/* GObject - GLib Type, Object, Parameter and Signal Library * Copyright (C) 1998-1999, 2000-2001 Tim Janik and Red Hat, Inc. * * SPDX-License-Identifier: LGPL-2.1-or-later * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General * Public License along with this library; if not, see . */ #ifndef __G_TYPE_H__ #define __G_TYPE_H__ #if !defined (__GLIB_GOBJECT_H_INSIDE__) && !defined (GOBJECT_COMPILATION) #error "Only can be included directly." #endif #include #include G_BEGIN_DECLS /* Basic Type Macros */ /** * G_TYPE_FUNDAMENTAL: * @type: A #GType value. * * The fundamental type which is the ancestor of @type. * * Fundamental types are types that serve as ultimate bases for the derived types, * thus they are the roots of distinct inheritance hierarchies. */ #define G_TYPE_FUNDAMENTAL(type) (g_type_fundamental (type)) /** * G_TYPE_FUNDAMENTAL_SHIFT: * * Shift value used in converting numbers to type IDs. */ #define G_TYPE_FUNDAMENTAL_SHIFT (2) /** * G_TYPE_FUNDAMENTAL_MAX: (value 1020) * * An integer constant that represents the number of identifiers reserved * for types that are assigned at compile-time. */ #define G_TYPE_FUNDAMENTAL_MAX (255 << G_TYPE_FUNDAMENTAL_SHIFT) /* Constant fundamental types, */ /** * G_TYPE_INVALID: * * An invalid #GType used as error return value in some functions which return * a #GType. */ #define G_TYPE_INVALID G_TYPE_MAKE_FUNDAMENTAL (0) /** * G_TYPE_NONE: * * A fundamental type which is used as a replacement for the C * void return type. */ #define G_TYPE_NONE G_TYPE_MAKE_FUNDAMENTAL (1) /** * G_TYPE_INTERFACE: * * The fundamental type from which all interfaces are derived. */ #define G_TYPE_INTERFACE G_TYPE_MAKE_FUNDAMENTAL (2) /** * G_TYPE_CHAR: * * The fundamental type corresponding to #gchar. * * The type designated by %G_TYPE_CHAR is unconditionally an 8-bit signed integer. * This may or may not be the same type a the C type "gchar". */ #define G_TYPE_CHAR G_TYPE_MAKE_FUNDAMENTAL (3) /** * G_TYPE_UCHAR: * * The fundamental type corresponding to #guchar. */ #define G_TYPE_UCHAR G_TYPE_MAKE_FUNDAMENTAL (4) /** * G_TYPE_BOOLEAN: * * The fundamental type corresponding to #gboolean. */ #define G_TYPE_BOOLEAN G_TYPE_MAKE_FUNDAMENTAL (5) /** * G_TYPE_INT: * * The fundamental type corresponding to #gint. */ #define G_TYPE_INT G_TYPE_MAKE_FUNDAMENTAL (6) /** * G_TYPE_UINT: * * The fundamental type corresponding to #guint. */ #define G_TYPE_UINT G_TYPE_MAKE_FUNDAMENTAL (7) /** * G_TYPE_LONG: * * The fundamental type corresponding to #glong. */ #define G_TYPE_LONG G_TYPE_MAKE_FUNDAMENTAL (8) /** * G_TYPE_ULONG: * * The fundamental type corresponding to #gulong. */ #define G_TYPE_ULONG G_TYPE_MAKE_FUNDAMENTAL (9) /** * G_TYPE_INT64: * * The fundamental type corresponding to #gint64. */ #define G_TYPE_INT64 G_TYPE_MAKE_FUNDAMENTAL (10) /** * G_TYPE_UINT64: * * The fundamental type corresponding to #guint64. */ #define G_TYPE_UINT64 G_TYPE_MAKE_FUNDAMENTAL (11) /** * G_TYPE_ENUM: * * The fundamental type from which all enumeration types are derived. */ #define G_TYPE_ENUM G_TYPE_MAKE_FUNDAMENTAL (12) /** * G_TYPE_FLAGS: * * The fundamental type from which all flags types are derived. */ #define G_TYPE_FLAGS G_TYPE_MAKE_FUNDAMENTAL (13) /** * G_TYPE_FLOAT: * * The fundamental type corresponding to #gfloat. */ #define G_TYPE_FLOAT G_TYPE_MAKE_FUNDAMENTAL (14) /** * G_TYPE_DOUBLE: * * The fundamental type corresponding to #gdouble. */ #define G_TYPE_DOUBLE G_TYPE_MAKE_FUNDAMENTAL (15) /** * G_TYPE_STRING: * * The fundamental type corresponding to nul-terminated C strings. */ #define G_TYPE_STRING G_TYPE_MAKE_FUNDAMENTAL (16) /** * G_TYPE_POINTER: * * The fundamental type corresponding to #gpointer. */ #define G_TYPE_POINTER G_TYPE_MAKE_FUNDAMENTAL (17) /** * G_TYPE_BOXED: * * The fundamental type from which all boxed types are derived. */ #define G_TYPE_BOXED G_TYPE_MAKE_FUNDAMENTAL (18) /** * G_TYPE_PARAM: * * The fundamental type from which all #GParamSpec types are derived. */ #define G_TYPE_PARAM G_TYPE_MAKE_FUNDAMENTAL (19) /** * G_TYPE_OBJECT: * * The fundamental type for #GObject. */ #define G_TYPE_OBJECT G_TYPE_MAKE_FUNDAMENTAL (20) /** * G_TYPE_VARIANT: * * The fundamental type corresponding to #GVariant. * * All floating #GVariant instances passed through the #GType system are * consumed. * * Note that callbacks in closures, and signal handlers * for signals of return type %G_TYPE_VARIANT, must never return floating * variants. * * Note: GLib 2.24 did include a boxed type with this name. It was replaced * with this fundamental type in 2.26. * * Since: 2.26 */ #define G_TYPE_VARIANT G_TYPE_MAKE_FUNDAMENTAL (21) /* Reserved fundamental type numbers to create new fundamental * type IDs with G_TYPE_MAKE_FUNDAMENTAL(). * * Open an issue on https://gitlab.gnome.org/GNOME/glib/issues/new for * reservations. */ /** * G_TYPE_MAKE_FUNDAMENTAL: * @x: the fundamental type number. * * Get the type ID for the fundamental type number @x. * * Use g_type_fundamental_next() instead of this macro to create new fundamental * types. * * Returns: the GType */ #define G_TYPE_MAKE_FUNDAMENTAL(x) ((GType) ((x) << G_TYPE_FUNDAMENTAL_SHIFT)) /** * G_TYPE_RESERVED_GLIB_FIRST: * * First fundamental type number to create a new fundamental type id with * G_TYPE_MAKE_FUNDAMENTAL() reserved for GLib. */ #define G_TYPE_RESERVED_GLIB_FIRST (22) /** * G_TYPE_RESERVED_GLIB_LAST: * * Last fundamental type number reserved for GLib. */ #define G_TYPE_RESERVED_GLIB_LAST (31) /** * G_TYPE_RESERVED_BSE_FIRST: * * First fundamental type number to create a new fundamental type id with * G_TYPE_MAKE_FUNDAMENTAL() reserved for BSE. */ #define G_TYPE_RESERVED_BSE_FIRST (32) /** * G_TYPE_RESERVED_BSE_LAST: * * Last fundamental type number reserved for BSE. */ #define G_TYPE_RESERVED_BSE_LAST (48) /** * G_TYPE_RESERVED_USER_FIRST: * * First available fundamental type number to create new fundamental * type id with G_TYPE_MAKE_FUNDAMENTAL(). */ #define G_TYPE_RESERVED_USER_FIRST (49) /* Type Checking Macros */ /** * G_TYPE_IS_FUNDAMENTAL: * @type: A #GType value * * Checks if @type is a fundamental type. * * Returns: %TRUE is @type is fundamental */ #define G_TYPE_IS_FUNDAMENTAL(type) ((type) <= G_TYPE_FUNDAMENTAL_MAX) /** * G_TYPE_IS_DERIVED: * @type: A #GType value * * Checks if @type is derived (or in object-oriented terminology: * inherited) from another type (this holds true for all non-fundamental * types). * * Returns: %TRUE if @type is derived */ #define G_TYPE_IS_DERIVED(type) ((type) > G_TYPE_FUNDAMENTAL_MAX) /** * G_TYPE_IS_INTERFACE: * @type: A #GType value * * Checks if @type is an interface type. * * An interface type provides a pure API, the implementation * of which is provided by another type (which is then said to conform * to the interface). GLib interfaces are somewhat analogous to Java * interfaces and C++ classes containing only pure virtual functions, * with the difference that GType interfaces are not derivable (but see * g_type_interface_add_prerequisite() for an alternative). * * Returns: %TRUE if @type is an interface */ #define G_TYPE_IS_INTERFACE(type) (G_TYPE_FUNDAMENTAL (type) == G_TYPE_INTERFACE) /** * G_TYPE_IS_CLASSED: * @type: A #GType value * * Checks if @type is a classed type. * * A classed type has an associated #GTypeClass which can be derived to store * class-wide virtual function pointers and data for all instances of the type. * This allows for subclassing. All #GObjects are classed; none of the scalar * fundamental types built into GLib are classed. * * Interfaces are not classed: while their #GTypeInterface struct could be * considered similar to #GTypeClass, and classes can derive interfaces, * #GTypeInterface doesn’t allow for subclassing. * * Returns: %TRUE if @type is classed */ #define G_TYPE_IS_CLASSED(type) (g_type_test_flags ((type), G_TYPE_FLAG_CLASSED)) /** * G_TYPE_IS_INSTANTIATABLE: * @type: A #GType value * * Checks if @type can be instantiated. Instantiation is the * process of creating an instance (object) of this type. * * Returns: %TRUE if @type is instantiatable */ #define G_TYPE_IS_INSTANTIATABLE(type) (g_type_test_flags ((type), G_TYPE_FLAG_INSTANTIATABLE)) /** * G_TYPE_IS_DERIVABLE: * @type: A #GType value * * Checks if @type is a derivable type. A derivable type can * be used as the base class of a flat (single-level) class hierarchy. * * Returns: %TRUE if @type is derivable */ #define G_TYPE_IS_DERIVABLE(type) (g_type_test_flags ((type), G_TYPE_FLAG_DERIVABLE)) /** * G_TYPE_IS_DEEP_DERIVABLE: * @type: A #GType value * * Checks if @type is a deep derivable type. A deep derivable type * can be used as the base class of a deep (multi-level) class hierarchy. * * Returns: %TRUE if @type is deep derivable */ #define G_TYPE_IS_DEEP_DERIVABLE(type) (g_type_test_flags ((type), G_TYPE_FLAG_DEEP_DERIVABLE)) /** * G_TYPE_IS_ABSTRACT: * @type: A #GType value * * Checks if @type is an abstract type. An abstract type cannot be * instantiated and is normally used as an abstract base class for * derived classes. * * Returns: %TRUE if @type is abstract */ #define G_TYPE_IS_ABSTRACT(type) (g_type_test_flags ((type), G_TYPE_FLAG_ABSTRACT)) /** * G_TYPE_IS_VALUE_ABSTRACT: * @type: A #GType value * * Checks if @type is an abstract value type. An abstract value type introduces * a value table, but can't be used for g_value_init() and is normally used as * an abstract base type for derived value types. * * Returns: %TRUE if @type is an abstract value type */ #define G_TYPE_IS_VALUE_ABSTRACT(type) (g_type_test_flags ((type), G_TYPE_FLAG_VALUE_ABSTRACT)) /** * G_TYPE_IS_VALUE_TYPE: * @type: A #GType value * * Checks if @type is a value type and can be used with g_value_init(). * * Returns: %TRUE if @type is a value type */ #define G_TYPE_IS_VALUE_TYPE(type) (g_type_check_is_value_type (type)) /** * G_TYPE_HAS_VALUE_TABLE: * @type: A #GType value * * Checks if @type has a #GTypeValueTable. * * Returns: %TRUE if @type has a value table */ #define G_TYPE_HAS_VALUE_TABLE(type) (g_type_value_table_peek (type) != NULL) /** * G_TYPE_IS_FINAL: * @type: a #GType value * * Checks if @type is a final type. A final type cannot be derived any * further. * * Returns: %TRUE if @type is final * * Since: 2.70 */ #define G_TYPE_IS_FINAL(type) (g_type_test_flags ((type), G_TYPE_FLAG_FINAL)) GOBJECT_AVAILABLE_MACRO_IN_2_70 /** * G_TYPE_IS_DEPRECATED: * @type: a #GType value * * Checks if @type is deprecated. Instantiating a deprecated type will * trigger a warning if running with `G_ENABLE_DIAGNOSTIC=1`. * * Returns: %TRUE if the type is deprecated * * Since: 2.76 */ #define G_TYPE_IS_DEPRECATED(type) (g_type_test_flags ((type), G_TYPE_FLAG_DEPRECATED)) GOBJECT_AVAILABLE_MACRO_IN_2_76 /* Typedefs */ /** * GType: * * A numerical value which represents the unique identifier of a registered * type. */ #if GLIB_SIZEOF_SIZE_T != GLIB_SIZEOF_LONG || !defined (G_CXX_STD_VERSION) typedef gsize GType; #else /* for historic reasons, C++ links against gulong GTypes */ typedef gulong GType; #endif typedef struct _GValue GValue; typedef union _GTypeCValue GTypeCValue; typedef struct _GTypePlugin GTypePlugin; typedef struct _GTypeClass GTypeClass; typedef struct _GTypeInterface GTypeInterface; typedef struct _GTypeInstance GTypeInstance; typedef struct _GTypeInfo GTypeInfo; typedef struct _GTypeFundamentalInfo GTypeFundamentalInfo; typedef struct _GInterfaceInfo GInterfaceInfo; typedef struct _GTypeValueTable