node->n_supers < node->n_supers)
{
guint n = node->n_supers - base_node->n_supers;
if (node->supers[n] == base_type)
atype = node->supers[n - 1];
}
}
return atype;
}
static inline gboolean
type_node_check_conformities_UorL (TypeNode *node,
TypeNode *iface_node,
/* support_inheritance */
gboolean support_interfaces,
gboolean support_prerequisites,
gboolean have_lock)
{
gboolean match;
if (/* support_inheritance && */
NODE_IS_ANCESTOR (iface_node, node))
return TRUE;
support_interfaces = support_interfaces && node->is_instantiatable && NODE_IS_IFACE (iface_node);
support_prerequisites = support_prerequisites && NODE_IS_IFACE (node);
match = FALSE;
if (support_interfaces)
{
if (have_lock)
{
if (type_lookup_iface_entry_L (node, iface_node))
match = TRUE;
}
else
{
if (type_lookup_iface_vtable_I (node, iface_node, NULL))
match = TRUE;
}
}
if (!match &&
support_prerequisites)
{
if (!have_lock)
G_READ_LOCK (&type_rw_lock);
if (support_prerequisites && type_lookup_prerequisite_L (node, NODE_TYPE (iface_node)))
match = TRUE;
if (!have_lock)
G_READ_UNLOCK (&type_rw_lock);
}
return match;
}
static gboolean
type_node_is_a_L (TypeNode *node,
TypeNode *iface_node)
{
return type_node_check_conformities_UorL (node, iface_node, TRUE, TRUE, TRUE);
}
static inline gboolean
type_node_conforms_to_U (TypeNode *node,
TypeNode *iface_node,
gboolean support_interfaces,
gboolean support_prerequisites)
{
return type_node_check_conformities_UorL (node, iface_node, support_interfaces, support_prerequisites, FALSE);
}
/**
* g_type_is_a:
* @type: type to check ancestry for
* @is_a_type: possible ancestor of @type or interface that @type
* could conform to
*
* If @is_a_type is a derivable type, check whether @type is a
* descendant of @is_a_type. If @is_a_type is an interface, check
* whether @type conforms to it.
*
* Returns: %TRUE if @type is a @is_a_type
*/
gboolean
(g_type_is_a) (GType type,
GType iface_type)
{
TypeNode *node, *iface_node;
gboolean is_a;
if (type == iface_type)
return TRUE;
node = lookup_type_node_I (type);
iface_node = lookup_type_node_I (iface_type);
is_a = node && iface_node && type_node_conforms_to_U (node, iface_node, TRUE, TRUE);
return is_a;
}
/**
* g_type_children:
* @type: the parent type
* @n_children: (out) (optional): location to store the length of
* the returned array, or %NULL
*
* Return a newly allocated and 0-terminated array of type IDs, listing
* the child types of @type.
*
* Returns: (array length=n_children) (transfer full): Newly allocated
* and 0-terminated array of child types, free with g_free()
*/
GType*
g_type_children (GType type,
guint *n_children)
{
TypeNode *node;
node = lookup_type_node_I (type);
if (node)
{
GType *children;
G_READ_LOCK (&type_rw_lock); /* ->children is relocatable */
children = g_new (GType, node->n_children + 1);
if (node->n_children != 0)
memcpy (children, node->children, sizeof (GType) * node->n_children);
children[node->n_children] = 0;
if (n_children)
*n_children = node->n_children;
G_READ_UNLOCK (&type_rw_lock);
return children;
}
else
{
if (n_children)
*n_children = 0;
return NULL;
}
}
/**
* g_type_interfaces:
* @type: the type to list interface types for
* @n_interfaces: (out) (optional): location to store the length of
* the returned array, or %NULL
*
* Return a newly allocated and 0-terminated array of type IDs, listing
* the interface types that @type conforms to.
*
* Returns: (array length=n_interfaces) (transfer full): Newly allocated
* and 0-terminated array of interface types, free with g_free()
*/
GType*
g_type_interfaces (GType type,
guint *n_interfaces)
{
TypeNode *node;
node = lookup_type_node_I (type);
if (node && node->is_instantiatable)
{
IFaceEntries *entries;
GType *ifaces;
guint i;
G_READ_LOCK (&type_rw_lock);
entries = CLASSED_NODE_IFACES_ENTRIES_LOCKED (node);
if (entries)
{
ifaces = g_new (GType, IFACE_ENTRIES_N_ENTRIES (entries) + 1);
for (i = 0; i < IFACE_ENTRIES_N_ENTRIES (entries); i++)
ifaces[i] = entries->entry[i].iface_type;
}
else
{
ifaces = g_new (GType, 1);
i = 0;
}
ifaces[i] = 0;
if (n_interfaces)
*n_interfaces = i;
G_READ_UNLOCK (&type_rw_lock);
return ifaces;
}
else
{
if (n_interfaces)
*n_interfaces = 0;
return NULL;
}
}
typedef struct _QData QData;
struct _GData
{
guint n_qdatas;
QData *qdatas;
};
struct _QData
{
GQuark quark;
gpointer data;
};
static inline gpointer
type_get_qdata_L (TypeNode *node,
GQuark quark)
{
GData *gdata = node->global_gdata;
if (quark && gdata && gdata->n_qdatas)
{
QData *qdatas = gdata->qdatas - 1;
guint n_qdatas = gdata->n_qdatas;
do
{
guint i;
QData *check;
i = (n_qdatas + 1) / 2;
check = qdatas + i;
if (quark == check->quark)
return check->data;
else if (quark > check->quark)
{
n_qdatas -= i;
qdatas = check;
}
else /* if (quark < check->quark) */
n_qdatas = i - 1;
}
while (n_qdatas);
}
return NULL;
}
/**
* g_type_get_qdata:
* @type: a #GType
* @quark: a #GQuark id to identify the data
*
* Obtains data which has previously been attached to @type
* with g_type_set_qdata().
