glib/glib/gtree.c
Philip Withnall d07c59ed4e glib: Add (scope call) to a load of sort/equal callbacks
This fixes a load of g-ir-scanner warnings.

Signed-off-by: Philip Withnall <pwithnall@gnome.org>

Helps: #3037
2023-11-29 11:59:47 +00:00

1806 lines
44 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* GLIB - Library of useful routines for C programming
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
*
* SPDX-License-Identifier: LGPL-2.1-or-later
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* Modified by the GLib Team and others 1997-2000. See the AUTHORS
* file for a list of people on the GLib Team. See the ChangeLog
* files for a list of changes. These files are distributed with
* GLib at ftp://ftp.gtk.org/pub/gtk/.
*/
/*
* MT safe
*/
#include "config.h"
#include "gtree.h"
#include "gatomic.h"
#include "gtestutils.h"
#include "gslice.h"
#define MAX_GTREE_HEIGHT 40
/* G_MAXUINT nodes will be covered by tree height of log2(G_MAXUINT) + 2. */
G_STATIC_ASSERT ((G_GUINT64_CONSTANT (1) << (MAX_GTREE_HEIGHT - 2)) >= G_MAXUINT);
/**
* GTree:
*
* The GTree struct is an opaque data structure representing a
* [balanced binary tree][glib-Balanced-Binary-Trees]. It should be
* accessed only by using the following functions.
*/
struct _GTree
{
GTreeNode *root;
GCompareDataFunc key_compare;
GDestroyNotify key_destroy_func;
GDestroyNotify value_destroy_func;
gpointer key_compare_data;
guint nnodes;
gint ref_count;
};
struct _GTreeNode
{
gpointer key; /* key for this node */
gpointer value; /* value stored at this node */
GTreeNode *left; /* left subtree */
GTreeNode *right; /* right subtree */
gint8 balance; /* height (right) - height (left) */
guint8 left_child;
guint8 right_child;
};
static GTreeNode* g_tree_node_new (gpointer key,
gpointer value);
static GTreeNode *g_tree_insert_internal (GTree *tree,
gpointer key,
gpointer value,
gboolean replace,
gboolean null_ret_ok);
static gboolean g_tree_remove_internal (GTree *tree,
gconstpointer key,
gboolean steal);
static GTreeNode* g_tree_node_balance (GTreeNode *node);
static GTreeNode *g_tree_find_node (GTree *tree,
gconstpointer key);
static gint g_tree_node_pre_order (GTreeNode *node,
GTraverseFunc traverse_func,
gpointer data);
static gint g_tree_node_in_order (GTreeNode *node,
GTraverseFunc traverse_func,
gpointer data);
static gint g_tree_node_post_order (GTreeNode *node,
GTraverseFunc traverse_func,
gpointer data);
static GTreeNode *g_tree_node_search (GTreeNode *node,
GCompareFunc search_func,
gconstpointer data);
static GTreeNode* g_tree_node_rotate_left (GTreeNode *node);
static GTreeNode* g_tree_node_rotate_right (GTreeNode *node);
#ifdef G_TREE_DEBUG
static void g_tree_node_check (GTreeNode *node);
#endif
static GTreeNode*
g_tree_node_new (gpointer key,
gpointer value)
{
GTreeNode *node = g_slice_new (GTreeNode);
node->balance = 0;
node->left = NULL;
node->right = NULL;
node->left_child = FALSE;
node->right_child = FALSE;
node->key = key;
node->value = value;
return node;
}
/**
* g_tree_new: (constructor)
* @key_compare_func: the function used to order the nodes in the #GTree.
* It should return values similar to the standard strcmp() function -
* 0 if the two arguments are equal, a negative value if the first argument
* comes before the second, or a positive value if the first argument comes
* after the second.
*
* Creates a new #GTree.
*
* Returns: a newly allocated #GTree
*/
GTree *
g_tree_new (GCompareFunc key_compare_func)
{
g_return_val_if_fail (key_compare_func != NULL, NULL);
return g_tree_new_full ((GCompareDataFunc) key_compare_func, NULL,
NULL, NULL);
}
/**
* g_tree_new_with_data:
* @key_compare_func: qsort()-style comparison function
* @key_compare_data: data to pass to comparison function
*
* Creates a new #GTree with a comparison function that accepts user data.
* See g_tree_new() for more details.
*
* Returns: a newly allocated #GTree
*/
GTree *
g_tree_new_with_data (GCompareDataFunc key_compare_func,
gpointer key_compare_data)
{
g_return_val_if_fail (key_compare_func != NULL, NULL);
return g_tree_new_full (key_compare_func, key_compare_data,
NULL, NULL);
}
/**
* g_tree_new_full:
* @key_compare_func: qsort()-style comparison function
* @key_compare_data: data to pass to comparison function
* @key_destroy_func: a function to free the memory allocated for the key
* used when removing the entry from the #GTree or %NULL if you don't
* want to supply such a function
* @value_destroy_func: a function to free the memory allocated for the
* value used when removing the entry from the #GTree or %NULL if you
* don't want to supply such a function
*
* Creates a new #GTree like g_tree_new() and allows to specify functions
* to free the memory allocated for the key and value that get called when
* removing the entry from the #GTree.
