Compiling the GLib package3GLib LibraryCompiling the GLib Package
How to compile GLib itself
Building the Library on UNIX
On UNIX, GLib uses the standard GNU build system,
using autoconf for package
configuration and resolving portability issues,
automake for building makefiles
that comply with the GNU Coding Standards, and
libtool for building shared
libraries on multiple platforms. The normal sequence for
compiling and installing the GLib library is thus:
./configuremakemake install
The standard options provided by GNU
autoconf may be passed to the
configure script. Please see the
autoconf documentation or run
./configure --help for information about
the standard options.
The GTK+ documentation contains
further details
about the build process and ways to influence it.
Dependencies
Before you can compile the GLib library, you need to have
various other tools and libraries installed on your
system. The two tools needed during the build process (as
differentiated from the tools used in when creating GLib
mentioned above such as autoconf)
are pkg-config and GNU make.
pkg-config
is a tool for tracking the compilation flags needed for
libraries that are used by the GLib library. (For each
library, a small .pc text file is
installed in a standard location that contains the compilation
flags needed for that library along with version number
information.) The version of pkg-config
needed to build GLib is mirrored in the
dependencies directory
on the GTK+ FTP
site.
The GTK+ makefiles will mostly work with different versions
of make, however, there tends to be
a few incompatibilities, so the GTK+ team recommends
installing GNU
make if you don't already have it on your system
and using it. (It may be called gmake
rather than make.)
GLib depends on a number of other libraries.
The GNU
libiconv library is needed to build GLib if your
system doesn't have the iconv()
function for doing conversion between character
encodings. Most modern systems should have
iconv(), however many older systems lack
an iconv() implementation. On such systems,
you must install the libiconv library. This can be found at:
http://www.gnu.org/software/libiconv.
If your system has an iconv() implementation but
you want to use libiconv instead, you can pass the
--with-libiconv option to configure. This forces
libiconv to be used.
Note that if you have libiconv installed in your default include
search path (for instance, in /usr/local/), but
don't enable it, you will get an error while compiling GLib because
the iconv.h that libiconv installs hides the
system iconv.
If you are using the native iconv implementation on Solaris
instead of libiconv, you'll need to make sure that you have
the converters between locale encodings and UTF-8 installed.
At a minimum you'll need the SUNWuiu8 package. You probably
should also install the SUNWciu8, SUNWhiu8, SUNWjiu8, and
SUNWkiu8 packages.
The native iconv on Compaq Tru64 doesn't contain support for
UTF-8, so you'll need to use GNU libiconv instead. (When
using GNU libiconv for GLib, you'll need to use GNU libiconv
for GNU gettext as well.) This probably applies to related
operating systems as well.
The libintl library from the GNU gettext
package is needed if your system doesn't have the
gettext() functionality for handling
message translation databases.
A thread implementation is needed, unless you want to compile GLib
without thread support, which is not recommended. The thread support
in GLib can be based upon several native thread implementations,
e.g. POSIX threads, DCE threads or Solaris threads.
GRegex uses the PCRE library
for regular expression matching. The default is to use the internal
version of PCRE that is patched to use GLib for memory management
and Unicode handling. If you prefer to use the system-supplied PCRE
library you can pass the --with-pcre=system option to configure,
but it is not recommended.
The optional extended attribute support in GIO requires the
getxattr() family of functions that may be provided by glibc or
by the standalone libattr library. To build GLib without extended
attribute support, use the
configure option.
The optional SELinux support in GIO requires libselinux. To build
GLib without SELinux support, use the
configure option.
Extra Configuration Options
In addition to the normal options, the
configure script in the GLib
library supports these additional arguments:
configure--enable-debug=[no|minimum|yes]--disable-gc-friendly--enable-gc-friendly--disable-mem-pools--enable-mem-pools--disable-threads--enable-threads--with-threads=[none|posix|dce|win32]--disable-regex--enable-regex--with-pcre=[internal|system]--disable-included-printf--enable-included-printf--disable-visibility--enable-visibility--disable-gtk-doc--enable-gtk-doc--disable-man--enable-man--disable-xattr--enable-xattr--disable-selinux--enable-selinux--with-runtime-libdir=RELPATH--enable-debug
Turns on various amounts of debugging support. Setting this to 'no'
disables g_assert(), g_return_if_fail(), g_return_val_if_fail() and
all cast checks between different object types. Setting it to 'minimum' disables only cast checks. Setting it to 'yes' enables
runtime debugging.
The default is 'minimum'.
Note that 'no' is fast, but dangerous as it tends to destabilize
even mostly bug-free software by changing the effect of many bugs
from simple warnings into fatal crashes. Thus
should not
be used for stable releases of GLib.
--disable-gc-friendly and
--enable-gc-friendly
By default, and with --disable-gc-friendly
as well, Glib does not clear the memory for certain objects before they
are freed. For example, Glib may decide to recycle GList nodes by
putting them in a free list. However, memory profiling and debugging tools like Valgrind work better if an
application does not keep dangling pointers to freed memory (even
though these pointers are no longer dereferenced), or invalid pointers inside
uninitialized memory. The
--enable-gc-friendly option makes Glib clear
memory in these situations:
When shrinking a GArray, Glib will clear the memory no longer
available in the array: shrink an array from 10 bytes to 7, and
the last 3 bytes will be cleared. This includes removals of single and multiple elements.