*
* Note that this does not take subtyping into account; data
* attached to one type with g_type_set_qdata() cannot
* be retrieved from a subtype using g_type_get_qdata().
*
* Returns: (transfer none): the data, or %NULL if no data was found
*/
gpointer
g_type_get_qdata (GType type,
GQuark quark)
{
TypeNode *node;
gpointer data;
node = lookup_type_node_I (type);
if (node)
{
G_READ_LOCK (&type_rw_lock);
data = type_get_qdata_L (node, quark);
G_READ_UNLOCK (&type_rw_lock);
}
else
{
g_return_val_if_fail (node != NULL, NULL);
data = NULL;
}
return data;
}
static inline void
type_set_qdata_W (TypeNode *node,
GQuark quark,
gpointer data)
{
GData *gdata;
QData *qdata;
guint i;
/* setup qdata list if necessary */
if (!node->global_gdata)
node->global_gdata = g_new0 (GData, 1);
gdata = node->global_gdata;
/* try resetting old data */
qdata = gdata->qdatas;
for (i = 0; i < gdata->n_qdatas; i++)
if (qdata[i].quark == quark)
{
qdata[i].data = data;
return;
}
/* add new entry */
gdata->n_qdatas++;
gdata->qdatas = g_renew (QData, gdata->qdatas, gdata->n_qdatas);
qdata = gdata->qdatas;
for (i = 0; i < gdata->n_qdatas - 1; i++)
if (qdata[i].quark > quark)
break;
memmove (qdata + i + 1, qdata + i, sizeof (qdata[0]) * (gdata->n_qdatas - i - 1));
qdata[i].quark = quark;
qdata[i].data = data;
}
/**
* g_type_set_qdata:
* @type: a #GType
* @quark: a #GQuark id to identify the data
* @data: the data
*
* Attaches arbitrary data to a type.
*/
void
g_type_set_qdata (GType type,
GQuark quark,
gpointer data)
{
TypeNode *node;
g_return_if_fail (quark != 0);
node = lookup_type_node_I (type);
if (node)
{
G_WRITE_LOCK (&type_rw_lock);
type_set_qdata_W (node, quark, data);
G_WRITE_UNLOCK (&type_rw_lock);
}
else
g_return_if_fail (node != NULL);
}
static void
type_add_flags_W (TypeNode *node,
GTypeFlags flags)
{
guint dflags;
g_return_if_fail ((flags & ~TYPE_FLAG_MASK) == 0);
g_return_if_fail (node != NULL);
if ((flags & TYPE_FLAG_MASK) && node->is_classed && node->data && node->data->class.class)
g_critical ("tagging type '%s' as abstract after class initialization", NODE_NAME (node));
dflags = GPOINTER_TO_UINT (type_get_qdata_L (node, static_quark_type_flags));
dflags |= flags;
type_set_qdata_W (node, static_quark_type_flags, GUINT_TO_POINTER (dflags));
node->is_abstract = (flags & G_TYPE_FLAG_ABSTRACT) != 0;
node->is_deprecated |= (flags & G_TYPE_FLAG_DEPRECATED) != 0;
node->is_final = (flags & G_TYPE_FLAG_FINAL) != 0;
}
/**
* g_type_query:
* @type: #GType of a static, classed type
* @query: (out caller-allocates): a user provided structure that is
* filled in with constant values upon success
*
* Queries the type system for information about a specific type.
*
* This function will fill in a user-provided structure to hold
* type-specific information. If an invalid #GType is passed in, the
* @type member of the #GTypeQuery is 0. All members filled into the
* #GTypeQuery structure should be considered constant and have to be
* left untouched.
*
* Since GLib 2.78, this function allows queries on dynamic types. Previously
* it only supported static types.
*/
void
g_type_query (GType type,
GTypeQuery *query)
{
TypeNode *node;
g_return_if_fail (query != NULL);
/* if node is not classed, we won't allow query */
query->type = 0;
node = lookup_type_node_I (type);
if (node && node->is_classed)
{
/* type is classed and probably even instantiatable */
G_READ_LOCK (&type_rw_lock);
if (node->data) /* type is static or referenced */
{
query->type = NODE_TYPE (node);
query->type_name = NODE_NAME (node);
query->class_size = node->data->class.class_size;
query->instance_size = node->is_instantiatable ? node->data->instance.instance_size : 0;
}
G_READ_UNLOCK (&type_rw_lock);
}
}
/**
* g_type_get_instance_count:
* @type: a #GType
*
* Returns the number of instances allocated of the particular type;
* this is only available if GLib is built with debugging support and
* the `instance-count` debug flag is set (by setting the `GOBJECT_DEBUG`
* variable to include `instance-count`).
*
* Returns: the number of instances allocated of the given type;
* if instance counts are not available, returns 0.