*
* Returns: a newly allocated #GTree
*/
GTree *
g_tree_new_full (GCompareDataFunc key_compare_func,
gpointer key_compare_data,
GDestroyNotify key_destroy_func,
GDestroyNotify value_destroy_func)
{
GTree *tree;
g_return_val_if_fail (key_compare_func != NULL, NULL);
tree = g_slice_new (GTree);
tree->root = NULL;
tree->key_compare = key_compare_func;
tree->key_destroy_func = key_destroy_func;
tree->value_destroy_func = value_destroy_func;
tree->key_compare_data = key_compare_data;
tree->nnodes = 0;
tree->ref_count = 1;
return tree;
}
/**
* g_tree_node_first:
* @tree: a #GTree
*
* Returns the first in-order node of the tree, or %NULL
* for an empty tree.
*
* Returns: (nullable) (transfer none): the first node in the tree
*
* Since: 2.68
*/
GTreeNode *
g_tree_node_first (GTree *tree)
{
GTreeNode *tmp;
g_return_val_if_fail (tree != NULL, NULL);
if (!tree->root)
return NULL;
tmp = tree->root;
while (tmp->left_child)
tmp = tmp->left;
return tmp;
}
/**
* g_tree_node_last:
* @tree: a #GTree
*
* Returns the last in-order node of the tree, or %NULL
* for an empty tree.
*
* Returns: (nullable) (transfer none): the last node in the tree
*
* Since: 2.68
*/
GTreeNode *
g_tree_node_last (GTree *tree)
{
GTreeNode *tmp;
g_return_val_if_fail (tree != NULL, NULL);
if (!tree->root)
return NULL;
tmp = tree->root;
while (tmp->right_child)
tmp = tmp->right;
return tmp;
}
/**
* g_tree_node_previous
* @node: a #GTree node
*
* Returns the previous in-order node of the tree, or %NULL
* if the passed node was already the first one.
*
* Returns: (nullable) (transfer none): the previous node in the tree
*
* Since: 2.68
*/
GTreeNode *
g_tree_node_previous (GTreeNode *node)
{
GTreeNode *tmp;
g_return_val_if_fail (node != NULL, NULL);
tmp = node->left;
if (node->left_child)
while (tmp->right_child)
tmp = tmp->right;
return tmp;
}
/**
* g_tree_node_next
* @node: a #GTree node
*
* Returns the next in-order node of the tree, or %NULL
* if the passed node was already the last one.
*
* Returns: (nullable) (transfer none): the next node in the tree
*
* Since: 2.68
*/
GTreeNode *
g_tree_node_next (GTreeNode *node)
{
GTreeNode *tmp;
g_return_val_if_fail (node != NULL, NULL);
tmp = node->right;
if (node->right_child)
while (tmp->left_child)
tmp = tmp->left;
return tmp;
}
/**
* g_tree_remove_all:
* @tree: a #GTree
*
* Removes all nodes from a #GTree and destroys their keys and values,
* then resets the #GTrees root to %NULL.
*
* Since: 2.70
*/
void
g_tree_remove_all (GTree *tree)
{
GTreeNode *node;
GTreeNode *next;
g_return_if_fail (tree != NULL);
node = g_tree_node_first (tree);
while (node)
{
next = g_tree_node_next (node);
if (tree->key_destroy_func)
tree->key_destroy_func (node->key);
if (tree->value_destroy_func)
tree->value_destroy_func (node->value);
g_slice_free (GTreeNode, node);
#ifdef G_TREE_DEBUG
g_assert (tree->nnodes > 0);
tree->nnodes--;
#endif
node = next;
}
#ifdef G_TREE_DEBUG
g_assert (tree->nnodes == 0);
#endif
tree->root = NULL;
#ifndef G_TREE_DEBUG
tree->nnodes = 0;
#endif
}
/**
* g_tree_ref:
* @tree: a #GTree
*
* Increments the reference count of @tree by one.
*
* It is safe to call this function from any thread.
*
* Returns: the passed in #GTree
*
* Since: 2.22
*/
GTree *
g_tree_ref (GTree *tree)
{
g_return_val_if_fail (tree != NULL, NULL);
g_atomic_int_inc (&tree->ref_count);
return tree;
}
/**
* g_tree_unref:
* @tree: a #GTree
*
* Decrements the reference count of @tree by one.
* If the reference count drops to 0, all keys and values will
* be destroyed (if destroy functions were specified) and all
* memory allocated by @tree will be released.
*
* It is safe to call this function from any thread.
*
* Since: 2.22
*/
void
g_tree_unref (GTree *tree)
{
g_return_if_fail (tree != NULL);
if (g_atomic_int_dec_and_test (&tree->ref_count))
{
g_tree_remove_all (tree);
g_slice_free (GTree, tree);
}
}
/**
* g_tree_destroy:
* @tree: a #GTree
*
* Removes all keys and values from the #GTree and decreases its
* reference count by one. If keys and/or values are dynamically
* allocated, you should either free them first or create the #GTree
* using g_tree_new_full(). In the latter case the destroy functions
* you supplied will be called on all keys and values before destroying
* the #GTree.