GTypeValueTable; typedef struct _GTypeQuery GTypeQuery; /* Basic Type Structures */ /** * GTypeClass: * * An opaque structure used as the base of all classes. */ struct _GTypeClass { /*< private >*/ GType g_type; }; /** * GTypeInstance: * * An opaque structure used as the base of all type instances. */ struct _GTypeInstance { /*< private >*/ GTypeClass *g_class; }; /** * GTypeInterface: * * An opaque structure used as the base of all interface types. */ struct _GTypeInterface { /*< private >*/ GType g_type; /* iface type */ GType g_instance_type; }; /** * GTypeQuery: * @type: the #GType value of the type * @type_name: the name of the type * @class_size: the size of the class structure * @instance_size: the size of the instance structure * * A structure holding information for a specific type. * * See also: g_type_query() */ struct _GTypeQuery { GType type; const gchar *type_name; guint class_size; guint instance_size; }; /* Casts, checks and accessors for structured types * usage of these macros is reserved to type implementations only */ /*< protected >*/ /** * G_TYPE_CHECK_INSTANCE: * @instance: Location of a #GTypeInstance structure * * Checks if @instance is a valid #GTypeInstance structure, * otherwise issues a warning and returns %FALSE. %NULL is not a valid * #GTypeInstance. * * This macro should only be used in type implementations. * * Returns: %TRUE if @instance is valid */ #define G_TYPE_CHECK_INSTANCE(instance) (_G_TYPE_CHI ((GTypeInstance*) (instance))) /** * G_TYPE_CHECK_INSTANCE_CAST: * @instance: (nullable): Location of a #GTypeInstance structure * @g_type: The type to be returned * @c_type: The corresponding C type of @g_type * * Checks that @instance is an instance of the type identified by @g_type * and issues a warning if this is not the case. Returns @instance casted * to a pointer to @c_type. * * No warning will be issued if @instance is %NULL, and %NULL will be returned. * * This macro should only be used in type implementations. */ #define G_TYPE_CHECK_INSTANCE_CAST(instance, g_type, c_type) (_G_TYPE_CIC ((instance), (g_type), c_type)) /** * G_TYPE_CHECK_INSTANCE_TYPE: * @instance: (nullable): Location of a #GTypeInstance structure. * @g_type: The type to be checked * * Checks if @instance is an instance of the type identified by @g_type. If * @instance is %NULL, %FALSE will be returned. * * This macro should only be used in type implementations. * * Returns: %TRUE if @instance is an instance of @g_type */ #define G_TYPE_CHECK_INSTANCE_TYPE(instance, g_type) (_G_TYPE_CIT ((instance), (g_type))) /** * G_TYPE_CHECK_INSTANCE_FUNDAMENTAL_TYPE: * @instance: (nullable): Location of a #GTypeInstance structure. * @g_type: The fundamental type to be checked * * Checks if @instance is an instance of the fundamental type identified by @g_type. * If @instance is %NULL, %FALSE will be returned. * * This macro should only be used in type implementations. * * Returns: %TRUE if @instance is an instance of @g_type */ #define G_TYPE_CHECK_INSTANCE_FUNDAMENTAL_TYPE(instance, g_type) (_G_TYPE_CIFT ((instance), (g_type))) /** * G_TYPE_INSTANCE_GET_CLASS: * @instance: Location of the #GTypeInstance structure * @g_type: The #GType of the class to be returned * @c_type: The C type of the class structure * * Get the class structure of a given @instance, casted * to a specified ancestor type @g_type of the instance. * * Note that while calling a GInstanceInitFunc(), the class pointer * gets modified, so it might not always return the expected pointer. * * This macro should only be used in type implementations. * * Returns: a pointer to the class structure */ #define G_TYPE_INSTANCE_GET_CLASS(instance, g_type, c_type) (_G_TYPE_IGC ((instance), (g_type), c_type)) /** * G_TYPE_INSTANCE_GET_INTERFACE: * @instance: Location of the #GTypeInstance structure * @g_type: The #GType of the interface to be returned * @c_type: The C type of the interface structure * * Get the interface structure for interface @g_type of a given @instance. * * This macro should only be used in type implementations. * * Returns: a pointer to the interface structure */ #define G_TYPE_INSTANCE_GET_INTERFACE(instance, g_type, c_type) (_G_TYPE_IGI ((instance), (g_type), c_type)) /** * G_TYPE_CHECK_CLASS_CAST: * @g_class: Location of a #GTypeClass structure * @g_type: The type to be returned * @c_type: The corresponding C type of class structure of @g_type * * Checks that @g_class is a class structure of the type identified by @g_type * and issues a warning if this is not the case. Returns @g_class casted * to a pointer to @c_type. %NULL is not a valid class structure. * * This macro should only be used in type implementations. */ #define G_TYPE_CHECK_CLASS_CAST(g_class, g_type, c_type) (_G_TYPE_CCC ((g_class), (g_type), c_type)) /** * G_TYPE_CHECK_CLASS_TYPE: * @g_class: (nullable): Location of a #GTypeClass structure * @g_type: The type to be checked * * Checks if @g_class is a class structure of the type identified by * @g_type. If @g_class is %NULL, %FALSE will be returned. * * This macro should only be used in type implementations. * * Returns: %TRUE if @g_class is a class structure of @g_type */ #define G_TYPE_CHECK_CLASS_TYPE(g_class, g_type) (_G_TYPE_CCT ((g_class), (g_type))) /** * G_TYPE_CHECK_VALUE: * @value: a #GValue * * Checks if @value has been initialized to hold values * of a value type. * * This macro should only be used in type implementations. * * Returns: %TRUE if @value is initialized */ #define G_TYPE_CHECK_VALUE(value) (_G_TYPE_CHV ((value))) /** * G_TYPE_CHECK_VALUE_TYPE: * @value: a #GValue * @g_type: The type to be checked * * Checks if @value has been initialized to hold values * of type @g_type. * * This macro should only be used in type implementations. * * Returns: %TRUE if @value has been initialized to hold values of type @g_type */ #define G_TYPE_CHECK_VALUE_TYPE(value, g_type) (_G_TYPE_CVH ((value), (g_type))) /** * G_TYPE_FROM_INSTANCE: * @instance: Location of a valid #GTypeInstance structure * * Get the type identifier from a given @instance structure. * * This macro should only be used in type implementations. * * Returns: the #GType */ #define G_TYPE_FROM_INSTANCE(instance) (G_TYPE_FROM_CLASS (((GTypeInstance*) (instance))->g_class)) /** * G_TYPE_FROM_CLASS: * @g_class: Location of a valid #GTypeClass structure * * Get the type identifier from a given @class structure. * * This macro should only be used in type implementations. * * Returns: the #GType */ #define G_TYPE_FROM_CLASS(g_class) (((GTypeClass*) (g_class))->g_type) /** * G_TYPE_FROM_INTERFACE: * @g_iface: Location of a valid #GTypeInterface structure * * Get the type identifier from a given @interface structure. * * This macro should only be used in type implementations. * * Returns: the #GType */ #define G_TYPE_FROM_INTERFACE(g_iface) (((GTypeInterface*) (g_iface))->g_type) /** * G_TYPE_INSTANCE_GET_PRIVATE: * @instance: the instance of a type deriving from @private_type * @g_type: the type identifying which private data to retrieve * @c_type: The C type for the private structure * * Gets the private structure for a particular type. * * The private structure must have been registered in the * class_init function with g_type_class_add_private(). * * This macro should only be used in type implementations. * * Since: 2.4 * Deprecated: 2.58: Use G_ADD_PRIVATE() and the generated * `your_type_get_instance_private()` function instead * Returns: (not nullable): a pointer to the private data structure */ #define G_TYPE_INSTANCE_GET_PRIVATE(instance, g_type, c_type) ((c_type*) g_type_instance_get_private ((GTypeInstance*) (instance), (g_type))) GOBJECT_DEPRECATED_MACRO_IN_2_58_FOR(G_ADD_PRIVATE) /** * G_TYPE_CLASS_GET_PRIVATE: * @klass: the class of a type deriving from @private_type * @g_type: the type identifying which private data to retrieve * @c_type: The C type for the private structure * * Gets the private class structure for a particular type. * * The private structure must have been registered in the * get_type() function with g_type_add_class_private(). * * This macro should only be used in type implementations. * * Since: 2.24 * Returns: (not nullable): a pointer to the private data structure */ #define G_TYPE_CLASS_GET_PRIVATE(klass, g_type, c_type) ((c_type*) g_type_class_get_private ((GTypeClass*) (klass), (g_type))) /** * GTypeDebugFlags: * @G_TYPE_DEBUG_NONE: Print no messages * @G_TYPE_DEBUG_OBJECTS: Print messages about object bookkeeping * @G_TYPE_DEBUG_SIGNALS: Print messages about signal emissions * @G_TYPE_DEBUG_MASK: Mask covering all debug flags * @G_TYPE_DEBUG_INSTANCE_COUNT: Keep a count of instances of each type * * These flags used to be passed to g_type_init_with_debug_flags() which * is now deprecated. * * If you need to enable debugging features, use the `GOBJECT_DEBUG` * environment variable. * * Deprecated: 2.36: g_type_init() is now done automatically */ typedef enum /*< skip >*/ { G_TYPE_DEBUG_NONE = 0, G_TYPE_DEBUG_OBJECTS = 1 << 0, G_TYPE_DEBUG_SIGNALS = 1 << 1, G_TYPE_DEBUG_INSTANCE_COUNT = 1 << 2, G_TYPE_DEBUG_MASK = 0x07 } GTypeDebugFlags GOBJECT_DEPRECATED_TYPE_IN_2_36; /* --- prototypes --- */ G_GNUC_BEGIN_IGNORE_DEPRECATIONS GOBJECT_DEPRECATED_IN_2_36 void g_type_init (void); GOBJECT_DEPRECATED_IN_2_36 void g_type_init_with_debug_flags (GTypeDebugFlags debug_flags); G_GNUC_END_IGNORE_DEPRECATIONS GOBJECT_AVAILABLE_IN_ALL const gchar * g_type_name (GType type); GOBJECT_AVAILABLE_IN_ALL GQuark g_type_qname (GType type); GOBJECT_AVAILABLE_IN_ALL GType g_type_from_name (const gchar *name); GOBJECT_AVAILABLE_IN_ALL GType g_type_parent (GType type); GOBJECT_AVAILABLE_IN_ALL guint g_type_depth (GType type); GOBJECT_AVAILABLE_IN_ALL GType g_type_next_base (GType leaf_type, GType root_type); GOBJECT_AVAILABLE_IN_ALL gboolean g_type_is_a (GType type, GType is_a_type); /* Hoist exact GType comparisons into the caller */ #define g_type_is_a(a,b) ((a) == (b) || (g_type_is_a) ((a), (b))) GOBJECT_AVAILABLE_IN_ALL gpointer g_type_class_ref (GType type); GOBJECT_AVAILABLE_IN_ALL gpointer g_type_class_peek (GType type); GOBJECT_AVAILABLE_IN_ALL gpointer g_type_class_peek_static (GType type); GOBJECT_AVAILABLE_IN_ALL void g_type_class_unref (gpointer g_class); GOBJECT_AVAILABLE_IN_ALL gpointer g_type_class_peek_parent (gpointer g_class); GOBJECT_AVAILABLE_IN_ALL gpointer g_type_interface_peek (gpointer instance_class, GType iface_type); GOBJECT_AVAILABLE_IN_ALL gpointer g_type_interface_peek_parent (gpointer g_iface); GOBJECT_AVAILABLE_IN_ALL gpointer g_type_default_interface_ref (GType g_type); GOBJECT_AVAILABLE_IN_ALL gpointer g_type_default_interface_peek (GType g_type); GOBJECT_AVAILABLE_IN_ALL void g_type_default_interface_unref (gpointer g_iface); /* g_free() the returned arrays */ GOBJECT_AVAILABLE_IN_ALL GType* g_type_children (GType type, guint *n_children); GOBJECT_AVAILABLE_IN_ALL GType* g_type_interfaces (GType type, guint *n_interfaces); /* per-type _static_ data */ GOBJECT_AVAILABLE_IN_ALL void g_type_set_qdata (GType type, GQuark quark, gpointer data); GOBJECT_AVAILABLE_IN_ALL gpointer g_type_get_qdata (GType type, GQuark quark); GOBJECT_AVAILABLE_IN_ALL void g_type_query (GType type, GTypeQuery *query); GOBJECT_AVAILABLE_IN_2_44 int g_type_get_instance_count (GType type); /* --- type registration --- */ /** * GBaseInitFunc: * @g_class: (type GObject.TypeClass): The #GTypeClass structure to initialize * * A callback function