*
* Since: 2.44
*/
int
g_type_get_instance_count (GType type)
{
#ifdef G_ENABLE_DEBUG
TypeNode *node;
node = lookup_type_node_I (type);
g_return_val_if_fail (node != NULL, 0);
return g_atomic_int_get (&node->instance_count);
#else
return 0;
#endif
}
/* --- implementation details --- */
static inline gboolean
_g_type_test_flags (GType type,
guint flags)
{
TypeNode *node;
gboolean result = FALSE;
node = lookup_type_node_I (type);
if (node)
{
if ((flags & ~NODE_FLAG_MASK) == 0)
{
if ((flags & G_TYPE_FLAG_CLASSED) && !node->is_classed)
return FALSE;
if ((flags & G_TYPE_FLAG_INSTANTIATABLE) && !node->is_instantiatable)
return FALSE;
if ((flags & G_TYPE_FLAG_FINAL) && !node->is_final)
return FALSE;
if ((flags & G_TYPE_FLAG_ABSTRACT) && !node->is_abstract)
return FALSE;
if ((flags & G_TYPE_FLAG_DEPRECATED) && !node->is_deprecated)
return FALSE;
return TRUE;
}
guint fflags = flags & TYPE_FUNDAMENTAL_FLAG_MASK;
guint tflags = flags & TYPE_FLAG_MASK;
if (fflags)
{
GTypeFundamentalInfo *finfo = type_node_fundamental_info_I (node);
fflags = (finfo->type_flags & fflags) == fflags;
}
else
fflags = TRUE;
if (tflags)
{
G_READ_LOCK (&type_rw_lock);
tflags = (tflags & GPOINTER_TO_UINT (type_get_qdata_L (node, static_quark_type_flags))) == tflags;
G_READ_UNLOCK (&type_rw_lock);
}
else
tflags = TRUE;
result = tflags && fflags;
}
return result;
}
gboolean
(g_type_test_flags) (GType type,
guint flags)
{
return _g_type_test_flags (type, flags);
}
/**
* g_type_get_plugin:
* @type: #GType to retrieve the plugin for
*
* Returns the #GTypePlugin structure for @type.
*
* Returns: (transfer none): the corresponding plugin
* if @type is a dynamic type, %NULL otherwise
*/
GTypePlugin*
g_type_get_plugin (GType type)
{
TypeNode *node;
node = lookup_type_node_I (type);
return node ? node->plugin : NULL;
}
/**
* g_type_interface_get_plugin:
* @instance_type: #GType of an instantiatable type
* @interface_type: #GType of an interface type
*
* Returns the #GTypePlugin structure for the dynamic interface
* @interface_type which has been added to @instance_type, or %NULL
* if @interface_type has not been added to @instance_type or does
* not have a #GTypePlugin structure. See g_type_add_interface_dynamic().
*
* Returns: (transfer none): the #GTypePlugin for the dynamic
* interface @interface_type of @instance_type
*/
GTypePlugin*
g_type_interface_get_plugin (GType instance_type,
GType interface_type)
{
TypeNode *node;
TypeNode *iface;
g_return_val_if_fail (G_TYPE_IS_INTERFACE (interface_type), NULL); /* G_TYPE_IS_INTERFACE() is an external call: _U */
node = lookup_type_node_I (instance_type);
iface = lookup_type_node_I (interface_type);
if (node && iface)
{
IFaceHolder *iholder;
GTypePlugin *plugin;
G_READ_LOCK (&type_rw_lock);
iholder = iface_node_get_holders_L (iface);
while (iholder && iholder->instance_type != instance_type)
iholder = iholder->next;
plugin = iholder ? iholder->plugin : NULL;
G_READ_UNLOCK (&type_rw_lock);
return plugin;
}
g_return_val_if_fail (node == NULL, NULL);
g_return_val_if_fail (iface == NULL, NULL);
g_critical (G_STRLOC ": attempt to look up plugin for invalid instance/interface type pair.");
return NULL;
}
/**
* g_type_fundamental_next:
*
* Returns the next free fundamental type id which can be used to
* register a new fundamental type with g_type_register_fundamental().
* The returned type ID represents the highest currently registered
* fundamental type identifier.
*
* Returns: the next available fundamental type ID to be registered,
* or 0 if the type system ran out of fundamental type IDs
*/
GType
g_type_fundamental_next (void)
{
GType type;
G_READ_LOCK (&type_rw_lock);
type = static_fundamental_next;
G_READ_UNLOCK (&type_rw_lock);
type = G_TYPE_MAKE_FUNDAMENTAL (type);
return type <= G_TYPE_FUNDAMENTAL_MAX ? type : 0;
}
/**
* g_type_fundamental:
* @type_id: valid type ID
*
* Internal function, used to extract the fundamental type ID portion.
* Use G_TYPE_FUNDAMENTAL() instead.