*/
void
g_tree_destroy (GTree *tree)
{
g_return_if_fail (tree != NULL);
g_tree_remove_all (tree);
g_tree_unref (tree);
}
static GTreeNode *
g_tree_insert_replace_node_internal (GTree *tree,
gpointer key,
gpointer value,
gboolean replace,
gboolean null_ret_ok)
{
GTreeNode *node;
g_return_val_if_fail (tree != NULL, NULL);
node = g_tree_insert_internal (tree, key, value, replace, null_ret_ok);
#ifdef G_TREE_DEBUG
g_tree_node_check (tree->root);
#endif
return node;
}
/**
* g_tree_insert_node:
* @tree: a #GTree
* @key: the key to insert
* @value: the value corresponding to the key
*
* Inserts a key/value pair into a #GTree.
*
* If the given key already exists in the #GTree its corresponding value
* is set to the new value. If you supplied a @value_destroy_func when
* creating the #GTree, the old value is freed using that function. If
* you supplied a @key_destroy_func when creating the #GTree, the passed
* key is freed using that function.
*
* The tree is automatically 'balanced' as new key/value pairs are added,
* so that the distance from the root to every leaf is as small as possible.
* The cost of maintaining a balanced tree while inserting new key/value
* result in a O(n log(n)) operation where most of the other operations
* are O(log(n)).
*
* Returns: (transfer none) (nullable): the inserted (or set) node or %NULL
* if insertion would overflow the tree node counter.
*
* Since: 2.68
*/
GTreeNode *
g_tree_insert_node (GTree *tree,
gpointer key,
gpointer value)
{
return g_tree_insert_replace_node_internal (tree, key, value, FALSE, TRUE);
}
/**
* g_tree_insert:
* @tree: a #GTree
* @key: the key to insert
* @value: the value corresponding to the key
*
* Inserts a key/value pair into a #GTree.
*
* Inserts a new key and value into a #GTree as g_tree_insert_node() does,
* only this function does not return the inserted or set node.
*/
void
g_tree_insert (GTree *tree,
gpointer key,
gpointer value)
{
g_tree_insert_replace_node_internal (tree, key, value, FALSE, FALSE);
}
/**
* g_tree_replace_node:
* @tree: a #GTree
* @key: the key to insert
* @value: the value corresponding to the key
*
* Inserts a new key and value into a #GTree similar to g_tree_insert_node().
* The difference is that if the key already exists in the #GTree, it gets
* replaced by the new key. If you supplied a @value_destroy_func when
* creating the #GTree, the old value is freed using that function. If you
* supplied a @key_destroy_func when creating the #GTree, the old key is
* freed using that function.
*
* The tree is automatically 'balanced' as new key/value pairs are added,
* so that the distance from the root to every leaf is as small as possible.
*
* Returns: (transfer none) (nullable): the inserted (or set) node or %NULL
* if insertion would overflow the tree node counter.
*
* Since: 2.68
*/
GTreeNode *
g_tree_replace_node (GTree *tree,
gpointer key,
gpointer value)
{
return g_tree_insert_replace_node_internal (tree, key, value, TRUE, TRUE);
}
/**
* g_tree_replace:
* @tree: a #GTree
* @key: the key to insert
* @value: the value corresponding to the key
*
* Inserts a new key and value into a #GTree as g_tree_replace_node() does,
* only this function does not return the inserted or set node.
*/
void
g_tree_replace (GTree *tree,
gpointer key,
gpointer value)
{
g_tree_insert_replace_node_internal (tree, key, value, TRUE, FALSE);
}
/* internal checked nnodes increment routine */
static gboolean
g_tree_nnodes_inc_checked (GTree *tree, gboolean overflow_fatal)
{
if (G_UNLIKELY (tree->nnodes == G_MAXUINT))
{
if (overflow_fatal)
{
g_error ("Incrementing GTree nnodes counter would overflow");
}
return FALSE;
}
tree->nnodes++;
return TRUE;
}
/* internal insert routine */
static GTreeNode *
g_tree_insert_internal (GTree *tree,
gpointer key,
gpointer value,
gboolean replace,
gboolean null_ret_ok)
{
GTreeNode *node, *retnode;
GTreeNode *path[MAX_GTREE_HEIGHT];
int idx;
g_return_val_if_fail (tree != NULL, NULL);
if (!tree->root)
{
tree->root = g_tree_node_new (key, value);
#ifdef G_TREE_DEBUG
g_assert (tree->nnodes == 0);
#endif
tree->nnodes++;
return tree->root;
}
idx = 0;
path[idx++] = NULL;
node = tree->root;
while (1)
{
int cmp = tree->key_compare (key, node->key, tree->key_compare_data);
if (cmp == 0)
{
if (tree->value_destroy_func)
tree->value_destroy_func (node->value);
node->value = value;
if (replace)
{
if (tree->key_destroy_func)
tree->key_destroy_func (node->key);
node->key = key;
}
else
{
/* free the passed key */
if (tree->key_destroy_func)
tree->key_destroy_func (key);
}
return node;
}
else if (cmp < 0)
{
if (node->left_child)
{
path[idx++] = node;
node = node->left;
}
else
{
GTreeNode *child;
if (!g_tree_nnodes_inc_checked (tree, !null_ret_ok))
{
return NULL;
}
child = g_tree_node_new (key, value);
child->left = node->left;
child->right = node;
node->left = child;
node->left_child = TRUE;
node->balance -= 1;
retnode = child;
break;
}
}
else
{
if (node->right_child)
{
path[idx++] = node;
node = node->right;
}
else
{
GTreeNode *child;
if (!g_tree_nnodes_inc_checked (tree, !null_ret_ok))
{
return NULL;
}
child = g_tree_node_new (key, value);
child->right = node->right;
child->left = node;
node->right = child;
node->right_child = TRUE;
node->balance += 1;
retnode = child;
break;
}
}
}
/* Restore balance. This is the goodness of a non-recursive
* implementation, when we are done with balancing we 'break'
* the loop and we are done.
