mirror of
https://gitlab.gnome.org/GNOME/glib.git
synced 2024-11-14 05:16:18 +01:00
80591652ff
Fri Dec 19 11:49:21 2003 George Lebl <jirka@5z.com> * glib/grand.c glib/grand.h (g_rand_new) (g_rand_new_with_seed) (g_rand_new_with_seed_array) (g_rand_set_seed_array): Add the init_by_array functionality from the reference implementation of the mersenne twister (mt19937ar.c) and change the naming to fit with the rest of the grand API. New functions are g_rand_new_with_seed_array, g_rand_set_seed_array. This is only reliable/tested for the 2.2 version of the seeding as that's what the reference implementation uses. Also modify g_rand_new to get 4 longs from /dev/urandom since that will always be available anyway and we get more entropy and if /dev/urandom is unavailable use also 4 longs for seeding using secs, usecs, getpid and getppid. For version 2.0 use only a simple seed again but be more careful about seeding with secs/usecs in this case. * glib/grand.c glib/grand.h (g_rand_copy): Add g_rand_copy function to copy the current state of the random number generator. * glib/grand.c (g_rand_new): Add testing for EINTR when reading from /dev/urandom * tests/rand-test.c: add testing of the array seeding stuff against the reference implementation, plus add statistical sanity check to see that the values outputted are truly kind of random. And check that g_rand_copy truly copies the state by checking a few terms.
136 lines
2.8 KiB
C
136 lines
2.8 KiB
C
#undef G_DISABLE_ASSERT
|
|
#undef G_LOG_DOMAIN
|
|
|
|
#include <glib.h>
|
|
|
|
/* Outputs tested against the reference implementation mt19937ar.c from
|
|
http://www.math.keio.ac.jp/~matumoto/MT2002/emt19937ar.html */
|
|
|
|
/* Tests for a simple seed, first number is the seed */
|
|
const guint32 first_numbers[] =
|
|
{
|
|
0x7a7a7a7a,
|
|
0xfdcc2d54,
|
|
0x3a279ceb,
|
|
0xc4d39c33,
|
|
0xf31895cd,
|
|
0x46ca0afc,
|
|
0x3f5484ff,
|
|
0x54bc9557,
|
|
0xed2c24b1,
|
|
0x84062503,
|
|
0x8f6404b3,
|
|
0x599a94b3,
|
|
0xe46d03d5,
|
|
0x310beb78,
|
|
0x7bee5d08,
|
|
0x760d09be,
|
|
0x59b6e163,
|
|
0xbf6d16ec,
|
|
0xcca5fb54,
|
|
0x5de7259b,
|
|
0x1696330c,
|
|
};
|
|
|
|
/* array seed */
|
|
const guint32 seed_array[] =
|
|
{
|
|
0x6553375f,
|
|
0xd6b8d43b,
|
|
0xa1e7667f,
|
|
0x2b10117c
|
|
};
|
|
|
|
/* tests for the array seed */
|
|
const guint32 array_outputs[] =
|
|
{
|
|
0xc22b7dc3,
|
|
0xfdecb8ae,
|
|
0xb4af0738,
|
|
0x516bc6e1,
|
|
0x7e372e91,
|
|
0x2d38ff80,
|
|
0x6096494a,
|
|
0xd162d5a8,
|
|
0x3c0aaa0d,
|
|
0x10e736ae
|
|
};
|
|
|
|
const gint length = sizeof (first_numbers) / sizeof (first_numbers[0]);
|
|
const gint seed_length = sizeof (seed_array) / sizeof (seed_array[0]);
|
|
const gint array_length = sizeof (array_outputs) / sizeof (array_outputs[0]);
|
|
|
|
int main()
|
|
{
|
|
guint n;
|
|
guint ones;
|
|
double proportion;
|
|
|
|
GRand* rand = g_rand_new_with_seed (first_numbers[0]);
|
|
GRand* copy;
|
|
|
|
for (n = 1; n < length; n++)
|
|
g_assert (first_numbers[n] == g_rand_int (rand));
|
|
|
|
g_rand_set_seed (rand, 2);
|
|
g_rand_set_seed_array (rand, seed_array, seed_length);
|
|
|
|
for (n = 0; n < array_length; n++)
|
|
g_assert (array_outputs[n] == g_rand_int (rand));
|
|
|
|
copy = g_rand_copy (rand);
|
|
for (n = 0; n < 100; n++)
|
|
g_assert (g_rand_int (copy) == g_rand_int (rand));
|
|
|
|
for (n = 1; n < 100000; n++)
|
|
{
|
|
gint32 i;
|
|
gdouble d;
|
|
gboolean b;
|
|
|
|
i = g_rand_int_range (rand, 8,16);
|
|
g_assert (i >= 8 && i < 16);
|
|
|
|
i = g_random_int_range (8,16);
|
|
g_assert (i >= 8 && i < 16);
|
|
|
|
d = g_rand_double (rand);
|
|
g_assert (d >= 0 && d < 1);
|
|
|
|
d = g_random_double ();
|
|
g_assert (d >= 0 && d < 1);
|
|
|
|
d = g_rand_double_range (rand, -8, 32);
|
|
g_assert (d >= -8 && d < 32);
|
|
|
|
d = g_random_double_range (-8, 32);
|
|
g_assert (d >= -8 && d < 32);
|
|
|
|
b = g_random_boolean ();
|
|
g_assert (b == TRUE || b == FALSE);
|
|
|
|
b = g_rand_boolean (rand);
|
|
g_assert (b == TRUE || b == FALSE);
|
|
}
|
|
|
|
/* Statistical sanity check, count the number of ones
|
|
* when getting random numbers in range [0,3) and see
|
|
* that it must be semi-close to 0.25 with a VERY large
|
|
* probability */
|
|
ones = 0;
|
|
for (n = 1; n < 100000; n++)
|
|
{
|
|
if (g_random_int_range (0, 4) == 1)
|
|
ones ++;
|
|
}
|
|
proportion = (double)ones / (double)100000;
|
|
/* 0.025 is overkill, but should suffice to test for some unreasonability */
|
|
g_assert (ABS (proportion - 0.25) < 0.025);
|
|
|
|
g_rand_free (rand);
|
|
g_rand_free (copy);
|
|
|
|
return 0;
|
|
}
|
|
|