*
* Returns: fundamental type ID
*/
GType
g_type_fundamental (GType type_id)
{
TypeNode *node = lookup_type_node_I (type_id);
return node ? NODE_FUNDAMENTAL_TYPE (node) : 0;
}
gboolean
g_type_check_instance_is_a (GTypeInstance *type_instance,
GType iface_type)
{
TypeNode *node, *iface;
gboolean check;
if (!type_instance || !type_instance->g_class)
return FALSE;
iface = lookup_type_node_I (iface_type);
if (iface && iface->is_final)
return type_instance->g_class->g_type == iface_type;
node = lookup_type_node_I (type_instance->g_class->g_type);
check = node && node->is_instantiatable && iface && type_node_conforms_to_U (node, iface, TRUE, FALSE);
return check;
}
gboolean
g_type_check_instance_is_fundamentally_a (GTypeInstance *type_instance,
GType fundamental_type)
{
TypeNode *node;
if (!type_instance || !type_instance->g_class)
return FALSE;
node = lookup_type_node_I (type_instance->g_class->g_type);
return node && (NODE_FUNDAMENTAL_TYPE(node) == fundamental_type);
}
gboolean
g_type_check_class_is_a (GTypeClass *type_class,
GType is_a_type)
{
TypeNode *node, *iface;
gboolean check;
if (!type_class)
return FALSE;
node = lookup_type_node_I (type_class->g_type);
iface = lookup_type_node_I (is_a_type);
check = node && node->is_classed && iface && type_node_conforms_to_U (node, iface, FALSE, FALSE);
return check;
}
GTypeInstance*
g_type_check_instance_cast (GTypeInstance *type_instance,
GType iface_type)
{
if (type_instance)
{
if (type_instance->g_class)
{
TypeNode *node, *iface;
gboolean is_instantiatable, check;
node = lookup_type_node_I (type_instance->g_class->g_type);
is_instantiatable = node && node->is_instantiatable;
iface = lookup_type_node_I (iface_type);
check = is_instantiatable && iface && type_node_conforms_to_U (node, iface, TRUE, FALSE);
if (check)
return type_instance;
if (is_instantiatable)
g_critical ("invalid cast from '%s' to '%s'",
type_descriptive_name_I (type_instance->g_class->g_type),
type_descriptive_name_I (iface_type));
else
g_critical ("invalid uninstantiatable type '%s' in cast to '%s'",
type_descriptive_name_I (type_instance->g_class->g_type),
type_descriptive_name_I (iface_type));
}
else
g_critical ("invalid unclassed pointer in cast to '%s'",
type_descriptive_name_I (iface_type));
}
return type_instance;
}
GTypeClass*
g_type_check_class_cast (GTypeClass *type_class,
GType is_a_type)
{
if (type_class)
{
TypeNode *node, *iface;
gboolean is_classed, check;
node = lookup_type_node_I (type_class->g_type);
is_classed = node && node->is_classed;
iface = lookup_type_node_I (is_a_type);
check = is_classed && iface && type_node_conforms_to_U (node, iface, FALSE, FALSE);
if (check)
return type_class;
if (is_classed)
g_critical ("invalid class cast from '%s' to '%s'",
type_descriptive_name_I (type_class->g_type),
type_descriptive_name_I (is_a_type));
else
g_critical ("invalid unclassed type '%s' in class cast to '%s'",
type_descriptive_name_I (type_class->g_type),
type_descriptive_name_I (is_a_type));
}
else
g_critical ("invalid class cast from (NULL) pointer to '%s'",
type_descriptive_name_I (is_a_type));
return type_class;
}
/**
* g_type_check_instance:
* @instance: a valid #GTypeInstance structure
*
* Private helper function to aid implementation of the
* G_TYPE_CHECK_INSTANCE() macro.
*
* Returns: %TRUE if @instance is valid, %FALSE otherwise
*/
gboolean
g_type_check_instance (GTypeInstance *type_instance)
{
/* this function is just here to make the signal system
* conveniently elaborated on instance checks
*/
if (type_instance)
{
if (type_instance->g_class)
{
TypeNode *node = lookup_type_node_I (type_instance->g_class->g_type);
if (node && node->is_instantiatable)
return TRUE;
g_critical ("instance of invalid non-instantiatable type '%s'",
type_descriptive_name_I (type_instance->g_class->g_type));
}
else
g_critical ("instance with invalid (NULL) class pointer");
}
else
g_critical ("invalid (NULL) pointer instance");
return FALSE;
}
static inline gboolean
type_check_is_value_type_U (GType type)
{
GTypeFlags tflags = G_TYPE_FLAG_VALUE_ABSTRACT;
TypeNode *node;
/* common path speed up */
node = lookup_type_node_I (type);
if (node && node->mutatable_check_cache)
return TRUE;
G_READ_LOCK (&type_rw_lock);
restart_check:
if (node)
{
if (node->data && NODE_REFCOUNT (node) > 0 &&
node->data->common.value_table->value_init)
tflags = GPOINTER_TO_UINT (type_get_qdata_L (node, static_quark_type_flags));
else if (NODE_IS_IFACE (node))
{
guint i;
for (i = 0; i < IFACE_NODE_N_PREREQUISITES (node); i++)
{
GType prtype = IFACE_NODE_PREREQUISITES (node)[i];
TypeNode *prnode = lookup_type_node_I (prtype);
if (prnode->is_instantiatable)
{
type = prtype;
node = lookup_type_node_I (type);
goto restart_check;
}
}
}
}
G_READ_UNLOCK (&type_rw_lock);
return !(tflags & G_TYPE_FLAG_VALUE_ABSTRACT);
}
gboolean
g_type_check_is_value_type (GType type)
{
return type_check_is_value_type_U (type);
}
gboolean
g_type_check_value (const GValue *value)
{
return value && type_check_is_value_type_U (value->g_type);
}
gboolean
g_type_check_value_holds (const GValue *value,
GType type)
{
return value && type_check_is_value_type_U (value->g_type) && g_type_is_a (value->g_type, type);
}
/**
* g_type_value_table_peek: (skip)
* @type: a #GType
*
* Returns the location of the #GTypeValueTable associated with @type.
*
* Note that this function should only be used from source code
* that implements or has internal knowledge of the implementation of
* @type.