*/
while (1)
{
GTreeNode *bparent = path[--idx];
gboolean left_node = (bparent && node == bparent->left);
g_assert (!bparent || bparent->left == node || bparent->right == node);
if (node->balance < -1 || node->balance > 1)
{
node = g_tree_node_balance (node);
if (bparent == NULL)
tree->root = node;
else if (left_node)
bparent->left = node;
else
bparent->right = node;
}
if (node->balance == 0 || bparent == NULL)
break;
if (left_node)
bparent->balance -= 1;
else
bparent->balance += 1;
node = bparent;
}
return retnode;
}
/**
* g_tree_remove:
* @tree: a #GTree
* @key: the key to remove
*
* Removes a key/value pair from a #GTree.
*
* If the #GTree was created using g_tree_new_full(), the key and value
* are freed using the supplied destroy functions, otherwise you have to
* make sure that any dynamically allocated values are freed yourself.
* If the key does not exist in the #GTree, the function does nothing.
*
* The cost of maintaining a balanced tree while removing a key/value
* result in a O(n log(n)) operation where most of the other operations
* are O(log(n)).
*
* Returns: %TRUE if the key was found (prior to 2.8, this function
* returned nothing)
*/
gboolean
g_tree_remove (GTree *tree,
gconstpointer key)
{
gboolean removed;
g_return_val_if_fail (tree != NULL, FALSE);
removed = g_tree_remove_internal (tree, key, FALSE);
#ifdef G_TREE_DEBUG
g_tree_node_check (tree->root);
#endif
return removed;
}
/**
* g_tree_steal:
* @tree: a #GTree
* @key: the key to remove
*
* Removes a key and its associated value from a #GTree without calling
* the key and value destroy functions.
*
* If the key does not exist in the #GTree, the function does nothing.
*
* Returns: %TRUE if the key was found (prior to 2.8, this function
* returned nothing)
*/
gboolean
g_tree_steal (GTree *tree,
gconstpointer key)
{
gboolean removed;
g_return_val_if_fail (tree != NULL, FALSE);
removed = g_tree_remove_internal (tree, key, TRUE);
#ifdef G_TREE_DEBUG
g_tree_node_check (tree->root);
#endif
return removed;
}
/* internal remove routine */
static gboolean
g_tree_remove_internal (GTree *tree,
gconstpointer key,
gboolean steal)
{
GTreeNode *node, *parent, *balance;
GTreeNode *path[MAX_GTREE_HEIGHT];
int idx;
gboolean left_node;
g_return_val_if_fail (tree != NULL, FALSE);
if (!tree->root)
return FALSE;
idx = 0;
path[idx++] = NULL;
node = tree->root;
while (1)
{
int cmp = tree->key_compare (key, node->key, tree->key_compare_data);
if (cmp == 0)
break;
else if (cmp < 0)
{
if (!node->left_child)
return FALSE;
path[idx++] = node;
node = node->left;
}
else
{
if (!node->right_child)
return FALSE;
path[idx++] = node;
node = node->right;
}
}
/* The following code is almost equal to g_tree_remove_node,
* except that we do not have to call g_tree_node_parent.