used by the type system to do base initialization * of the class structures of derived types. * * This function is called as part of the initialization process of all derived * classes and should reallocate or reset all dynamic class members copied over * from the parent class. * * For example, class members (such as strings) that are not sufficiently * handled by a plain memory copy of the parent class into the derived class * have to be altered. See GClassInitFunc() for a discussion of the class * initialization process. */ typedef void (*GBaseInitFunc) (gpointer g_class); /** * GBaseFinalizeFunc: * @g_class: (type GObject.TypeClass): The #GTypeClass structure to finalize * * A callback function used by the type system to finalize those portions * of a derived types class structure that were setup from the corresponding * GBaseInitFunc() function. * * Class finalization basically works the inverse way in which class * initialization is performed. * * See GClassInitFunc() for a discussion of the class initialization process. */ typedef void (*GBaseFinalizeFunc) (gpointer g_class); /** * GClassInitFunc: * @g_class: (type GObject.TypeClass): The #GTypeClass structure to initialize. * @class_data: The @class_data member supplied via the #GTypeInfo structure. * * A callback function used by the type system to initialize the class * of a specific type. * * This function should initialize all static class members. * * The initialization process of a class involves: * * - Copying common members from the parent class over to the * derived class structure. * - Zero initialization of the remaining members not copied * over from the parent class. * - Invocation of the GBaseInitFunc() initializers of all parent * types and the class' type. * - Invocation of the class' GClassInitFunc() initializer. * * Since derived classes are partially initialized through a memory copy * of the parent class, the general rule is that GBaseInitFunc() and * GBaseFinalizeFunc() should take care of necessary reinitialization * and release of those class members that were introduced by the type * that specified these GBaseInitFunc()/GBaseFinalizeFunc(). * GClassInitFunc() should only care about initializing static * class members, while dynamic class members (such as allocated strings * or reference counted resources) are better handled by a GBaseInitFunc() * for this type, so proper initialization of the dynamic class members * is performed for class initialization of derived types as well. * * An example may help to correspond the intend of the different class * initializers: * * |[ * typedef struct { * GObjectClass parent_class; * gint static_integer; * gchar *dynamic_string; * } TypeAClass; * static void * type_a_base_class_init (TypeAClass *class) * { * class->dynamic_string = g_strdup ("some string"); * } * static void * type_a_base_class_finalize (TypeAClass *class) * { * g_free (class->dynamic_string); * } * static void * type_a_class_init (TypeAClass *class) * { * class->static_integer = 42; * } * * typedef struct { * TypeAClass parent_class; * gfloat static_float; * GString *dynamic_gstring; * } TypeBClass; * static void * type_b_base_class_init (TypeBClass *class) * { * class->dynamic_gstring = g_string_new ("some other string"); * } * static void * type_b_base_class_finalize (TypeBClass *class) * { * g_string_free (class->dynamic_gstring); * } * static void * type_b_class_init (TypeBClass *class) * { * class->static_float = 3.14159265358979323846; * } * ]| * * Initialization of TypeBClass will first cause initialization of * TypeAClass (derived classes reference their parent classes, see * g_type_class_ref() on this). * * Initialization of TypeAClass roughly involves zero-initializing its fields, * then calling its GBaseInitFunc() type_a_base_class_init() to allocate * its dynamic members (dynamic_string), and finally calling its GClassInitFunc() * type_a_class_init() to initialize its static members (static_integer). * The first step in the initialization process of TypeBClass is then * a plain memory copy of the contents of TypeAClass into TypeBClass and * zero-initialization of the remaining fields in TypeBClass. * The dynamic members of TypeAClass within TypeBClass now need * reinitialization which is performed by calling type_a_base_class_init() * with an argument of TypeBClass. * * After that, the GBaseInitFunc() of TypeBClass, type_b_base_class_init() * is called to allocate the dynamic members of TypeBClass (dynamic_gstring), * and finally the GClassInitFunc() of TypeBClass, type_b_class_init(), * is called to complete the initialization process with the static members * (static_float). * * Corresponding finalization counter parts to the GBaseInitFunc() functions * have to be provided to release allocated resources at class finalization * time. */ typedef void (*GClassInitFunc) (gpointer g_class, gpointer class_data); /** * GClassFinalizeFunc: * @g_class: (type GObject.TypeClass): The #GTypeClass structure to finalize * @class_data: The @class_data member supplied via the #GTypeInfo structure * * A callback function used by the type system to finalize a class. * * This function is rarely needed, as dynamically allocated class resources * should be handled by GBaseInitFunc() and GBaseFinalizeFunc(). * * Also, specification of a GClassFinalizeFunc() in the #GTypeInfo * structure of a static type is invalid, because classes of static types * will never be finalized (they are artificially kept alive when their * reference count drops to zero). */ typedef void (*GClassFinalizeFunc) (gpointer g_class, gpointer class_data); /** * GInstanceInitFunc: * @instance: The instance to initialize * @g_class: (type GObject.TypeClass): The class of the type the instance is * created for * * A callback function used by the type system to initialize a new * instance of a type. * * This function initializes all instance members and allocates any resources * required by it. * * Initialization of a derived instance involves calling all its parent * types instance initializers, so the class member of the instance * is altered during its initialization to always point to the class that * belongs to the type the current initializer was introduced for. * * The extended members of @instance are guaranteed to have been filled with * zeros before this function is called. */ typedef void (*GInstanceInitFunc) (GTypeInstance *instance, gpointer g_class); /** * GInterfaceInitFunc: * @g_iface: (type GObject.TypeInterface): The interface structure to initialize * @iface_data: The @interface_data supplied via the #GInterfaceInfo structure * * A callback function used by the type system to initialize a new * interface. * * This function should initialize all internal data and* allocate any * resources required by the interface. * * The members of @iface_data are guaranteed to have been filled with * zeros before this function is called. */ typedef void (*GInterfaceInitFunc) (gpointer g_iface, gpointer iface_data); /** * GInterfaceFinalizeFunc: * @g_iface: (type GObject.TypeInterface): The interface structure to finalize * @iface_data: The @interface_data supplied via the #GInterfaceInfo structure * * A callback function used by the type system to finalize an interface. * * This function should destroy any internal data and release any resources * allocated by the corresponding GInterfaceInitFunc() function. */ typedef void (*GInterfaceFinalizeFunc) (gpointer g_iface, gpointer iface_data); /** * GTypeClassCacheFunc: * @cache_data: data that was given to the g_type_add_class_cache_func() call * @g_class: (type GObject.TypeClass): The #GTypeClass structure which is * unreferenced * * A callback function which is called when the reference count of a class * drops to zero. * * It may use g_type_class_ref() to prevent the class from being freed. You * should not call g_type_class_unref() from a #GTypeClassCacheFunc function * to prevent infinite recursion, use g_type_class_unref_uncached() instead. * * The functions have to check the class id passed in to figure * whether they actually want to cache the class of this type, since all * classes are routed through the same #GTypeClassCacheFunc chain. * * Returns: %TRUE to stop further #GTypeClassCacheFuncs from being * called, %FALSE to continue */ typedef gboolean (*GTypeClassCacheFunc) (gpointer cache_data, GTypeClass *g_class); /** * GTypeInterfaceCheckFunc: * @check_data: data passed to g_type_add_interface_check() * @g_iface: (type GObject.TypeInterface): the interface that has been * initialized * * A callback called after an interface vtable is initialized. * * See g_type_add_interface_check(). * * Since: 2.4 */ typedef void (*GTypeInterfaceCheckFunc) (gpointer check_data, gpointer g_iface); /** * GTypeFundamentalFlags: * @G_TYPE_FLAG_CLASSED: Indicates a classed type * @G_TYPE_FLAG_INSTANTIATABLE: Indicates an instantiatable type (implies classed) * @G_TYPE_FLAG_DERIVABLE: Indicates a flat derivable type * @G_TYPE_FLAG_DEEP_DERIVABLE: Indicates a deep derivable type (implies derivable) * * Bit masks used to check or determine specific characteristics of a * fundamental type. */ typedef enum /*< skip >*/ { /* There is no G_TYPE_FUNDAMENTAL_FLAGS_NONE: this is implemented to use * the same bits as GTypeFlags */ G_TYPE_FLAG_CLASSED = (1 << 0), G_TYPE_FLAG_INSTANTIATABLE = (1 << 1), G_TYPE_FLAG_DERIVABLE = (1 << 2), G_TYPE_FLAG_DEEP_DERIVABLE = (1 << 3) } GTypeFundamentalFlags; /** * GTypeFlags: * @G_TYPE_FLAG_NONE: No special flags. Since: 2.74 * @G_TYPE_FLAG_ABSTRACT: Indicates an abstract type. No instances can be * created for an abstract type * @G_TYPE_FLAG_VALUE_ABSTRACT: Indicates an abstract value type, i.e. a type * that introduces a value table, but can't be used for * g_value_init() * @G_TYPE_FLAG_FINAL: Indicates a final type. A final type is a non-derivable * leaf node in a deep derivable type hierarchy tree. Since: 2.70 * @G_TYPE_FLAG_DEPRECATED: The type is deprecated and may be removed in a * future version. A warning will be emitted if it is instantiated while * running with `G_ENABLE_DIAGNOSTIC=1`. Since 2.76 * * Bit masks used to check or determine characteristics of a type. */ typedef enum /*< skip >*/ { G_TYPE_FLAG_NONE GOBJECT_AVAILABLE_ENUMERATOR_IN_2_74 = 0, G_TYPE_FLAG_ABSTRACT = (1 << 4), G_TYPE_FLAG_VALUE_ABSTRACT = (1 << 5), G_TYPE_FLAG_FINAL GOBJECT_AVAILABLE_ENUMERATOR_IN_2_70 = (1 << 6), G_TYPE_FLAG_DEPRECATED GOBJECT_AVAILABLE_ENUMERATOR_IN_2_76 = (1 << 7) } GTypeFlags; /** * GTypeInfo: * @class_size: Size of the class structure (required for interface, classed and instantiatable types) * @base_init: Location of the base initialization function (optional) * @base_finalize: Location of the base finalization function (optional) * @class_init: Location of the class initialization function for * classed and instantiatable types. Location of the default vtable * inititalization function for interface types. (optional) This function * is used both to fill in virtual functions in the class or default vtable, * and to do type-specific setup such as registering signals and object * properties. * @class_finalize: Location of the class finalization function for * classed and instantiatable types. Location of the default vtable * finalization function for interface types. (optional) * @class_data: User-supplied data passed to the class init/finalize functions * @instance_size: Size of the