*
* Returns: location of the #GTypeValueTable associated with @type or
* %NULL if there is no #GTypeValueTable associated with @type
*/
GTypeValueTable*
g_type_value_table_peek (GType type)
{
GTypeValueTable *vtable = NULL;
TypeNode *node = lookup_type_node_I (type);
gboolean has_refed_data, has_table;
if (node && NODE_REFCOUNT (node) && node->mutatable_check_cache)
return node->data->common.value_table;
G_READ_LOCK (&type_rw_lock);
restart_table_peek:
has_refed_data = node && node->data && NODE_REFCOUNT (node) > 0;
has_table = has_refed_data && node->data->common.value_table->value_init;
if (has_refed_data)
{
if (has_table)
vtable = node->data->common.value_table;
else if (NODE_IS_IFACE (node))
{
guint i;
for (i = 0; i < IFACE_NODE_N_PREREQUISITES (node); i++)
{
GType prtype = IFACE_NODE_PREREQUISITES (node)[i];
TypeNode *prnode = lookup_type_node_I (prtype);
if (prnode->is_instantiatable)
{
type = prtype;
node = lookup_type_node_I (type);
goto restart_table_peek;
}
}
}
}
G_READ_UNLOCK (&type_rw_lock);
if (vtable)
return vtable;
if (!node)
g_critical (G_STRLOC ": type id '%" G_GSIZE_FORMAT "' is invalid", type);
if (!has_refed_data)
g_critical ("can't peek value table for type '%s' which is not currently referenced",
type_descriptive_name_I (type));
return NULL;
}
const gchar *
g_type_name_from_instance (GTypeInstance *instance)
{
if (!instance)
return "";
else
return g_type_name_from_class (instance->g_class);
}
const gchar *
g_type_name_from_class (GTypeClass *g_class)
{
if (!g_class)
return "";
else
return g_type_name (g_class->g_type);
}
/* --- private api for gboxed.c --- */
gpointer
_g_type_boxed_copy (GType type, gpointer value)
{
TypeNode *node = lookup_type_node_I (type);
return node->data->boxed.copy_func (value);
}
void
_g_type_boxed_free (GType type, gpointer value)
{
TypeNode *node = lookup_type_node_I (type);
node->data->boxed.free_func (value);
}
void
_g_type_boxed_init (GType type,
GBoxedCopyFunc copy_func,
GBoxedFreeFunc free_func)
{
TypeNode *node = lookup_type_node_I (type);
node->data->boxed.copy_func = copy_func;
node->data->boxed.free_func = free_func;
}
/* --- initialization --- */
/**
* g_type_init_with_debug_flags:
* @debug_flags: bitwise combination of #GTypeDebugFlags values for
* debugging purposes
*
* This function used to initialise the type system with debugging
* flags. Since GLib 2.36, the type system is initialised automatically
* and this function does nothing.
*
* If you need to enable debugging features, use the `GOBJECT_DEBUG`
* environment variable.
*
* Deprecated: 2.36: the type system is now initialised automatically
*/
G_GNUC_BEGIN_IGNORE_DEPRECATIONS
void
g_type_init_with_debug_flags (GTypeDebugFlags debug_flags)
{
g_assert_type_system_initialized ();
if (debug_flags)
g_message ("g_type_init_with_debug_flags() is no longer supported. Use the GOBJECT_DEBUG environment variable.");
}
G_GNUC_END_IGNORE_DEPRECATIONS
/**
* g_type_init:
*
* This function used to initialise the type system. Since GLib 2.36,
* the type system is initialised automatically and this function does
* nothing.
*
* Deprecated: 2.36: the type system is now initialised automatically
*/
void
g_type_init (void)
{
g_assert_type_system_initialized ();
}
static void
gobject_init (void)
{
const gchar *env_string;
GTypeInfo info;
TypeNode *node;
GType type G_GNUC_UNUSED /* when compiling with G_DISABLE_ASSERT */;
/* Ensure GLib is initialized first, see
* https://bugzilla.gnome.org/show_bug.cgi?id=756139
*/
GLIB_PRIVATE_CALL (glib_init) ();
G_WRITE_LOCK (&type_rw_lock);
/* setup GObject library wide debugging flags */
env_string = g_getenv ("GOBJECT_DEBUG");
if (env_string != NULL)
{
GDebugKey debug_keys[] = {
{ "objects", G_TYPE_DEBUG_OBJECTS },
{ "instance-count", G_TYPE_DEBUG_INSTANCE_COUNT },
{ "signals", G_TYPE_DEBUG_SIGNALS },
};
_g_type_debug_flags = g_parse_debug_string (env_string, debug_keys, G_N_ELEMENTS (debug_keys));
}
/* quarks */
static_quark_type_flags = g_quark_from_static_string ("-g-type-private--GTypeFlags");
static_quark_iface_holder = g_quark_from_static_string ("-g-type-private--IFaceHolder");
static_quark_dependants_array = g_quark_from_static_string ("-g-type-private--dependants-array");
/* type qname hash table */
static_type_nodes_ht = g_hash_table_new (g_str_hash, g_str_equal);