*/
balance = parent = path[--idx];
g_assert (!parent || parent->left == node || parent->right == node);
left_node = (parent && node == parent->left);
if (!node->left_child)
{
if (!node->right_child)
{
if (!parent)
tree->root = NULL;
else if (left_node)
{
parent->left_child = FALSE;
parent->left = node->left;
parent->balance += 1;
}
else
{
parent->right_child = FALSE;
parent->right = node->right;
parent->balance -= 1;
}
}
else /* node has a right child */
{
GTreeNode *tmp = g_tree_node_next (node);
tmp->left = node->left;
if (!parent)
tree->root = node->right;
else if (left_node)
{
parent->left = node->right;
parent->balance += 1;
}
else
{
parent->right = node->right;
parent->balance -= 1;
}
}
}
else /* node has a left child */
{
if (!node->right_child)
{
GTreeNode *tmp = g_tree_node_previous (node);
tmp->right = node->right;
if (parent == NULL)
tree->root = node->left;
else if (left_node)
{
parent->left = node->left;
parent->balance += 1;
}
else
{
parent->right = node->left;
parent->balance -= 1;
}
}
else /* node has a both children (pant, pant!) */
{
GTreeNode *prev = node->left;
GTreeNode *next = node->right;
GTreeNode *nextp = node;
int old_idx = idx + 1;
idx++;
/* path[idx] == parent */
/* find the immediately next node (and its parent) */
while (next->left_child)
{
path[++idx] = nextp = next;
next = next->left;
}
path[old_idx] = next;
balance = path[idx];
/* remove 'next' from the tree */
if (nextp != node)
{
if (next->right_child)
nextp->left = next->right;
else
nextp->left_child = FALSE;
nextp->balance += 1;
next->right_child = TRUE;
next->right = node->right;
}
else
node->balance -= 1;
/* set the prev to point to the right place */
while (prev->right_child)
prev = prev->right;
prev->right = next;
/* prepare 'next' to replace 'node' */
next->left_child = TRUE;
next->left = node->left;
next->balance = node->balance;
if (!parent)
tree->root = next;
else if (left_node)
parent->left = next;
else
parent->right = next;
}
}
/* restore balance */
if (balance)
while (1)
{
GTreeNode *bparent = path[--idx];
g_assert (!bparent || bparent->left == balance || bparent->right == balance);
left_node = (bparent && balance == bparent->left);
if(balance->balance < -1 || balance->balance > 1)
{
balance = g_tree_node_balance (balance);
if (!bparent)
tree->root = balance;
else if (left_node)
bparent->left = balance;
else
bparent->right = balance;
}
if (balance->balance != 0 || !bparent)
break;
if (left_node)
bparent->balance += 1;
else
bparent->balance -= 1;
balance = bparent;
}
if (!steal)
{
if (tree->key_destroy_func)
tree->key_destroy_func (node->key);
if (tree->value_destroy_func)
tree->value_destroy_func (node->value);
}
g_slice_free (GTreeNode, node);
tree->nnodes--;
return TRUE;
}
/**
* g_tree_node_key:
* @node: a #GTree node
*
* Gets the key stored at a particular tree node.
*
* Returns: (nullable) (transfer none): the key at the node.
*
* Since: 2.68
*/
gpointer
g_tree_node_key (GTreeNode *node)
{
g_return_val_if_fail (node != NULL, NULL);
return node->key;
}
/**
* g_tree_node_value:
* @node: a #GTree node
*
* Gets the value stored at a particular tree node.
*
* Returns: (nullable) (transfer none): the value at the node.
*
* Since: 2.68
*/
gpointer
g_tree_node_value (GTreeNode *node)
{
g_return_val_if_fail (node != NULL, NULL);
return node->value;
}
/**
* g_tree_lookup_node:
* @tree: a #GTree
* @key: the key to look up
*
* Gets the tree node corresponding to the given key. Since a #GTree is
* automatically balanced as key/value pairs are added, key lookup
* is O(log n) (where n is the number of key/value pairs in the tree).
*
* Returns: (nullable) (transfer none): the tree node corresponding to
* the key, or %NULL if the key was not found
*
* Since: 2.68
*/
GTreeNode *
g_tree_lookup_node (GTree *tree,
gconstpointer key)
{
g_return_val_if_fail (tree != NULL, NULL);
return g_tree_find_node (tree, key);
}
/**
* g_tree_lookup:
* @tree: a #GTree
* @key: the key to look up
*
* Gets the value corresponding to the given key. Since a #GTree is
* automatically balanced as key/value pairs are added, key lookup
* is O(log n) (where n is the number of key/value pairs in the tree).
*
* Returns: the value corresponding to the key, or %NULL
* if the key was not found
*/
gpointer
g_tree_lookup (GTree *tree,
gconstpointer key)
{
GTreeNode *node;
node = g_tree_lookup_node (tree, key);
return node ? node->value : NULL;
}
/**
* g_tree_lookup_extended:
* @tree: a #GTree
* @lookup_key: the key to look up
* @orig_key: (out) (optional) (nullable): returns the original key
* @value: (out) (optional) (nullable): returns the value associated with the key
*
* Looks up a key in the #GTree, returning the original key and the
* associated value. This is useful if you need to free the memory
* allocated for the original key, for example before calling
* g_tree_remove().
*
* Returns: %TRUE if the key was found in the #GTree
*/
gboolean
g_tree_lookup_extended (GTree *tree,
gconstpointer lookup_key,
gpointer *orig_key,
gpointer *value)
{
GTreeNode *node;
g_return_val_if_fail (tree != NULL, FALSE);
node = g_tree_find_node (tree, lookup_key);
if (node)
{
if (orig_key)
*orig_key = node->key;
if (value)
*value = node->value;
return TRUE;
}
else
return FALSE;
}
/**
* g_tree_foreach:
* @tree: a #GTree
* @func: (scope call): the function to call for each node visited.