When growing a GArray, Glib will clear the new chunk of memory.
Grow an array from 7 bytes to 10 bytes, and the last 3 bytes will be cleared.
The above applies to GPtrArray as well.
When freeing a node from a GHashTable, Glib will first clear
the node, which used to have pointers to the key and the value
stored at that node.
When destroying or removing a GTree node, Glib will clear the node,
which used to have pointers to the node's value, and the left and right subnodes.
Since clearing the memory has a cost,
--disable-gc-friendly is the default.
--disable-mem-pools and
--enable-mem-pools
Many small chunks of memory are often allocated via collective pools
in GLib and are cached after release to speed up reallocations.
For sparse memory systems this behaviour is often inferior, so
memory pools can be disabled to avoid excessive caching and force
atomic maintenance of chunks through the g_malloc()
and g_free() functions. Code currently affected by
this:
GList, GSList,
GNode, GHash
allocations. The functions g_list_push_allocator(),
g_list_pop_allocator(), g_slist_push_allocator(),
g_slist_pop_allocator(), g_node_push_allocator() and
g_node_pop_allocator() are not available
GMemChunks become basically non-effective
GSignal disables all caching (potentially
very slow)
GType doesn't honour the
GTypeInfon_preallocs field anymore
the GBSearchArray flag
G_BSEARCH_ALIGN_POWER2 becomes non-functional
--disable-threads and
--enable-threads
Do not compile GLib to be multi thread safe. GLib
will be slightly faster then. This is however not
recommended, as many programs rely on GLib being
multi thread safe.
--with-threads
Specify a thread implementation to use.
'posix' and 'dce' can be used interchangeable
to mean the different versions of Posix
threads. configure tries to find out, which
one is installed.
'none' means that GLib will be thread safe,
but does not have a default thread
implementation. This has to be supplied to
g_thread_init() by the programmer.
--disable-regex and
--enable-regex
Do not compile GLib with regular expression support.
GLib will be smaller because it will not need the
PCRE library. This is however not recommended, as
programs may need GRegex.
--with-pcre
Specify whether to use the internal or the system-supplied
PCRE library.
'internal' means that GRegex will be compiled to use
the internal PCRE library.
'system' means that GRegex will be compiled to use
the system-supplied PCRE library.
Using the internal PCRE is the preferred solution:
System-supplied PCRE has a separated copy of the big tables
used for Unicode handling.
Some systems have PCRE libraries compiled without some needed
features, such as UTF-8 and Unicode support.
PCRE uses some global variables for memory management and
other features. In the rare case of a program using both
GRegex and PCRE (maybe indirectly through a library),
this variables could lead to problems when they are modified.
--disable-included-printf and
--enable-included-printf
By default the configure script will try
to auto-detect whether the C library provides a suitable set
of printf() functions. In detail,
configure checks that the semantics of
snprintf() are as specified by C99 and
that positional parameters as specified in the Single Unix
Specification are supported. If this not the case, GLib will
include an implementation of the printf()
family.
These options can be used to explicitly control whether
an implementation fo the printf() family
should be included or not.
--disable-visibility and
--enable-visibility
By default, GLib uses ELF visibility attributes to optimize
PLT table entries if the compiler supports ELF visibility
attributes. A side-effect of the way in which this is currently
implemented is that any header change forces a full
recompilation, and missing includes may go unnoticed.
Therefore, it makes sense to turn this feature off while
doing GLib development, even if the compiler supports ELF
visibility attributes. The
option allows to do that.
--disable-gtk-doc and
--enable-gtk-doc
By default the configure script will try
to auto-detect whether the
gtk-doc package is installed. If
it is, then it will use it to extract and build the
documentation for the GLib library. These options
can be used to explicitly control whether
gtk-doc should be
used or not. If it is not used, the distributed,
pre-generated HTML files will be installed instead of
building them on your machine.
--disable-man and
--enable-man
By default the configure script will try
to auto-detect whether xsltproc
and the necessary Docbook stylesheets are installed. If
they are, then it will use them to rebuild the included
man pages from the XML sources. These options can be used
to explicitly control whether man pages should be rebuilt
used or not. The distribution includes pre-generated man
pages.
--disable-xattr and
--enable-xattr
By default the configure script will try
to auto-detect whether the getxattr() family of functions
is available. If it is, then extended attribute support
will be included in GIO. These options can be used to
explicitly control whether extended attribute support
should be included or not. getxattr() and friends can
be provided by glibc or by the standalone libattr library.
--disable-selinux and
--enable-selinux
By default the configure script will
auto-detect if libselinux is available and include
SELinux support in GIO if it is. These options can be
used to explicitly control whether SELinux support should
be included.
--with-runtime-libdir=RELPATH
Allows specifying a relative path to where to install the runtime
libraries (meaning library files used for running, not developing,
GLib applications). This can be used in operating system setups where
programs using GLib needs to run before e.g. /usr
is mounted.
For example, if LIBDIR is /usr/lib and
../../lib is passed to
--with-runtime-libdir then the
runtime libraries are installed into /lib rather
than /usr/lib.