/* invalid type G_TYPE_INVALID (0)
*/
static_fundamental_type_nodes[0] = NULL;
/* void type G_TYPE_NONE
*/
node = type_node_fundamental_new_W (G_TYPE_NONE, g_intern_static_string ("void"), 0);
type = NODE_TYPE (node);
g_assert (type == G_TYPE_NONE);
/* interface fundamental type G_TYPE_INTERFACE (!classed)
*/
memset (&info, 0, sizeof (info));
node = type_node_fundamental_new_W (G_TYPE_INTERFACE, g_intern_static_string ("GInterface"), G_TYPE_FLAG_DERIVABLE);
type = NODE_TYPE (node);
type_data_make_W (node, &info, NULL);
g_assert (type == G_TYPE_INTERFACE);
G_WRITE_UNLOCK (&type_rw_lock);
_g_value_c_init ();
/* G_TYPE_TYPE_PLUGIN
*/
g_type_ensure (g_type_plugin_get_type ());
/* G_TYPE_* value types
*/
_g_value_types_init ();
/* G_TYPE_ENUM & G_TYPE_FLAGS
*/
_g_enum_types_init ();
/* G_TYPE_BOXED
*/
_g_boxed_type_init ();
/* G_TYPE_PARAM
*/
_g_param_type_init ();
/* G_TYPE_OBJECT
*/
_g_object_type_init ();
/* G_TYPE_PARAM_* pspec types
*/
_g_param_spec_types_init ();
/* Value Transformations
*/
_g_value_transforms_init ();
/* Signal system
*/
_g_signal_init ();
}
#ifdef G_PLATFORM_WIN32
void gobject_win32_init (void);
void
gobject_win32_init (void)
{
/* May be called more than once in static compilation mode */
static gboolean win32_already_init = FALSE;
if (!win32_already_init)
{
win32_already_init = TRUE;
gobject_init ();
}
}
#ifndef GLIB_STATIC_COMPILATION
BOOL WINAPI DllMain (HINSTANCE hinstDLL,
DWORD fdwReason,
LPVOID lpvReserved);
BOOL WINAPI
DllMain (HINSTANCE hinstDLL,
DWORD fdwReason,
LPVOID lpvReserved)
{
switch (fdwReason)
{
case DLL_PROCESS_ATTACH:
gobject_win32_init ();
break;
default:
/* do nothing */
;
}
return TRUE;
}
#elif defined(G_HAS_CONSTRUCTORS) /* && G_PLATFORM_WIN32 && GLIB_STATIC_COMPILATION */
extern void glib_win32_init (void);
#ifdef G_DEFINE_CONSTRUCTOR_NEEDS_PRAGMA
#pragma G_DEFINE_CONSTRUCTOR_PRAGMA_ARGS(gobject_init_ctor)
#endif
G_DEFINE_CONSTRUCTOR(gobject_init_ctor)
static void
gobject_init_ctor (void)
{
/* When built dynamically, module initialization is done through DllMain
* function which is called when the dynamic library is loaded by the glib
* module. So, in dynamic configuration glib is always initialized BEFORE
* gobject.
*
* When built statically, initialization mechanism relies on hooking
* functions to the CRT section directly at compilation time. As we don't
* control how each compilation unit will be built and in which order, we
* obtain the same kind of issue as the "static initialization order fiasco".
* In this case, we must ensure explicitly that glib is always well
* initialized BEFORE gobject.
*/
glib_win32_init ();
gobject_win32_init ();
}
#else /* G_PLATFORM_WIN32 && GLIB_STATIC_COMPILATION && !G_HAS_CONSTRUCTORS */
# error Your platform/compiler is missing constructor support
#endif /* GLIB_STATIC_COMPILATION */
#elif defined(G_HAS_CONSTRUCTORS) /* && !G_PLATFORM_WIN32 */
#ifdef G_DEFINE_CONSTRUCTOR_NEEDS_PRAGMA
#pragma G_DEFINE_CONSTRUCTOR_PRAGMA_ARGS(gobject_init_ctor)
#endif
G_DEFINE_CONSTRUCTOR (gobject_init_ctor)
static void
gobject_init_ctor (void)
{
gobject_init ();
}
#else /* !G_PLATFORM_WIN32 && !G_HAS_CONSTRUCTORS */
#error Your platform/compiler is missing constructor support
#endif /* G_PLATFORM_WIN32 */
/**
* g_type_class_add_private:
* @g_class: (type GObject.TypeClass): class structure for an instantiatable
* type
* @private_size: size of private structure
*
* Registers a private structure for an instantiatable type.
*
* When an object is allocated, the private structures for
* the type and all of its parent types are allocated
* sequentially in the same memory block as the public
* structures, and are zero-filled.
*
* Note that the accumulated size of the private structures of
* a type and all its parent types cannot exceed 64 KiB.
*
* This function should be called in the type's class_init() function.
* The private structure can be retrieved using the
* G_TYPE_INSTANCE_GET_PRIVATE() macro.
*
* The following example shows attaching a private structure
* MyObjectPrivate to an object MyObject defined in the standard
* GObject fashion in the type's class_init() function.
*
* Note the use of a structure member "priv" to avoid the overhead
* of repeatedly calling MY_OBJECT_GET_PRIVATE().