* If this function returns %TRUE, the traversal is stopped.
* @user_data: user data to pass to the function
*
* Calls the given function for each of the key/value pairs in the #GTree.
* The function is passed the key and value of each pair, and the given
* @data parameter. The tree is traversed in sorted order.
*
* The tree may not be modified while iterating over it (you can't
* add/remove items). To remove all items matching a predicate, you need
* to add each item to a list in your #GTraverseFunc as you walk over
* the tree, then walk the list and remove each item.
*/
void
g_tree_foreach (GTree *tree,
GTraverseFunc func,
gpointer user_data)
{
GTreeNode *node;
g_return_if_fail (tree != NULL);
if (!tree->root)
return;
node = g_tree_node_first (tree);
while (node)
{
if ((*func) (node->key, node->value, user_data))
break;
node = g_tree_node_next (node);
}
}
/**
* g_tree_foreach_node:
* @tree: a #GTree
* @func: (scope call): the function to call for each node visited.
* If this function returns %TRUE, the traversal is stopped.
* @user_data: user data to pass to the function
*
* Calls the given function for each of the nodes in the #GTree.
* The function is passed the pointer to the particular node, and the given
* @data parameter. The tree traversal happens in-order.
*
* The tree may not be modified while iterating over it (you can't
* add/remove items). To remove all items matching a predicate, you need
* to add each item to a list in your #GTraverseFunc as you walk over
* the tree, then walk the list and remove each item.
*
* Since: 2.68
*/
void
g_tree_foreach_node (GTree *tree,
GTraverseNodeFunc func,
gpointer user_data)
{
GTreeNode *node;
g_return_if_fail (tree != NULL);
if (!tree->root)
return;
node = g_tree_node_first (tree);
while (node)
{
if ((*func) (node, user_data))
break;
node = g_tree_node_next (node);
}
}
/**
* g_tree_traverse:
* @tree: a #GTree
* @traverse_func: (scope call): the function to call for each node visited. If this
* function returns %TRUE, the traversal is stopped.
* @traverse_type: the order in which nodes are visited, one of %G_IN_ORDER,
* %G_PRE_ORDER and %G_POST_ORDER
* @user_data: user data to pass to the function
*
* Calls the given function for each node in the #GTree.
*
* Deprecated:2.2: The order of a balanced tree is somewhat arbitrary.
* If you just want to visit all nodes in sorted order, use
* g_tree_foreach() instead. If you really need to visit nodes in
* a different order, consider using an [n-ary tree][glib-N-ary-Trees].
*/
/**
* GTraverseFunc:
* @key: a key of a #GTree node
* @value: the value corresponding to the key
* @data: user data passed to g_tree_traverse()
*
* Specifies the type of function passed to g_tree_traverse(). It is
* passed the key and value of each node, together with the @user_data
* parameter passed to g_tree_traverse(). If the function returns
* %TRUE, the traversal is stopped.
*
* Returns: %TRUE to stop the traversal
*/
void
g_tree_traverse (GTree *tree,
GTraverseFunc traverse_func,
GTraverseType traverse_type,
gpointer user_data)
{
g_return_if_fail (tree != NULL);
if (!tree->root)
return;
switch (traverse_type)
{
case G_PRE_ORDER:
g_tree_node_pre_order (tree->root, traverse_func, user_data);
break;
case G_IN_ORDER:
g_tree_node_in_order (tree->root, traverse_func, user_data);
break;
case G_POST_ORDER:
g_tree_node_post_order (tree->root, traverse_func, user_data);
break;
case G_LEVEL_ORDER:
g_warning ("g_tree_traverse(): traverse type G_LEVEL_ORDER isn't implemented.");
break;
}
}
/**
* g_tree_search_node:
* @tree: a #GTree
* @search_func: (scope call): a function used to search the #GTree
* @user_data: the data passed as the second argument to @search_func
*
* Searches a #GTree using @search_func.
*
* The @search_func is called with a pointer to the key of a key/value
* pair in the tree, and the passed in @user_data. If @search_func returns
* 0 for a key/value pair, then the corresponding node is returned as
* the result of g_tree_search(). If @search_func returns -1, searching
* will proceed among the key/value pairs that have a smaller key; if
* @search_func returns 1, searching will proceed among the key/value
* pairs that have a larger key.
*
* Returns: (nullable) (transfer none): the node corresponding to the
* found key, or %NULL if the key was not found
*
* Since: 2.68
*/
GTreeNode *
g_tree_search_node (GTree *tree,
GCompareFunc search_func,
gconstpointer user_data)
{
g_return_val_if_fail (tree != NULL, NULL);
if (!tree->root)
return NULL;
return g_tree_node_search (tree->root, search_func, user_data);
}
/**
* g_tree_search:
* @tree: a #GTree
* @search_func: (scope call): a function used to search the #GTree
* @user_data: the data passed as the second argument to @search_func
*
* Searches a #GTree using @search_func.