instance (object) structure (required for instantiatable types only) * @n_preallocs: Prior to GLib 2.10, it specified the number of pre-allocated (cached) instances to reserve memory for (0 indicates no caching). Since GLib 2.10 this field is ignored. * @instance_init: Location of the instance initialization function (optional, for instantiatable types only) * @value_table: A #GTypeValueTable function table for generic handling of GValues * of this type (usually only useful for fundamental types) * * This structure is used to provide the type system with the information * required to initialize and destruct (finalize) a type's class and * its instances. * * The initialized structure is passed to the g_type_register_static() function * (or is copied into the provided #GTypeInfo structure in the * g_type_plugin_complete_type_info()). The type system will perform a deep * copy of this structure, so its memory does not need to be persistent * across invocation of g_type_register_static(). */ struct _GTypeInfo { /* interface types, classed types, instantiated types */ guint16 class_size; GBaseInitFunc base_init; GBaseFinalizeFunc base_finalize; /* interface types, classed types, instantiated types */ GClassInitFunc class_init; GClassFinalizeFunc class_finalize; gconstpointer class_data; /* instantiated types */ guint16 instance_size; guint16 n_preallocs; GInstanceInitFunc instance_init; /* value handling */ const GTypeValueTable *value_table; }; /** * GTypeFundamentalInfo: * @type_flags: #GTypeFundamentalFlags describing the characteristics of the fundamental type * * A structure that provides information to the type system which is * used specifically for managing fundamental types. */ struct _GTypeFundamentalInfo { GTypeFundamentalFlags type_flags; }; /** * GInterfaceInfo: * @interface_init: location of the interface initialization function * @interface_finalize: location of the interface finalization function * @interface_data: user-supplied data passed to the interface init/finalize functions * * A structure that provides information to the type system which is * used specifically for managing interface types. */ struct _GInterfaceInfo { GInterfaceInitFunc interface_init; GInterfaceFinalizeFunc interface_finalize; gpointer interface_data; }; /** * GTypeValueInitFunc: * @value: the value to initialize * * Initializes the value contents by setting the fields of the `value->data` * array. * * The data array of the #GValue passed into this function was zero-filled * with `memset()`, so no care has to be taken to free any old contents. * For example, in the case of a string value that may never be %NULL, the * implementation might look like: * * |[ * value->data[0].v_pointer = g_strdup (""); * ]| * * Since: 2.78 */ GOBJECT_AVAILABLE_TYPE_IN_2_78 typedef void (* GTypeValueInitFunc) (GValue *value); /** * GTypeValueFreeFunc: * @value: the value to free * * Frees any old contents that might be left in the `value->data` array of * the given value. * * No resources may remain allocated through the #GValue contents after this * function returns. E.g. for our above string type: * * |[ * // only free strings without a specific flag for static storage * if (!(value->data[1].v_uint & G_VALUE_NOCOPY_CONTENTS)) * g_free (value->data[0].v_pointer); * ]| * * Since: 2.78 */ GOBJECT_AVAILABLE_TYPE_IN_2_78 typedef void (* GTypeValueFreeFunc) (GValue *value); /** * GTypeValueCopyFunc: * @src_value: the value to copy * @dest_value: (out): the location of the copy * * Copies the content of a #GValue into another. * * The @dest_value is a #GValue with zero-filled data section and @src_value * is a properly initialized #GValue of same type, or derived type. * * The purpose of this function is to copy the contents of @src_value * into @dest_value in a way, that even after @src_value has been freed, the * contents of @dest_value remain valid. String type example: * * |[ * dest_value->data[0].v_pointer = g_strdup (src_value->data[0].v_pointer); * ]| * * Since: 2.78 */ GOBJECT_AVAILABLE_TYPE_IN_2_78 typedef void (* GTypeValueCopyFunc) (const GValue *src_value, GValue *dest_value); /** * GTypeValuePeekPointerFunc: * @value: the value to peek * * If the value contents fit into a pointer, such as objects or strings, * return this pointer, so the caller can peek at the current contents. * * To extend on our above string example: * * |[ * return value->data[0].v_pointer; * ]| * * Returns: (transfer none): a pointer to the value contents * * Since: 2.78 */ GOBJECT_AVAILABLE_TYPE_IN_2_78 typedef gpointer (* GTypeValuePeekPointerFunc) (const GValue *value); /** * GTypeValueCollectFunc: * @value: the value to initialize * @n_collect_values: the number of collected values * @collect_values: (array length=n_collect_values): the collected values * @collect_flags: optional flags * * This function is responsible for converting the values collected from * a variadic argument list into contents suitable for storage in a #GValue. * * This function should setup @value similar to #GTypeValueInitFunc; e.g. * for a string value that does not allow `NULL` pointers, it needs to either * emit an error, or do an implicit conversion by storing an empty string. * * The @value passed in to this function has a zero-filled data array, so * just like for #GTypeValueInitFunc it is guaranteed to not contain any old * contents that might need freeing. * * The @n_collect_values argument is the string length of the `collect_format` * field of #GTypeValueTable, and `collect_values` is an array of #GTypeCValue * with length of @n_collect_values, containing the collected values according * to `collect_format`. * * The @collect_flags argument provided as a hint by the caller. It may * contain the flag %G_VALUE_NOCOPY_CONTENTS indicating that the collected * value contents may be considered ‘static’ for the duration of the @value * lifetime. Thus an extra copy of the contents stored in @collect_values is * not required for assignment to @value. * * For our above string example, we continue with: * * |[ * if (!collect_values[0].v_pointer) * value->data[0].v_pointer = g_strdup (""); * else if (collect_flags & G_VALUE_NOCOPY_CONTENTS) * { * value->data[0].v_pointer = collect_values[0].v_pointer; * // keep a flag for the value_free() implementation to not free this string * value->data[1].v_uint = G_VALUE_NOCOPY_CONTENTS; * } * else * value->data[0].v_pointer = g_strdup (collect_values[0].v_pointer); * return NULL; * ]| * * It should be noted, that it is generally a bad idea to follow the * %G_VALUE_NOCOPY_CONTENTS hint for reference counted types. Due to * reentrancy requirements and reference count assertions performed * by the signal emission code, reference counts should always be * incremented for reference counted contents stored in the `value->data` * array. To deviate from our string example for a moment, and taking * a look at an exemplary implementation for `GTypeValueTable.collect_value()` * of `GObject`: * * |[ * GObject *object = G_OBJECT (collect_values[0].v_pointer); * g_return_val_if_fail (object != NULL, * g_strdup_printf ("Object %p passed as invalid NULL pointer", object)); * // never honour G_VALUE_NOCOPY_CONTENTS for ref-counted types * value->data[0].v_pointer = g_object_ref (object); * return NULL; * ]| * * The reference count for valid objects is always incremented, regardless * of `collect_flags`. For invalid objects, the example returns a newly * allocated string without altering `value`. * * Upon success, `collect_value()` needs to return `NULL`. If, however, * an error condition occurred, `collect_value()` should return a newly * allocated string containing an error diagnostic. * * The calling code makes no assumptions about the `value` contents being * valid upon error returns, `value` is simply thrown away without further * freeing. As such, it is a good idea to not allocate `GValue` contents * prior to returning an error; however, `collect_values()` is not obliged * to return a correctly setup @value for error returns, simply because * any non-`NULL` return is considered a fatal programming error, and * further program behaviour is undefined. * * Returns: (transfer full) (nullable): `NULL` on success, otherwise a * newly allocated error string on failure * * Since: 2.78 */ GOBJECT_AVAILABLE_TYPE_IN_2_78 typedef gchar * (* GTypeValueCollectFunc) (GValue *value, guint n_collect_values, GTypeCValue *collect_values, guint collect_flags); /** * GTypeValueLCopyFunc: * @value: the value to lcopy * @n_collect_values: the number of collected values * @collect_values: (array length=n_collect_values): the collected * locations for storage * @collect_flags: optional flags * * This function is responsible for storing the `value` * contents into arguments passed through a variadic argument list which * got collected into `collect_values` according to `lcopy_format`. * * The `n_collect_values` argument equals the string length of * `lcopy_format`, and `collect_flags` may contain %G_VALUE_NOCOPY_CONTENTS. * * In contrast to #GTypeValueCollectFunc, this function is obliged to always * properly support %G_VALUE_NOCOPY_CONTENTS. * * Similar to #GTypeValueCollectFunc the function may prematurely abort by * returning a newly allocated string describing an error condition. To * complete the string example: * * |[ * gchar **string_p = collect_values[0].v_pointer; * g_return_val_if_fail (string_p != NULL, * g_strdup ("string location passed as NULL")); * * if (collect_flags & G_VALUE_NOCOPY_CONTENTS) * *string_p = value->data[0].v_pointer; * else * *string_p = g_strdup (value->data[0].v_pointer); * ]| * * And an illustrative version of this function for reference-counted * types: * * |[ * GObject **object_p = collect_values[0].v_pointer; * g_return_val_if_fail (object_p != NULL, * g_strdup ("object location passed as NULL")); * * if (value->data[0].v_pointer == NULL) * *object_p = NULL; * else if (collect_flags & G_VALUE_NOCOPY_CONTENTS) // always honour * *object_p = value->data[0].v_pointer; * else * *object_p = g_object_ref (value->data[0].v_pointer); * * return NULL; * ]| * * Returns: (transfer full) (nullable): `NULL` on success, otherwise * a newly allocated error string on failure * * Since: 2.78 */ GOBJECT_AVAILABLE_TYPE_IN_2_78 typedef gchar * (* GTypeValueLCopyFunc) (const GValue *value, guint n_collect_values, GTypeCValue *collect_values, guint collect_flags); /** * GTypeValueTable: * @value_init: Function to initialize a GValue * @value_free: Function to free a GValue * @value_copy: Function to copy a GValue * @value_peek_pointer: Function to peek the contents of a GValue if they fit * into a pointer * @collect_format: A string format describing how to collect the contents of * this value bit-by-bit. Each character in the format represents * an argument to be collected, and the characters themselves indicate * the type of the argument. Currently supported arguments are: * - `'i'`: Integers, passed as `collect_values[].v_int` * - `'l'`: Longs, passed as `collect_values[].v_long` * - `'d'`: Doubles, passed as `collect_values[].v_double` * - `'p'`: Pointers, passed as `collect_values[].v_pointer` * It should be noted that for variable argument list construction, * ANSI C promotes every type smaller than an integer to an int, and * floats to doubles. So for collection of short int or char, `'i'` * needs to be used, and for collection of floats `'d'`. * @collect_value: Function to initialize a GValue from the values * collected from variadic arguments * @lcopy_format: Format description of the arguments to collect for @lcopy_value, * analogous to @collect_format. Usually, @lcopy_format string consists * only of `'p'`s to provide lcopy_value() with pointers to storage locations. * @lcopy_value: Function to store the contents of a value into the * locations collected from variadic arguments * * The #GTypeValueTable provides the functions required by the #GValue * implementation, to serve as a container for values of a type. */ G_GNUC_BEGIN_IGNORE_DEPRECATIONS struct _GTypeValueTable { GTypeValueInitFunc value_init; GTypeValueFreeFunc value_free; GTypeValueCopyFunc value_copy; GTypeValuePeekPointerFunc value_peek_pointer; const gchar *collect_format; GTypeValueCollectFunc collect_value; const gchar *lcopy_format; GTypeValueLCopyFunc lcopy_value; }; G_GNUC_END_IGNORE_DEPRECATIONS GOBJECT_AVAILABLE_IN_ALL GType g_type_register_static (GType parent_type, const gchar *type_name, const GTypeInfo *info, GTypeFlags flags); GOBJECT_AVAILABLE_IN_ALL GType g_type_register_static_simple (GType parent_type, const gchar *type_name, guint class_size, GClassInitFunc class_init, guint instance_size, GInstanceInitFunc instance_init, GTypeFlags flags); GOBJECT_AVAILABLE_IN_ALL GType g_type_register_dynamic (GType parent_type, const gchar *type_name, GTypePlugin *plugin, GTypeFlags flags); GOBJECT_AVAILABLE_IN_ALL GType g_type_register_fundamental (GType type_id, const gchar *type_name, const GTypeInfo *info, const GTypeFundamentalInfo *finfo, GTypeFlags flags); GOBJECT_AVAILABLE_IN_ALL void g_type_add_interface_static (GType instance_type, GType interface_type, const GInterfaceInfo *info); GOBJECT_AVAILABLE_IN_ALL void g_type_add_interface_dynamic (GType instance_type, GType interface_type, GTypePlugin *plugin); GOBJECT_AVAILABLE_IN_ALL void g_type_interface_add_prerequisite (GType interface_type, GType prerequisite_type); GOBJECT_AVAILABLE_IN_ALL GType*g_type_interface_prerequisites (GType interface_type, guint *n_prerequisites); GOBJECT_AVAILABLE_IN_2_68 GType g_type_interface_instantiatable_prerequisite (GType interface_type); GOBJECT_DEPRECATED_IN_2_58 void g_type_class_add_private (gpointer g_class, gsize private_size); GOBJECT_AVAILABLE_IN_2_38 gint g_type_add_instance_private (GType class_type, gsize private_size); GOBJECT_AVAILABLE_IN_ALL gpointer g_type_instance_get_private (GTypeInstance *instance, GType private_type); GOBJECT_AVAILABLE_IN_2_38 void g_type_class_adjust_private_offset (gpointer g_class, gint *private_size_or_offset); GOBJECT_AVAILABLE_IN_ALL void g_type_add_class_private (GType class_type, gsize private_size); GOBJECT_AVAILABLE_IN_ALL gpointer g_type_class_get_private (GTypeClass *klass, GType private_type); GOBJECT_AVAILABLE_IN_2_38 gint g_type_class_get_instance_private_offset (gpointer g_class); GOBJECT_AVAILABLE_IN_2_34 void g_type_ensure (GType type); GOBJECT_AVAILABLE_IN_2_36 guint g_type_get_type_registration_serial (void); /* --- GType boilerplate --- */ /** * G_DECLARE_FINAL_TYPE: * @ModuleObjName: The name of the new type, in camel case (like `GtkWidget`) * @module_obj_name: The name of the new type in lowercase, with words * separated by `_` (like `gtk_widget`) * @MODULE: The name of the module, in all caps (like `GTK`) * @OBJ_NAME: The bare name of the type, in all caps (like `WIDGET`) * @ParentName: the name of the parent type, in camel case (like `GtkWidget`) * * A convenience macro for emitting the usual declarations in the header file * for a type which is not (at the present time) intended to be subclassed. * * You might use it in a header as follows: * * |[ * #ifndef _myapp_window_h_ * #define _myapp_window_h_ * * #include * * #define MY_APP_TYPE_WINDOW my_app_window_get_type () * G_DECLARE_FINAL_TYPE (MyAppWindow, my_app_window, MY_APP, WINDOW, GtkWindow) * * MyAppWindow * my_app_window_new (void); * * ... * * #endif * ]| * * And use it as follow in your C file: * * |[ * struct _MyAppWindow * { * GtkWindow parent; * ... * }; * G_DEFINE_TYPE (MyAppWindow, my_app_window, GTK_TYPE_WINDOW) * ]| * * This results in the following things happening: * * - the usual `my_app_window_get_type()` function is declared with a return type of #GType * * - the `MyAppWindow` type is defined as a `typedef` of `struct _MyAppWindow`. The struct itself is not * defined and should be defined from the .c file before G_DEFINE_TYPE() is used. * * - the `MY_APP_WINDOW()` cast is emitted as `static inline` function along with the `MY_APP_IS_WINDOW()` type * checking function * * - the `MyAppWindowClass` type is defined as a struct containing `GtkWindowClass`. This is done for the * convenience of the person defining the type and should not be considered to be part of the ABI. In * particular, without a firm declaration of the instance structure, it is not possible to subclass the type * and therefore the fact that the size of the class structure is exposed is not a concern and it can be * freely changed at any point in the future. * * - g_autoptr() support being added for your type, based on the type of your parent class * * You can only use this function if your parent type also supports g_autoptr(). * * Because the type macro (`MY_APP_TYPE_WINDOW` in the above example) is not a callable, you must continue to * manually define this as a macro for yourself. * * The declaration of the `_get_type()` function is the first thing emitted by the macro. This allows this macro * to be used in the usual way with export control and API versioning macros. * * If you want to declare your own class structure, use G_DECLARE_DERIVABLE_TYPE(). * * If you are writing a library, it is important to note that it is possible to convert a type from using * G_DECLARE_FINAL_TYPE() to G_DECLARE_DERIVABLE_TYPE() without breaking API or ABI. As a precaution, you * should therefore use G_DECLARE_FINAL_TYPE() until you are sure that it makes sense for your class to be * subclassed. Once a class structure has been exposed it is not possible to change its size or remove or * reorder items without breaking the API and/or ABI. * * Since: 2.44 **/ #define G_DECLARE_FINAL_TYPE(ModuleObjName, module_obj_name, MODULE, OBJ_NAME, ParentName) \ GType module_obj_name##_get_type (void); \ G_GNUC_BEGIN_IGNORE_DEPRECATIONS \ typedef struct _##ModuleObjName ModuleObjName; \ typedef struct { ParentName##Class parent_class; } ModuleObjName##Class; \ \ _GLIB_DEFINE_AUTOPTR_CHAINUP (ModuleObjName, ParentName) \ G_DEFINE_AUTOPTR_CLEANUP_FUNC (ModuleObjName##Class, g_type_class_unref) \ \ G_GNUC_UNUSED static inline ModuleObjName * MODULE##_##OBJ_NAME (gpointer ptr) { \ return G_TYPE_CHECK_INSTANCE_CAST (ptr, module_obj_name##_get_type (), ModuleObjName); } \ G_GNUC_UNUSED static inline gboolean MODULE##_IS_##OBJ_NAME (gpointer ptr) { \ return G_TYPE_CHECK_INSTANCE_TYPE (ptr, module_obj_name##_get_type ()); } \ G_GNUC_END_IGNORE_DEPRECATIONS /** * G_DECLARE_DERIVABLE_TYPE: * @ModuleObjName: The name of the new type, in camel case (like `GtkWidget`) * @module_obj_name: The name of the new type in lowercase, with words * separated by `_` (like `gtk_widget`) * @MODULE: The name of the module, in all caps (like `GTK`) * @OBJ_NAME: The bare name of the type, in all caps (like `WIDGET`) * @ParentName: the name of the parent type, in camel case (like `GtkWidget`) * * A convenience macro for emitting the usual declarations in the * header file for a type which is intended to be subclassed. * * You might use it in a header as follows: * * |[ * #ifndef _gtk_frobber_h_ * #define _gtk_frobber_h_ * * #define GTK_TYPE_FROBBER gtk_frobber_get_type () * GDK_AVAILABLE_IN_3_12 * G_DECLARE_DERIVABLE_TYPE (GtkFrobber, gtk_frobber, GTK, FROBBER, GtkWidget) * * struct _GtkFrobberClass * { * GtkWidgetClass parent_class; * * void (* handle_frob) (GtkFrobber *frobber, * guint n_frobs); * * gpointer padding[12]; * }; * * GtkWidget * gtk_frobber_new (void); * * ... * * #endif * ]| * * Since the instance structure is public it is often needed to declare a * private struct as follow in your C file: * * |[ * typedef struct _GtkFrobberPrivate GtkFrobberPrivate; * struct _GtkFrobberPrivate * { * ... * }; * G_DEFINE_TYPE_WITH_PRIVATE (GtkFrobber, gtk_frobber, GTK_TYPE_WIDGET) * ]| * * This results in the following things happening: * * - the usual `gtk_frobber_get_type()` function is declared with a return type of #GType * * - the `GtkFrobber` struct is created with `GtkWidget` as the first and only item. You are expected to use * a private structure from your .c file to store your instance variables. * * - the `GtkFrobberClass` type is defined as a typedef to `struct _GtkFrobberClass`, which is left undefined. * You should do this from the header file directly after you use the macro. * * - the `GTK_FROBBER()` and `GTK_FROBBER_CLASS()` casts are emitted as `static inline` functions along with * the `GTK_IS_FROBBER()` and `GTK_IS_FROBBER_CLASS()` type checking functions and `GTK_FROBBER_GET_CLASS()` * function. * * - g_autoptr() support being added for your type, based on the type of your parent class * * You can only use this function if your parent type also supports g_autoptr(). * * Because the type macro (`GTK_TYPE_FROBBER` in the above example) is not a callable, you must continue to * manually define this as a macro for yourself. * * The declaration of the `_get_type()` function is the first thing emitted by the macro. This allows this macro * to be used in the usual way with export control and API versioning macros. * * If you are writing a library, it is important to note that it is possible to convert a type from using * G_DECLARE_FINAL_TYPE() to G_DECLARE_DERIVABLE_TYPE() without breaking API or ABI. As a precaution, you * should therefore use G_DECLARE_FINAL_TYPE() until you are sure that it makes sense for your class to be * subclassed. Once a class structure has been exposed it is not possible to change its size or remove or * reorder items without breaking the API and/or ABI. If you want to declare your own class structure, use * G_DECLARE_DERIVABLE_TYPE(). If you want to declare a class without exposing the class or instance * structures, use G_DECLARE_FINAL_TYPE(). * * If you must use G_DECLARE_DERIVABLE_TYPE() you should be sure to include some padding at the bottom of your * class structure to leave space for the addition of future virtual functions. * * Since: 2.44 **/ #define G_DECLARE_DERIVABLE_TYPE(ModuleObjName, module_obj_name, MODULE, OBJ_NAME, ParentName) \ GType module_obj_name##_get_type (void); \ G_GNUC_BEGIN_IGNORE_DEPRECATIONS \ typedef struct _##ModuleObjName ModuleObjName; \ typedef struct _##ModuleObjName##Class ModuleObjName##Class; \ struct _##ModuleObjName { ParentName parent_instance; }; \ \ _GLIB_DEFINE_AUTOPTR_CHAINUP (ModuleObjName, ParentName) \ G_DEFINE_AUTOPTR_CLEANUP_FUNC (ModuleObjName##Class, g_type_class_unref) \ \ G_GNUC_UNUSED static inline ModuleObjName * MODULE##_##OBJ_NAME (gpointer ptr) { \ return G_TYPE_CHECK_INSTANCE_CAST (ptr, module_obj_name##_get_type (), ModuleObjName); } \ G_GNUC_UNUSED static inline ModuleObjName##Class * MODULE##_##OBJ_NAME##_CLASS (gpointer ptr) { \ return G_TYPE_CHECK_CLASS_CAST (ptr, module_obj_name##_get_type (), ModuleObjName##Class); } \ G_GNUC_UNUSED static inline gboolean MODULE##_IS_##OBJ_NAME (gpointer ptr) { \ return G_TYPE_CHECK_INSTANCE_TYPE (ptr, module_obj_name##_get_type ()); } \ G_GNUC_UNUSED static inline gboolean MODULE##_IS_##OBJ_NAME##_CLASS (gpointer ptr) { \ return G_TYPE_CHECK_CLASS_TYPE (ptr, module_obj_name##_get_type ()); } \ G_GNUC_UNUSED static inline ModuleObjName##Class * MODULE##_##OBJ_NAME##_GET_CLASS (gpointer ptr) { \ return G_TYPE_INSTANCE_GET_CLASS (ptr, module_obj_name##_get_type (), ModuleObjName##Class); } \ G_GNUC_END_IGNORE_DEPRECATIONS /** * G_DECLARE_INTERFACE: * @ModuleObjName: The name of the new type, in camel case (like `GtkWidget`) * @module_obj_name: The name of the new type in lowercase, with words * separated by `_` (like `gtk_widget`) * @MODULE: The name of the module, in all caps (like `GTK`) * @OBJ_NAME: The bare name of the type, in all caps (like `WIDGET`) * @PrerequisiteName: the name of the prerequisite type, in camel case (like `GtkWidget`) * * A convenience macro for emitting the usual declarations in the header file for a #GInterface type. * * You might use it in a header as follows: * * |[ * #ifndef _my_model_h_ * #define _my_model_h_ * * #define MY_TYPE_MODEL my_model_get_type () * GDK_AVAILABLE_IN_3_12 * G_DECLARE_INTERFACE (MyModel, my_model, MY, MODEL, GObject) * * struct _MyModelInterface * { * GTypeInterface g_iface; * * gpointer (* get_item) (MyModel *model); * }; * * gpointer my_model_get_item (MyModel *model); * * ... * * #endif * ]| * * And use it as follow in your C file: * * |[ * G_DEFINE_INTERFACE (MyModel, my_model, G_TYPE_OBJECT); * * static void * my_model_default_init (MyModelInterface *iface) * { * ... * } * ]| * * This results in the following things happening: * * - the usual `my_model_get_type()` function is declared with a return type of #GType * * - the `MyModelInterface` type is defined as a typedef to `struct _MyModelInterface`, * which is left undefined. You should do this from the header file directly after * you use the macro. * * - the `MY_MODEL()` cast is emitted as `static inline` functions along with * the `MY_IS_MODEL()` type checking function and `MY_MODEL_GET_IFACE()` function. * * - g_autoptr() support being added for your type, based on your prerequisite type. * * You can only use this function if your prerequisite type also supports g_autoptr(). * * Because the type macro (`MY_TYPE_MODEL` in the above example) is not a callable, you must continue to * manually define this as a macro for yourself. * * The declaration of the `_get_type()` function is the first thing emitted by the macro. This allows this macro * to be used in the usual way with export control and API versioning macros. * * Since: 2.44 **/ #define G_DECLARE_INTERFACE(ModuleObjName, module_obj_name, MODULE, OBJ_NAME, PrerequisiteName) \ GType module_obj_name##_get_type (void); \ G_GNUC_BEGIN_IGNORE_DEPRECATIONS \ typedef struct _##ModuleObjName ModuleObjName; \ typedef struct _##ModuleObjName##Interface ModuleObjName##Interface; \ \ _GLIB_DEFINE_AUTOPTR_CHAINUP (ModuleObjName, PrerequisiteName) \ \ G_GNUC_UNUSED static inline ModuleObjName * MODULE##_##OBJ_NAME (gpointer ptr) { \ return G_TYPE_CHECK_INSTANCE_CAST (ptr, module_obj_name##_get_type (), ModuleObjName); } \ G_GNUC_UNUSED static inline gboolean MODULE##_IS_##OBJ_NAME (gpointer ptr) { \ return G_TYPE_CHECK_INSTANCE_TYPE (ptr, module_obj_name##_get_type ()); } \ G_GNUC_UNUSED static inline ModuleObjName##Interface * MODULE##_##OBJ_NAME##_GET_IFACE (gpointer ptr) { \ return G_TYPE_INSTANCE_GET_INTERFACE (ptr, module_obj_name##_get_type (), ModuleObjName##Interface); } \ G_GNUC_END_IGNORE_DEPRECATIONS /** * G_DEFINE_TYPE: * @TN: The name of the new type, in Camel case. * @t_n: The name of the new type, in lowercase, with words * separated by `_`. * @T_P: The #GType of the parent type. * * A convenience macro for type implementations, which declares a class * initialization function, an instance initialization function (see #GTypeInfo * for information about these) and a static variable named `t_n_parent_class` * pointing to the parent class. Furthermore, it defines a `*_get_type()` function. * See G_DEFINE_TYPE_EXTENDED() for an example. * * Since: 2.4 */ #define G_DEFINE_TYPE(TN, t_n, T_P) G_DEFINE_TYPE_EXTENDED (TN, t_n, T_P, 0, {}) /** * G_DEFINE_TYPE_WITH_CODE: * @TN: The name of the new type, in Camel case. * @t_n: The name of the new type in lowercase, with words separated by `_`. * @T_P: The #GType of the parent type. * @_C_: Custom code that gets inserted in the `*_get_type()` function. * * A convenience macro for type implementations. * * Similar to G_DEFINE_TYPE(), but allows you to insert custom code into the * `*_get_type()` function, e.g. interface implementations via G_IMPLEMENT_INTERFACE(). * See G_DEFINE_TYPE_EXTENDED() for an example. * * Since: 2.4 */ #define G_DEFINE_TYPE_WITH_CODE(TN, t_n, T_P, _C_) _G_DEFINE_TYPE_EXTENDED_BEGIN (TN, t_n, T_P, 0) {_C_;} _G_DEFINE_TYPE_EXTENDED_END() /** * G_DEFINE_TYPE_WITH_PRIVATE: * @TN: The name of the new type, in Camel case. * @t_n: The name of the new type, in lowercase, with words * separated by `_`. * @T_P: The #GType of the parent type. * * A convenience macro for type implementations, which declares a class * initialization function, an instance initialization function (see #GTypeInfo * for information about these), a static variable named `t_n_parent_class` * pointing to the parent class, and adds private instance data to the type. * * Furthermore, it defines a `*_get_type()` function. See G_DEFINE_TYPE_EXTENDED() * for an example. * * Note that private structs added with this macros must have a struct * name of the form `TN ## Private`. * * The private instance data can be retrieved using the automatically generated * getter function `t_n_get_instance_private()`. * * See also: G_ADD_PRIVATE() * * Since: 2.38 */ #define G_DEFINE_TYPE_WITH_PRIVATE(TN, t_n, T_P) G_DEFINE_TYPE_EXTENDED (TN, t_n, T_P, 0, G_ADD_PRIVATE (TN)) /** * G_DEFINE_ABSTRACT_TYPE: * @TN: The name of the new type, in Camel case. * @t_n: The name of the new type, in lowercase, with words * separated by `_`. * @T_P: The #GType of the parent type. * * A convenience macro for type implementations. * * Similar to G_DEFINE_TYPE(), but defines an abstract type. * See G_DEFINE_TYPE_EXTENDED() for an example. * * Since: 2.4 */ #define G_DEFINE_ABSTRACT_TYPE(TN, t_n, T_P) G_DEFINE_TYPE_EXTENDED (TN, t_n, T_P, G_TYPE_FLAG_ABSTRACT, {}) /** * G_DEFINE_ABSTRACT_TYPE_WITH_CODE: * @TN: The name of the new type, in Camel case. * @t_n: The name of the new type, in lowercase, with words * separated by `_`. * @T_P: The #GType of the parent type. * @_C_: Custom code that gets inserted in the `type_name_get_type()` function. * * A convenience macro for type implementations. * * Similar to G_DEFINE_TYPE_WITH_CODE(), but defines an abstract type and * allows you to insert custom code into the `*_get_type()` function, e.g. * interface implementations via G_IMPLEMENT_INTERFACE(). * * See G_DEFINE_TYPE_EXTENDED() for an example. * * Since: 2.4 */ #define G_DEFINE_ABSTRACT_TYPE_WITH_CODE(TN, t_n, T_P, _C_) _G_DEFINE_TYPE_EXTENDED_BEGIN (TN, t_n, T_P, G_TYPE_FLAG_ABSTRACT) {_C_;} _G_DEFINE_TYPE_EXTENDED_END() /** * G_DEFINE_ABSTRACT_TYPE_WITH_PRIVATE: * @TN: The name of the new type, in Camel case. * @t_n: The name of the new type, in lowercase, with words * separated by `_`. * @T_P: The #GType of the parent type. * * Similar to G_DEFINE_TYPE_WITH_PRIVATE(), but defines an abstract type. * * See G_DEFINE_TYPE_EXTENDED() for an example. * * Since: 2.38 */ #define G_DEFINE_ABSTRACT_TYPE_WITH_PRIVATE(TN, t_n, T_P) G_DEFINE_TYPE_EXTENDED (TN, t_n, T_P, G_TYPE_FLAG_ABSTRACT, G_ADD_PRIVATE (TN)) /** * G_DEFINE_FINAL_TYPE: * @TN: the name of the new type, in Camel case * @t_n: the name of the new type, in lower case, with words * separated by `_` (snake case) * @T_P: the #GType of the parent type * * A convenience macro for type implementations. * * Similar to G_DEFINE_TYPE(), but defines a final type. * * See G_DEFINE_TYPE_EXTENDED() for an example. * * Since: 2.70 */ #define G_DEFINE_FINAL_TYPE(TN, t_n, T_P) G_DEFINE_TYPE_EXTENDED (TN, t_n, T_P, G_TYPE_FLAG_FINAL, {}) GOBJECT_AVAILABLE_MACRO_IN_2_70 /** * G_DEFINE_FINAL_TYPE_WITH_CODE: * @TN: the name of the new type, in Camel case * @t_n: the name of the new type, in lower case, with words * separated by `_` (snake case) * @T_P: the #GType of the parent type * @_C_: Custom code that gets inserted in the `type_name_get_type()` function. * * A convenience macro for type implementations. * * Similar to G_DEFINE_TYPE_WITH_CODE(), but defines a final type and * allows you to insert custom code into the `*_get_type()` function, e.g. * interface implementations via G_IMPLEMENT_INTERFACE(). * * See G_DEFINE_TYPE_EXTENDED() for an example. * * Since: 2.70 */ #define G_DEFINE_FINAL_TYPE_WITH_CODE(TN, t_n, T_P, _C_) _G_DEFINE_TYPE_EXTENDED_BEGIN (TN, t_n, T_P, G_TYPE_FLAG_FINAL) {_C_;} _G_DEFINE_TYPE_EXTENDED_END() GOBJECT_AVAILABLE_MACRO_IN_2_70 /** * G_DEFINE_FINAL_TYPE_WITH_PRIVATE: * @TN: the name of the new type, in Camel case * @t_n: the name of the new type, in lower case, with words * separated by `_` (snake case) * @T_P: the #GType of the parent type * * A convenience macro for type implementations. * * Similar to G_DEFINE_TYPE_WITH_PRIVATE(), but defines a final type. * * See G_DEFINE_TYPE_EXTENDED() for an example. * * Since: 2.70 */ #define G_DEFINE_FINAL_TYPE_WITH_PRIVATE(TN, t_n, T_P) G_DEFINE_TYPE_EXTENDED (TN, t_n, T_P, G_TYPE_FLAG_FINAL, G_ADD_PRIVATE (TN)) GOBJECT_AVAILABLE_MACRO_IN_2_70 /** * G_DEFINE_TYPE_EXTENDED: * @TN: The name of the new type, in Camel case. * @t_n: The name of the new type, in lowercase, with words * separated by `_`. * @T_P: The #GType of the parent type. * @_f_: #GTypeFlags to pass to g_type_register_static() * @_C_: Custom code that gets inserted in the `*_get_type()` function. * * The most general convenience macro for type implementations, on which * G_DEFINE_TYPE(), etc are based. * * |[ * G_DEFINE_TYPE_EXTENDED (GtkGadget, * gtk_gadget, * GTK_TYPE_WIDGET, * 0, * G_ADD_PRIVATE (GtkGadget) * G_IMPLEMENT_INTERFACE (TYPE_GIZMO, * gtk_gadget_gizmo_init)); * ]| * * expands to * * |[ * static void gtk_gadget_init (GtkGadget *self); * static void gtk_gadget_class_init (GtkGadgetClass *klass); * static gpointer gtk_gadget_parent_class = NULL; * static gint GtkGadget_private_offset; * static void gtk_gadget_class_intern_init (gpointer klass) * { * gtk_gadget_parent_class = g_type_class_peek_parent (klass); * if (GtkGadget_private_offset != 0) * g_type_class_adjust_private_offset (klass, &GtkGadget_private_offset); * gtk_gadget_class_init ((GtkGadgetClass*) klass); * } * static inline gpointer gtk_gadget_get_instance_private (GtkGadget *self) * { * return (G_STRUCT_MEMBER_P (self, GtkGadget_private_offset)); * } * * GType * gtk_gadget_get_type (void) * { * static GType static_g_define_type_id = 0; * if (g_once_init_enter_pointer (&static_g_define_type_id)) * { * GType g_define_type_id = * g_type_register_static_simple (GTK_TYPE_WIDGET, * g_intern_static_string ("GtkGadget"), * sizeof (GtkGadgetClass), * (GClassInitFunc) gtk_gadget_class_intern_init, * sizeof (GtkGadget), * (GInstanceInitFunc) gtk_gadget_init, * 0); * { * GtkGadget_private_offset = * g_type_add_instance_private (g_define_type_id, sizeof (GtkGadgetPrivate)); * } * { * const GInterfaceInfo g_implement_interface_info = { * (GInterfaceInitFunc) gtk_gadget_gizmo_init * }; * g_type_add_interface_static (g_define_type_id, TYPE_GIZMO, &g_implement_interface_info); * } * g_once_init_leave_pointer (&static_g_define_type_id, g_define_type_id); * } * return static_g_define_type_id; * } * ]| * * The only pieces which have to be manually provided are the definitions of * the instance and class structure and the definitions of the instance and * class init functions. * * Since: 2.4 */ #define G_DEFINE_TYPE_EXTENDED(TN, t_n, T_P, _f_, _C_) _G_DEFINE_TYPE_EXTENDED_BEGIN (TN, t_n, T_P, _f_) {_C_;} _G_DEFINE_TYPE_EXTENDED_END() /** * G_DEFINE_INTERFACE: * @TN: The name of the new type, in Camel case. * @t_n: The name of the new type, in lowercase, with words separated by `_`. * @T_P: The #GType of the prerequisite type for the interface, or %G_TYPE_INVALID * for no prerequisite type. * * A convenience macro for #GTypeInterface definitions, which declares * a default vtable initialization function and defines a `*_get_type()` * function. * * The macro expects the interface initialization function to have the * name `t_n ## _default_init`, and the interface structure to have the * name `TN ## Interface`. * * The initialization function has signature * `static void t_n ## _default_init (TypeName##Interface *klass);`, rather than * the full #GInterfaceInitFunc signature, for brevity and convenience. If you * need to use an initialization function with an `iface_data` argument, you * must write the #GTypeInterface definitions manually. * * Since: 2.24 */ #define G_DEFINE_INTERFACE(TN, t_n, T_P) G_DEFINE_INTERFACE_WITH_CODE(TN, t_n, T_P, ;) /** * G_DEFINE_INTERFACE_WITH_CODE: * @TN: The name of the new type, in Camel case. * @t_n: The name of the new type, in lowercase, with words separated by `_`. * @T_P: The #GType of the prerequisite type for the interface, or %G_TYPE_INVALID * for no prerequisite type. * @_C_: Custom code that gets inserted in the `*_get_type()` function. * * A convenience macro for #GTypeInterface definitions. * * Similar to G_DEFINE_INTERFACE(), but allows you to insert custom code * into the `*_get_type()` function, e.g. additional interface implementations * via G_IMPLEMENT_INTERFACE(), or additional prerequisite types. * * See G_DEFINE_TYPE_EXTENDED() for a similar example using * G_DEFINE_TYPE_WITH_CODE(). * * Since: 2.24 */ #define G_DEFINE_INTERFACE_WITH_CODE(TN, t_n, T_P, _C_) _G_DEFINE_INTERFACE_EXTENDED_BEGIN(TN, t_n, T_P) {_C_;} _G_DEFINE_INTERFACE_EXTENDED_END() /** * G_IMPLEMENT_INTERFACE: * @TYPE_IFACE: The #GType of the interface to add * @iface_init: (type GInterfaceInitFunc): The interface init function, of type #GInterfaceInitFunc * * A convenience macro to ease interface addition in the `_C_` section * of G_DEFINE_TYPE_WITH_CODE() or G_DEFINE_ABSTRACT_TYPE_WITH_CODE(). * See G_DEFINE_TYPE_EXTENDED() for an example. * * Note that this macro can only be used together with the `G_DEFINE_TYPE_*` * macros, since it depends on variable names from those macros. * * Since: 2.4 */ #define G_IMPLEMENT_INTERFACE(TYPE_IFACE, iface_init) { \ const GInterfaceInfo g_implement_interface_info = { \ (GInterfaceInitFunc)(void (*)(void)) iface_init, NULL, NULL \ }; \ g_type_add_interface_static (g_define_type_id, TYPE_IFACE, &g_implement_interface_info); \ } /** * G_ADD_PRIVATE: * @TypeName: the name of the type in CamelCase * * A convenience macro to ease adding private data to instances of a new type * in the @_C_ section of G_DEFINE_TYPE_WITH_CODE() or * G_DEFINE_ABSTRACT_TYPE_WITH_CODE(). * * For instance: * * |[ * typedef struct _MyObject MyObject; * typedef struct _MyObjectClass MyObjectClass; * * typedef struct { * gint foo; * gint bar; * } MyObjectPrivate; * * G_DEFINE_TYPE_WITH_CODE (MyObject, my_object, G_TYPE_OBJECT, * G_ADD_PRIVATE (MyObject)) * ]| * * Will add `MyObjectPrivate` as the private data to any instance of the * `MyObject` type. * * `G_DEFINE_TYPE_*` macros will automatically create a private function * based on the arguments to this macro, which can be used to safely * retrieve the private data from an instance of the type; for instance: * * |[ * gint * my_object_get_foo (MyObject *obj) * { * MyObjectPrivate *priv = my_object_get_instance_private (obj); * * g_return_val_if_fail (MY_IS_OBJECT (obj), 0); * * return priv->foo; * } * * void * my_object_set_bar (MyObject *obj, * gint bar) * { * MyObjectPrivate *priv = my_object_get_instance_private (obj); * * g_return_if_fail (MY_IS_OBJECT (obj)); * * if (priv->bar != bar) * priv->bar = bar; * } * ]| * * Since GLib 2.72, the returned `MyObjectPrivate` pointer is guaranteed to be * aligned to at least the alignment of the largest basic GLib type (typically * this is #guint64 or #gdouble). If you need larger alignment for an element in * the struct, you should allocate it on the heap (aligned), or arrange for your * `MyObjectPrivate` struct to be appropriately padded. * * Note that this macro can only be used together with the `G_DEFINE_TYPE_*` * macros, since it depends on variable names from those macros. * * Also note that private structs added with these macros must have a struct * name of the form `TypeNamePrivate`. * * It is safe to call the `_get_instance_private` function on %NULL or invalid * objects since it's only adding an offset to the instance pointer. In that * case the returned pointer must not be dereferenced. * * Since: 2.38 */ #define G_ADD_PRIVATE(TypeName) { \ TypeName##_private_offset = \ g_type_add_instance_private (g_define_type_id, sizeof (TypeName##Private)); \ } /** * G_PRIVATE_OFFSET: * @TypeName: the name of the type in CamelCase * @field: the name of the field in the private data structure * * Evaluates to the offset of the @field inside the instance private data * structure for @TypeName. * * Note that this macro can only be used together with the `G_DEFINE_TYPE_*` * and G_ADD_PRIVATE() macros, since it depends on variable names from * those macros. * * Since: 2.38 */ #define G_PRIVATE_OFFSET(TypeName, field) \ (TypeName##_private_offset + (G_STRUCT_OFFSET (TypeName##Private, field))) /** * G_PRIVATE_FIELD_P: * @TypeName: the name of the type in CamelCase * @inst: the instance of @TypeName you wish to access * @field_name: the name of the field in the private data structure * * Evaluates to a pointer to the @field_name inside the @inst private data * structure for @TypeName. * * Note that this macro can only be used together with the `G_DEFINE_TYPE_*` * and G_ADD_PRIVATE() macros, since it depends on variable names from * those macros. * * Since: 2.38 */ #define G_PRIVATE_FIELD_P(TypeName, inst, field_name) \ G_STRUCT_MEMBER_P (inst, G_PRIVATE_OFFSET (TypeName, field_name)) /** * G_PRIVATE_FIELD: * @TypeName: the name of the type in CamelCase * @inst: the instance of @TypeName you wish to access * @field_type: the type of the field in the private data structure * @field_name: the name of the field in the private data structure * * Evaluates to the @field_name inside the @inst private data * structure for @TypeName. * * Note that this macro can only be used together with the `G_DEFINE_TYPE_*` * and G_ADD_PRIVATE() macros, since it depends on variable names from * those macros. * * Since: 2.38 */ #define G_PRIVATE_FIELD(TypeName, inst, field_type, field_name) \ G_STRUCT_MEMBER (field_type, inst, G_PRIVATE_OFFSET (TypeName, field_name)) /* we need to have this macro under conditional expansion, as it references * a function that has been added in 2.38. see bug: * https://bugzilla.gnome.org/show_bug.cgi?id=703191 */ #if GLIB_VERSION_MAX_ALLOWED >= GLIB_VERSION_2_38 #define _G_DEFINE_TYPE_EXTENDED_CLASS_INIT(TypeName, type_name) \ static void type_name##_class_intern_init (gpointer klass) \ { \ type_name##_parent_class = g_type_class_peek_parent (klass); \ if (TypeName##_private_offset != 0) \ g_type_class_adjust_private_offset (klass, &TypeName##_private_offset); \ type_name##_class_init ((TypeName##Class*) klass); \ } #else #define _G_DEFINE_TYPE_EXTENDED_CLASS_INIT(TypeName, type_name) \ static void type_name##_class_intern_init (gpointer klass) \ { \ type_name##_parent_class = g_type_class_peek_parent (klass); \ type_name##_class_init ((TypeName##Class*) klass); \ } #endif /* GLIB_VERSION_MAX_ALLOWED >= GLIB_VERSION_2_38 */ #if GLIB_VERSION_MAX_ALLOWED >= GLIB_VERSION_2_80 #define _g_type_once_init_type GType #define _g_type_once_init_enter g_once_init_enter_pointer #define _g_type_once_init_leave g_once_init_leave_pointer #else /* if GLIB_VERSION_MAX_ALLOWED < GLIB_VERSION_2_80 */ #define _g_type_once_init_type gsize #define _g_type_once_init_enter g_once_init_enter #define _g_type_once_init_leave g_once_init_leave #endif /* GLIB_VERSION_MAX_ALLOWED >= GLIB_VERSION_2_80 */ /* Added for _G_DEFINE_TYPE_EXTENDED_WITH_PRELUDE */ #define _G_DEFINE_TYPE_EXTENDED_BEGIN_PRE(TypeName, type_name, TYPE_PARENT) \ \ static void type_name##_init (TypeName *self); \ static void type_name##_class_init (TypeName##Class *klass); \ static GType type_name##_get_type_once (void); \ static gpointer type_name##_parent_class = NULL; \ static gint TypeName##_private_offset; \ \ _G_DEFINE_TYPE_EXTENDED_CLASS_INIT(TypeName, type_name) \ \ G_GNUC_UNUSED \ static inline gpointer \ type_name##_get_instance_private (TypeName *self) \ { \ return (G_STRUCT_MEMBER_P (self, TypeName##_private_offset)); \ } \ \ GType \ type_name##_get_type (void) \ { \ static _g_type_once_init_type static_g_define_type_id = 0; /* Prelude goes here */ /* Added for _G_DEFINE_TYPE_EXTENDED_WITH_PRELUDE */ #define _G_DEFINE_TYPE_EXTENDED_BEGIN_REGISTER(TypeName, type_name, TYPE_PARENT, flags) \ if (_g_type_once_init_enter (&static_g_define_type_id)) \ { \ GType g_define_type_id = type_name##_get_type_once (); \ _g_type_once_init_leave (&static_g_define_type_id, g_define_type_id); \ } \ return static_g_define_type_id; \ } /* closes type_name##_get_type() */ \ \ G_NO_INLINE \ static GType \ type_name##_get_type_once (void) \ { \ GType g_define_type_id = \ g_type_register_static_simple (TYPE_PARENT, \ g_intern_static_string (#TypeName), \ sizeof (TypeName##Class), \ (GClassInitFunc)(void (*)(void)) type_name##_class_intern_init, \ sizeof (TypeName), \ (GInstanceInitFunc)(void (*)(void)) type_name##_init, \ (GTypeFlags) flags); \ { /* custom code follows */ #define _G_DEFINE_TYPE_EXTENDED_END() \ /* following custom code */ \ } \ return g_define_type_id; \ } /* closes type_name##_get_type_once() */ /* This was defined before we had G_DEFINE_TYPE_WITH_CODE_AND_PRELUDE, it's simplest * to keep it. */ #define _G_DEFINE_TYPE_EXTENDED_BEGIN(TypeName, type_name, TYPE_PARENT, flags) \ _G_DEFINE_TYPE_EXTENDED_BEGIN_PRE(TypeName, type_name, TYPE_PARENT) \ _G_DEFINE_TYPE_EXTENDED_BEGIN_REGISTER(TypeName, type_name, TYPE_PARENT, flags) \ /* Intentionally using (GTypeFlags) 0 instead of G_TYPE_FLAG_NONE here, * to avoid deprecation warnings with older GLIB_VERSION_MAX_ALLOWED */ #define _G_DEFINE_INTERFACE_EXTENDED_BEGIN(TypeName, type_name, TYPE_PREREQ) \ \ static void type_name##_default_init (TypeName##Interface *klass); \ \ GType \ type_name##_get_type (void) \ { \ static _g_type_once_init_type static_g_define_type_id = 0; \ if (_g_type_once_init_enter (&static_g_define_type_id)) \ { \ GType g_define_type_id = \ g_type_register_static_simple (G_TYPE_INTERFACE, \ g_intern_static_string (#TypeName), \ sizeof (TypeName##Interface), \ (GClassInitFunc)(void (*)(void)) type_name##_default_init, \ 0, \ (GInstanceInitFunc)NULL, \ (GTypeFlags) 0); \ if (TYPE_PREREQ != G_TYPE_INVALID) \ g_type_interface_add_prerequisite (g_define_type_id, TYPE_PREREQ); \ { /* custom code follows */ #define _G_DEFINE_INTERFACE_EXTENDED_END() \ /* following custom code */ \ } \ _g_type_once_init_leave (&static_g_define_type_id, g_define_type_id); \ } \ return static_g_define_type_id; \ } /* closes type_name##_get_type() */ /** * G_DEFINE_BOXED_TYPE: * @TypeName: The name of the new type, in Camel case * @type_name: The name of the new type, in lowercase, with words * separated by `_` * @copy_func: the #GBoxedCopyFunc for the new type * @free_func: the #GBoxedFreeFunc for the new type * * A convenience macro for defining a new custom boxed type. * * Using this macro is the recommended way of defining new custom boxed * types, over calling g_boxed_type_register_static() directly. It defines * a `type_name_get_type()` function which will return the newly defined * #GType, enabling lazy instantiation. * * You might start by putting declarations in a header as follows: * * |[ * #define MY_TYPE_STRUCT my_struct_get_type () * GType my_struct_get_type (void) G_GNUC_CONST; * * MyStruct * my_struct_new (void); * void my_struct_free (MyStruct *self); * MyStruct * my_struct_copy (MyStruct *self); * ]| * * And then use this macro and define your implementation in the source file as * follows: * * |[ * MyStruct * * my_struct_new (void) * { * // ... your code to allocate a new MyStruct ... * } * * void * my_struct_free (MyStruct *self) * { * // ... your code to free a MyStruct ... * } * * MyStruct * * my_struct_copy (MyStruct *self) * { * // ... your code return a newly allocated copy of a MyStruct ... * } * * G_DEFINE_BOXED_TYPE (MyStruct, my_struct, my_struct_copy, my_struct_free) * * void * foo () * { * MyStruct *ms; * * ms = my_struct_new (); * // ... your code ... * my_struct_free (ms); * } * ]| * * Since: 2.26 */ #define G_DEFINE_BOXED_TYPE(TypeName, type_name, copy_func, free_func) G_DEFINE_BOXED_TYPE_WITH_CODE (TypeName, type_name, copy_func, free_func, {}) /** * G_DEFINE_BOXED_TYPE_WITH_CODE: * @TypeName: The name of the new type, in Camel case * @type_name: The name of the new type, in lowercase, with words * separated by `_` * @copy_func: the #GBoxedCopyFunc for the new type * @free_func: the #GBoxedFreeFunc for the new type * @_C_: Custom code that gets inserted in the `*_get_type()` function * * A convenience macro for boxed type implementations. * * Similar to G_DEFINE_BOXED_TYPE(), but allows to insert custom code into the * `type_name_get_type()` function, e.g. to register value transformations with * g_value_register_transform_func(), for instance: * * |[ * G_DEFINE_BOXED_TYPE_WITH_CODE (GdkRectangle, gdk_rectangle, * gdk_rectangle_copy, * gdk_rectangle_free, * register_rectangle_transform_funcs (g_define_type_id)) * ]| * * Similarly to the `G_DEFINE_TYPE_*` family of macros, the #GType of the newly * defined boxed type is exposed in the `g_define_type_id` variable. * * Since: 2.26 */ #define G_DEFINE_BOXED_TYPE_WITH_CODE(TypeName, type_name, copy_func, free_func, _C_) _G_DEFINE_BOXED_TYPE_BEGIN (TypeName, type_name, copy_func, free_func) {_C_;} _G_DEFINE_TYPE_EXTENDED_END() /* Only use this in non-C++ on GCC >= 2.7, except for Darwin/ppc64. * See https://bugzilla.gnome.org/show_bug.cgi?id=647145 */ #if !defined (G_CXX_STD_VERSION) && (G_GNUC_CHECK_VERSION(2, 7)) && \ !(defined (__APPLE__) && defined (__ppc64__)) #define _G_DEFINE_BOXED_TYPE_BEGIN(TypeName, type_name, copy_func, free_func) \ static GType type_name##_get_type_once (void); \ \ GType \ type_name##_get_type (void) \ { \ static _g_type_once_init_type static_g_define_type_id = 0; \ if (_g_type_once_init_enter (&static_g_define_type_id)) \ { \ GType g_define_type_id = type_name##_get_type_once (); \ _g_type_once_init_leave (&static_g_define_type_id, g_define_type_id); \ } \ return static_g_define_type_id; \ } \ \ G_NO_INLINE \ static GType \ type_name##_get_type_once (void) \ { \ GType (* _g_register_boxed) \ (const gchar *, \ union \ { \ TypeName * (*do_copy_type) (TypeName *); \ TypeName * (*do_const_copy_type) (const TypeName *); \ GBoxedCopyFunc do_copy_boxed; \ } __attribute__((__transparent_union__)), \ union \ { \ void (* do_free_type) (TypeName *); \ GBoxedFreeFunc do_free_boxed; \ } __attribute__((__transparent_union__)) \ ) = g_boxed_type_register_static; \ GType g_define_type_id = \ _g_register_boxed (g_intern_static_string (#TypeName), copy_func, free_func); \ { /* custom code follows */ #else #define _G_DEFINE_BOXED_TYPE_BEGIN(TypeName, type_name, copy_func, free_func) \ static GType type_name##_get_type_once (void); \ \ GType \ type_name##_get_type (void) \ { \ static _g_type_once_init_type static_g_define_type_id = 0; \ if (_g_type_once_init_enter (&static_g_define_type_id)) \ { \ GType g_define_type_id = type_name##_get_type_once (); \ _g_type_once_init_leave (&static_g_define_type_id, g_define_type_id); \ } \ return static_g_define_type_id; \ } \ \ G_NO_INLINE \ static GType \ type_name##_get_type_once (void) \ { \ GType g_define_type_id = \ g_boxed_type_register_static (g_intern_static_string (#TypeName), \ (GBoxedCopyFunc) copy_func, \ (GBoxedFreeFunc) free_func); \ { /* custom code follows */ #endif /* __GNUC__ */ /** * G_DEFINE_POINTER_TYPE: * @TypeName: The name of the new type, in Camel case * @type_name: The name of the new type, in lowercase, with words * separated by `_` * * A convenience macro for pointer type implementations, which defines a * `type_name_get_type()` function registering the pointer type. * * Since: 2.26 */ #define G_DEFINE_POINTER_TYPE(TypeName, type_name) G_DEFINE_POINTER_TYPE_WITH_CODE (TypeName, type_name, {}) /** * G_DEFINE_POINTER_TYPE_WITH_CODE: * @TypeName: The name of the new type, in Camel case * @type_name: The name of the new type, in lowercase, with words * separated by `_` * @_C_: Custom code that gets inserted in the `*_get_type()` function * * A convenience macro for pointer type implementations. * Similar to G_DEFINE_POINTER_TYPE(), but allows to insert * custom code into the `type_name_get_type()` function. * * Since: 2.26 */ #define G_DEFINE_POINTER_TYPE_WITH_CODE(TypeName, type_name, _C_) _G_DEFINE_POINTER_TYPE_BEGIN (TypeName, type_name) {_C_;} _G_DEFINE_TYPE_EXTENDED_END() #define _G_DEFINE_POINTER_TYPE_BEGIN(TypeName, type_name) \ static GType type_name##_get_type_once (void); \ \ GType \ type_name##_get_type (void) \ { \ static _g_type_once_init_type static_g_define_type_id = 0; \ if (_g_type_once_init_enter (&static_g_define_type_id)) \ { \ GType g_define_type_id = type_name##_get_type_once (); \ _g_type_once_init_leave (&static_g_define_type_id, g_define_type_id); \ } \ return static_g_define_type_id; \ } \ \ G_NO_INLINE \ static GType \ type_name##_get_type_once (void) \ { \ GType g_define_type_id = \ g_pointer_type_register_static (g_intern_static_string (#TypeName)); \ { /* custom code follows */ /* --- protected (for fundamental type implementations) --- */ GOBJECT_AVAILABLE_IN_ALL GTypePlugin* g_type_get_plugin (GType type); GOBJECT_AVAILABLE_IN_ALL GTypePlugin* g_type_interface_get_plugin (GType instance_type, GType interface_type); GOBJECT_AVAILABLE_IN_ALL GType g_type_fundamental_next (void); GOBJECT_AVAILABLE_IN_ALL GType g_type_fundamental (GType type_id); GOBJECT_AVAILABLE_IN_ALL GTypeInstance* g_type_create_instance (GType type); GOBJECT_AVAILABLE_IN_ALL void g_type_free_instance (GTypeInstance *instance); GOBJECT_AVAILABLE_IN_ALL void g_type_add_class_cache_func (gpointer cache_data, GTypeClassCacheFunc cache_func); GOBJECT_AVAILABLE_IN_ALL void g_type_remove_class_cache_func (gpointer cache_data, GTypeClassCacheFunc cache_func); GOBJECT_AVAILABLE_IN_ALL void g_type_class_unref_uncached (gpointer g_class); GOBJECT_AVAILABLE_IN_ALL void g_type_add_interface_check (gpointer check_data, GTypeInterfaceCheckFunc check_func); GOBJECT_AVAILABLE_IN_ALL void g_type_remove_interface_check (gpointer check_data, GTypeInterfaceCheckFunc check_func); GOBJECT_AVAILABLE_IN_ALL GTypeValueTable* g_type_value_table_peek (GType type); /*< private >*/ GOBJECT_AVAILABLE_IN_ALL gboolean g_type_check_instance (GTypeInstance *instance) G_GNUC_PURE; GOBJECT_AVAILABLE_IN_ALL GTypeInstance* g_type_check_instance_cast (GTypeInstance *instance, GType iface_type); GOBJECT_AVAILABLE_IN_ALL gboolean g_type_check_instance_is_a (GTypeInstance *instance, GType iface_type) G_GNUC_PURE; GOBJECT_AVAILABLE_IN_2_42 gboolean g_type_check_instance_is_fundamentally_a (GTypeInstance *instance, GType fundamental_type) G_GNUC_PURE; GOBJECT_AVAILABLE_IN_ALL GTypeClass* g_type_check_class_cast (GTypeClass *g_class, GType is_a_type); GOBJECT_AVAILABLE_IN_ALL gboolean g_type_check_class_is_a (GTypeClass *g_class, GType is_a_type) G_GNUC_PURE; GOBJECT_AVAILABLE_IN_ALL gboolean g_type_check_is_value_type (GType type) G_GNUC_CONST; GOBJECT_AVAILABLE_IN_ALL gboolean g_type_check_value (const GValue *value) G_GNUC_PURE; GOBJECT_AVAILABLE_IN_ALL gboolean g_type_check_value_holds (const GValue *value, GType type) G_GNUC_PURE; GOBJECT_AVAILABLE_IN_ALL gboolean g_type_test_flags (GType type, guint flags) G_GNUC_CONST; /* --- debugging functions --- */ GOBJECT_AVAILABLE_IN_ALL const gchar * g_type_name_from_instance (GTypeInstance *instance); GOBJECT_AVAILABLE_IN_ALL const gchar * g_type_name_from_class (GTypeClass *g_class); /* --- implementation bits --- */ #if defined(G_DISABLE_CAST_CHECKS) || defined(__OPTIMIZE__) # define _G_TYPE_CIC(ip, gt, ct) ((ct*) (void *) ip) # define _G_TYPE_CCC(cp, gt, ct) ((ct*) (void *) cp) #else # define _G_TYPE_CIC(ip, gt, ct) \ ((ct*) (void *) g_type_check_instance_cast ((GTypeInstance*) ip, gt)) # define _G_TYPE_CCC(cp, gt, ct) \ ((ct*) (void *) g_type_check_class_cast ((GTypeClass*) cp, gt)) #endif #define _G_TYPE_CHI(ip) (g_type_check_instance ((GTypeInstance*) ip)) #define _G_TYPE_CHV(vl) (g_type_check_value ((GValue*) vl)) #define _G_TYPE_IGC(ip, gt, ct) ((ct*) (((GTypeInstance*) ip)->g_class)) #define _G_TYPE_IGI(ip, gt, ct) ((ct*) g_type_interface_peek (((GTypeInstance*) ip)->g_class, gt)) #define _G_TYPE_CIFT(ip, ft) (g_type_check_instance_is_fundamentally_a ((GTypeInstance*) ip, ft)) #ifdef __GNUC__ # define _G_TYPE_CIT(ip, gt) (G_GNUC_EXTENSION ({ \ GTypeInstance *__inst = (GTypeInstance*) ip; GType __t = gt; gboolean __r; \ if (!__inst) \ __r = FALSE; \ else if (__inst->g_class && __inst->g_class->g_type == __t) \ __r = TRUE; \ else \ __r = g_type_check_instance_is_a (__inst, __t); \ __r; \ })) # define _G_TYPE_CCT(cp, gt) (G_GNUC_EXTENSION ({ \ GTypeClass *__class = (GTypeClass*) cp; GType __t = gt; gboolean __r; \ if (!__class) \ __r = FALSE; \ else if (__class->g_type == __t) \ __r = TRUE; \ else \ __r = g_type_check_class_is_a (__class, __t); \ __r; \ })) # define _G_TYPE_CVH(vl, gt) (G_GNUC_EXTENSION ({ \ const GValue *__val = (const GValue*) vl; GType __t = gt; gboolean __r; \ if (!__val) \ __r = FALSE; \ else if (__val->g_type == __t) \ __r = TRUE; \ else \ __r = g_type_check_value_holds (__val, __t); \ __r; \ })) #else /* !__GNUC__ */ # define _G_TYPE_CIT(ip, gt) (g_type_check_instance_is_a ((GTypeInstance*) ip, gt)) # define _G_TYPE_CCT(cp, gt) (g_type_check_class_is_a ((GTypeClass*) cp, gt)) # define _G_TYPE_CVH(vl, gt) (g_type_check_value_holds ((const GValue*) vl, gt)) #endif /* !__GNUC__ */ /** * G_TYPE_FLAG_RESERVED_ID_BIT: * * A bit in the type number that's supposed to be left untouched. */ #define G_TYPE_FLAG_RESERVED_ID_BIT ((GType) (1 << 0)) G_END_DECLS #endif /* __G_TYPE_H__ */