*
* |[
* typedef struct _MyObject MyObject;
* typedef struct _MyObjectPrivate MyObjectPrivate;
*
* struct _MyObject {
* GObject parent;
*
* MyObjectPrivate *priv;
* };
*
* struct _MyObjectPrivate {
* int some_field;
* };
*
* static void
* my_object_class_init (MyObjectClass *klass)
* {
* g_type_class_add_private (klass, sizeof (MyObjectPrivate));
* }
*
* static void
* my_object_init (MyObject *my_object)
* {
* my_object->priv = G_TYPE_INSTANCE_GET_PRIVATE (my_object,
* MY_TYPE_OBJECT,
* MyObjectPrivate);
* // my_object->priv->some_field will be automatically initialised to 0
* }
*
* static int
* my_object_get_some_field (MyObject *my_object)
* {
* MyObjectPrivate *priv;
*
* g_return_val_if_fail (MY_IS_OBJECT (my_object), 0);
*
* priv = my_object->priv;
*
* return priv->some_field;
* }
* ]|
*
* Since: 2.4
* Deprecated: 2.58: Use the G_ADD_PRIVATE() macro with the `G_DEFINE_*`
* family of macros to add instance private data to a type
*/
void
g_type_class_add_private (gpointer g_class,
gsize private_size)
{
GType instance_type = ((GTypeClass *)g_class)->g_type;
TypeNode *node = lookup_type_node_I (instance_type);
g_return_if_fail (private_size > 0);
g_return_if_fail (private_size <= 0xffff);
if (!node || !node->is_instantiatable || !node->data || node->data->class.class != g_class)
{
g_critical ("cannot add private field to invalid (non-instantiatable) type '%s'",
type_descriptive_name_I (instance_type));
return;
}
if (NODE_PARENT_TYPE (node))
{
TypeNode *pnode = lookup_type_node_I (NODE_PARENT_TYPE (node));
if (node->data->instance.private_size != pnode->data->instance.private_size)
{
g_critical ("g_type_class_add_private() called multiple times for the same type");
return;
}
}
G_WRITE_LOCK (&type_rw_lock);
private_size = ALIGN_STRUCT (node->data->instance.private_size + private_size);
g_assert (private_size <= 0xffff);
node->data->instance.private_size = private_size;
G_WRITE_UNLOCK (&type_rw_lock);
}
/* semi-private, called only by the G_ADD_PRIVATE macro */
gint
g_type_add_instance_private (GType class_gtype,
gsize private_size)
{
TypeNode *node = lookup_type_node_I (class_gtype);
g_return_val_if_fail (private_size > 0, 0);
g_return_val_if_fail (private_size <= 0xffff, 0);
if (!node || !node->is_classed || !node->is_instantiatable || !node->data)
{
g_critical ("cannot add private field to invalid (non-instantiatable) type '%s'",
type_descriptive_name_I (class_gtype));
return 0;
}
if (node->plugin != NULL)
{
g_critical ("cannot use g_type_add_instance_private() with dynamic type '%s'",
type_descriptive_name_I (class_gtype));
return 0;
}
/* in the future, we want to register the private data size of a type
* directly from the get_type() implementation so that we can take full
* advantage of the type definition macros that we already have.
*
* unfortunately, this does not behave correctly if a class in the middle
* of the type hierarchy uses the "old style" of private data registration
* from the class_init() implementation, as the private data offset is not
* going to be known until the full class hierarchy is initialized.
*
* in order to transition our code to the Glorious New Future™, we proceed
* with a two-step implementation: first, we provide this new function to
* register the private data size in the get_type() implementation and we
* hide it behind a macro. the function will return the private size, instead
* of the offset, which will be stored inside a static variable defined by
* the G_DEFINE_TYPE_EXTENDED() macro. the G_DEFINE_TYPE_EXTENDED() macro will
* check the variable and call g_type_class_adjust_private_offset(), which
* will use the data size and actually register the private data, then
* return the computed offset of the private data, which will be stored
* inside the static variable, so we can use it to retrieve the pointer
* to the private data structure.
*
* once all our code has been migrated to the new idiomatic form of private
* data registration, we will change the g_type_add_instance_private()
* function to actually perform the registration and return the offset
* of the private data; g_type_class_adjust_private_offset() already checks
* if the passed argument is negative (meaning that it's an offset in the
* GTypeInstance allocation) and becomes a no-op if that's the case. this
* should make the migration fully transparent even if we're effectively
* copying this macro into everybody's code.
*/
return private_size;
}
/* semi-private function, should only be used by G_DEFINE_TYPE_EXTENDED */
void
g_type_class_adjust_private_offset (gpointer g_class,
gint *private_size_or_offset)
{
GType class_gtype = ((GTypeClass *) g_class)->g_type;
TypeNode *node = lookup_type_node_I (class_gtype);
gssize private_size;
g_return_if_fail (private_size_or_offset != NULL);
/* if we have been passed the offset instead of the private data size,
* then we consider this as a no-op, and just return the value. see the
* comment in g_type_add_instance_private() for the full explanation.
*/
if (*private_size_or_offset > 0)
g_return_if_fail (*private_size_or_offset <= 0xffff);
else
return;
if (!node || !node->is_classed || !node->is_instantiatable || !node->data)
{
g_critical ("cannot add private field to invalid (non-instantiatable) type '%s'",
type_descriptive_name_I (class_gtype));
*private_size_or_offset = 0;
return;
}
if (NODE_PARENT_TYPE (node))
{
TypeNode *pnode = lookup_type_node_I (NODE_PARENT_TYPE (node));
if (node->data->instance.private_size != pnode->data->instance.private_size)
{
g_critical ("g_type_add_instance_private() called multiple times for the same type");
*private_size_or_offset = 0;
return;
}
}
G_WRITE_LOCK (&type_rw_lock);
private_size = ALIGN_STRUCT (node->data->instance.private_size + *private_size_or_offset);
g_assert (private_size <= 0xffff);
node->data->instance.private_size = private_size;
*private_size_or_offset = -(gint) node->data->instance.private_size;
G_WRITE_UNLOCK (&type_rw_lock);
}
gpointer
g_type_instance_get_private (GTypeInstance *instance,
GType private_type)
{
TypeNode *node;
g_return_val_if_fail (instance != NULL && instance->g_class != NULL, NULL);
node = lookup_type_node_I (private_type);
if (G_UNLIKELY (!node || !node->is_instantiatable))
{
g_critical ("instance of invalid non-instantiatable type '%s'",
type_descriptive_name_I (instance->g_class->g_type));
return NULL;
}
return ((gchar *) instance) - node->data->instance.private_size;
}
/**
* g_type_class_get_instance_private_offset: (skip)
* @g_class: (type GObject.TypeClass): a #GTypeClass
*
* Gets the offset of the private data for instances of @g_class.