*
* The @search_func is called with a pointer to the key of a key/value
* pair in the tree, and the passed in @user_data. If @search_func returns
* 0 for a key/value pair, then the corresponding value is returned as
* the result of g_tree_search(). If @search_func returns -1, searching
* will proceed among the key/value pairs that have a smaller key; if
* @search_func returns 1, searching will proceed among the key/value
* pairs that have a larger key.
*
* Returns: the value corresponding to the found key, or %NULL
* if the key was not found
*/
gpointer
g_tree_search (GTree *tree,
GCompareFunc search_func,
gconstpointer user_data)
{
GTreeNode *node;
node = g_tree_search_node (tree, search_func, user_data);
return node ? node->value : NULL;
}
/**
* g_tree_lower_bound:
* @tree: a #GTree
* @key: the key to calculate the lower bound for
*
* Gets the lower bound node corresponding to the given key,
* or %NULL if the tree is empty or all the nodes in the tree
* have keys that are strictly lower than the searched key.
*
* The lower bound is the first node that has its key greater
* than or equal to the searched key.
*
* Returns: (nullable) (transfer none): the tree node corresponding to
* the lower bound, or %NULL if the tree is empty or has only
* keys strictly lower than the searched key.
*
* Since: 2.68
*/
GTreeNode *
g_tree_lower_bound (GTree *tree,
gconstpointer key)
{
GTreeNode *node, *result;
gint cmp;
g_return_val_if_fail (tree != NULL, NULL);
node = tree->root;
if (!node)
return NULL;
result = NULL;
while (1)
{
cmp = tree->key_compare (key, node->key, tree->key_compare_data);
if (cmp <= 0)
{
result = node;
if (!node->left_child)
return result;
node = node->left;
}
else
{
if (!node->right_child)
return result;
node = node->right;
}
}
}
/**
* g_tree_upper_bound:
* @tree: a #GTree
* @key: the key to calculate the upper bound for
*
* Gets the upper bound node corresponding to the given key,
* or %NULL if the tree is empty or all the nodes in the tree
* have keys that are lower than or equal to the searched key.
*
* The upper bound is the first node that has its key strictly greater
* than the searched key.
*
* Returns: (nullable) (transfer none): the tree node corresponding to the
* upper bound, or %NULL if the tree is empty or has only keys
* lower than or equal to the searched key.
*
* Since: 2.68
*/
GTreeNode *
g_tree_upper_bound (GTree *tree,
gconstpointer key)
{
GTreeNode *node, *result;
gint cmp;
g_return_val_if_fail (tree != NULL, NULL);
node = tree->root;
if (!node)
return NULL;
result = NULL;
while (1)
{
cmp = tree->key_compare (key, node->key, tree->key_compare_data);
if (cmp < 0)
{
result = node;
if (!node->left_child)
return result;
node = node->left;
}
else
{
if (!node->right_child)
return result;
node = node->right;
}
}
}
/**
* g_tree_height:
* @tree: a #GTree
*
* Gets the height of a #GTree.
*
* If the #GTree contains no nodes, the height is 0.
* If the #GTree contains only one root node the height is 1.
* If the root node has children the height is 2, etc.
*
* Returns: the height of @tree
*/
gint
g_tree_height (GTree *tree)
{
GTreeNode *node;
gint height;
g_return_val_if_fail (tree != NULL, 0);
if (!tree->root)
return 0;
height = 0;
node = tree->root;
while (1)
{
height += 1 + MAX(node->balance, 0);
if (!node->left_child)
return height;
node = node->left;
}
}
/**
* g_tree_nnodes:
* @tree: a #GTree
*
* Gets the number of nodes in a #GTree.
*
* Returns: the number of nodes in @tree
*
* The node counter value type is really a #guint,
* but it is returned as a #gint due to backward
* compatibility issues (can be cast back to #guint to
* support its full range of values).
*/
gint
g_tree_nnodes (GTree *tree)
{
g_return_val_if_fail (tree != NULL, 0);
return tree->nnodes;
}
static GTreeNode *
g_tree_node_balance (GTreeNode *node)
{
if (node->balance < -1)
{
if (node->left->balance > 0)
node->left = g_tree_node_rotate_left (node->left);
node = g_tree_node_rotate_right (node);
}
else if (node->balance > 1)
{
if (node->right->balance < 0)
node->right = g_tree_node_rotate_right (node->right);
node = g_tree_node_rotate_left (node);
}
return node;
}
static GTreeNode *
g_tree_find_node (GTree *tree,
gconstpointer key)
{
GTreeNode *node;
gint cmp;
node = tree->root;
if (!node)
return NULL;
while (1)
{
cmp = tree->key_compare (key, node->key, tree->key_compare_data);
if (cmp == 0)
return node;
else if (cmp < 0)
{
if (!node->left_child)
return NULL;
node = node->left;
}
else
{
if (!node->right_child)
return NULL;
node = node->right;
}
}
}
static gint
g_tree_node_pre_order (GTreeNode *node,
GTraverseFunc traverse_func,
gpointer data)
{
if ((*traverse_func) (node->key, node->value, data))
return TRUE;
if (node->left_child)
{
if (g_tree_node_pre_order (node->left, traverse_func, data))
return TRUE;
}
if (node->right_child)
{
if (g_tree_node_pre_order (node->right, traverse_func, data))
return TRUE;
}
return FALSE;
}
static gint
g_tree_node_in_order (GTreeNode *node,
GTraverseFunc traverse_func,
gpointer data)
{
if (node->left_child)
{
if (g_tree_node_in_order (node->left, traverse_func, data))
return TRUE;
}
if ((*traverse_func) (node->key, node->value, data))
return TRUE;
if (node->right_child)
{
if (g_tree_node_in_order (node->right, traverse_func, data))
return TRUE;
}
return FALSE;
}
static gint
g_tree_node_post_order (GTreeNode *node,
GTraverseFunc traverse_func,
gpointer data)
{
if (node->left_child)
{
if (g_tree_node_post_order (node->left, traverse_func, data))
return TRUE;
}
if (node->right_child)
{
if (g_tree_node_post_order (node->right, traverse_func, data))
return TRUE;
}
if ((*traverse_func) (node->key, node->value, data))
return TRUE;
return FALSE;
}
static GTreeNode *
g_tree_node_search (GTreeNode *node,
GCompareFunc search_func,
gconstpointer data)
{
gint dir;
if (!node)
return NULL;
while (1)
{
dir = (* search_func) (node->key, data);
if (dir == 0)
return node;
else if (dir < 0)
{
if (!node->left_child)
return NULL;
node = node->left;
}
else
{
if (!node->right_child)
return NULL;
node = node->right;
}
}
}
static GTreeNode *
g_tree_node_rotate_left (GTreeNode *node)
{
GTreeNode *right;
gint a_bal;
gint b_bal;
right = node->right;
if (right->left_child)
node->right = right->left;
else
{
node->right_child = FALSE;
right->left_child = TRUE;
}
right->left = node;
a_bal = node->balance;
b_bal = right->balance;
if (b_bal <= 0)
{
if (a_bal >= 1)
right->balance = b_bal - 1;
else
right->balance = a_bal + b_bal - 2;
node->balance = a_bal - 1;
}
else
{
if (a_bal <= b_bal)
right->balance = a_bal - 2;
else
right->balance = b_bal - 1;
node->balance = a_bal - b_bal - 1;
}
return right;
}
static GTreeNode *
g_tree_node_rotate_right (GTreeNode *node)
{
GTreeNode *left;
gint a_bal;
gint b_bal;
left = node->left;
if (left->right_child)
node->left = left->right;
else
{
node->left_child = FALSE;
left->right_child = TRUE;
}
left->right = node;
a_bal = node->balance;
b_bal = left->balance;
if (b_bal <= 0)
{
if (b_bal > a_bal)
left->balance = b_bal + 1;
else
left->balance = a_bal + 2;
node->balance = a_bal - b_bal + 1;
}
else
{
if (a_bal <= -1)
left->balance = b_bal + 1;
else
left->balance = a_bal + b_bal + 2;
node->balance = a_bal + 1;
}
return left;
}
#ifdef G_TREE_DEBUG
static gint
g_tree_node_height (GTreeNode *node)
{
gint left_height;
gint right_height;
if (node)
{
left_height = 0;
right_height = 0;
if (node->left_child)
left_height = g_tree_node_height (node->left);
if (node->right_child)
right_height = g_tree_node_height (node->right);
return MAX (left_height, right_height) + 1;
}
return 0;
}
static void
g_tree_node_check (GTreeNode *node)
{
gint left_height;
gint right_height;
gint balance;
GTreeNode *tmp;
if (node)
{
if (node->left_child)
{
tmp = g_tree_node_previous (node);
g_assert (tmp->right == node);
}
if (node->right_child)
{
tmp = g_tree_node_next (node);
g_assert (tmp->left == node);
}
left_height = 0;
right_height = 0;
if (node->left_child)
left_height = g_tree_node_height (node->left);
if (node->right_child)
right_height = g_tree_node_height (node->right);
balance = right_height - left_height;
g_assert (balance == node->balance);
if (node->left_child)
g_tree_node_check (node->left);
if (node->right_child)
g_tree_node_check (node->right);
}
}
static void
g_tree_node_dump (GTreeNode *node,
gint indent)
{
g_print ("%*s%c\n", indent, "", *(char *)node->key);
if (node->left_child)
{
g_print ("%*sLEFT\n", indent, "");
g_tree_node_dump (node->left, indent + 2);
}
else if (node->left)
g_print ("%*s<%c\n", indent + 2, "", *(char *)node->left->key);
if (node->right_child)
{
g_print ("%*sRIGHT\n", indent, "");
g_tree_node_dump (node->right, indent + 2);
}
else if (node->right)
g_print ("%*s>%c\n", indent + 2, "", *(char *)node->right->key);
}
void
g_tree_dump (GTree *tree)
{
if (tree->root)
g_tree_node_dump (tree->root, 0);
}
#endif