*
* This is how many bytes you should add to the instance pointer of a
* class in order to get the private data for the type represented by
* @g_class.
*
* You can only call this function after you have registered a private
* data area for @g_class using g_type_class_add_private().
*
* Returns: the offset, in bytes
*
* Since: 2.38
**/
gint
g_type_class_get_instance_private_offset (gpointer g_class)
{
GType instance_type;
guint16 parent_size;
TypeNode *node;
g_assert (g_class != NULL);
instance_type = ((GTypeClass *) g_class)->g_type;
node = lookup_type_node_I (instance_type);
g_assert (node != NULL);
g_assert (node->is_instantiatable);
if (NODE_PARENT_TYPE (node))
{
TypeNode *pnode = lookup_type_node_I (NODE_PARENT_TYPE (node));
parent_size = pnode->data->instance.private_size;
}
else
parent_size = 0;
if (node->data->instance.private_size == parent_size)
g_error ("g_type_class_get_instance_private_offset() called on class %s but it has no private data",
g_type_name (instance_type));
return -(gint) node->data->instance.private_size;
}
/**
* g_type_add_class_private:
* @class_type: GType of a classed type
* @private_size: size of private structure
*
* Registers a private class structure for a classed type;
* when the class is allocated, the private structures for
* the class and all of its parent types are allocated
* sequentially in the same memory block as the public
* structures, and are zero-filled.
*
* This function should be called in the
* type's get_type() function after the type is registered.
* The private structure can be retrieved using the
* G_TYPE_CLASS_GET_PRIVATE() macro.
*
* Since: 2.24
*/
void
g_type_add_class_private (GType class_type,
gsize private_size)
{
TypeNode *node = lookup_type_node_I (class_type);
gsize offset;
g_return_if_fail (private_size > 0);
if (!node || !node->is_classed || !node->data)
{
g_critical ("cannot add class private field to invalid type '%s'",
type_descriptive_name_I (class_type));
return;
}
if (NODE_PARENT_TYPE (node))
{
TypeNode *pnode = lookup_type_node_I (NODE_PARENT_TYPE (node));
if (node->data->class.class_private_size != pnode->data->class.class_private_size)
{
g_critical ("g_type_add_class_private() called multiple times for the same type");
return;
}
}
G_WRITE_LOCK (&type_rw_lock);
offset = ALIGN_STRUCT (node->data->class.class_private_size);
node->data->class.class_private_size = offset + private_size;
G_WRITE_UNLOCK (&type_rw_lock);
}
gpointer
g_type_class_get_private (GTypeClass *klass,
GType private_type)
{
TypeNode *class_node;
TypeNode *private_node;
TypeNode *parent_node;
gsize offset;
g_return_val_if_fail (klass != NULL, NULL);
class_node = lookup_type_node_I (klass->g_type);
if (G_UNLIKELY (!class_node || !class_node->is_classed))
{
g_critical ("class of invalid type '%s'",
type_descriptive_name_I (klass->g_type));
return NULL;
}
private_node = lookup_type_node_I (private_type);
if (G_UNLIKELY (!private_node || !NODE_IS_ANCESTOR (private_node, class_node)))
{
g_critical ("attempt to retrieve private data for invalid type '%s'",
type_descriptive_name_I (private_type));
return NULL;
}
offset = ALIGN_STRUCT (class_node->data->class.class_size);
if (NODE_PARENT_TYPE (private_node))
{
parent_node = lookup_type_node_I (NODE_PARENT_TYPE (private_node));
g_assert (parent_node->data && NODE_REFCOUNT (parent_node) > 0);
if (G_UNLIKELY (private_node->data->class.class_private_size == parent_node->data->class.class_private_size))
{
g_critical ("g_type_instance_get_class_private() requires a prior call to g_type_add_class_private()");
return NULL;
}
offset += ALIGN_STRUCT (parent_node->data->class.class_private_size);
}
return G_STRUCT_MEMBER_P (klass, offset);
}
/**
* g_type_ensure:
* @type: a #GType
*
* Ensures that the indicated @type has been registered with the
* type system, and its _class_init() method has been run.
*
* In theory, simply calling the type's _get_type() method (or using
* the corresponding macro) is supposed take care of this. However,
* _get_type() methods are often marked %G_GNUC_CONST for performance
* reasons, even though this is technically incorrect (since
* %G_GNUC_CONST requires that the function not have side effects,
* which _get_type() methods do on the first call). As a result, if
* you write a bare call to a _get_type() macro, it may get optimized
* out by the compiler. Using g_type_ensure() guarantees that the
* type's _get_type() method is called.
*
* Since: 2.34
*/
void
g_type_ensure (GType type)
{
/* In theory, @type has already been resolved and so there's nothing
* to do here. But this protects us in the case where the function
* gets inlined (as it might in gobject_init_ctor() above).
*/
if (G_UNLIKELY (type == (GType)-1))
g_error ("can't happen");
}