mirror of
https://gitlab.gnome.org/GNOME/glib.git
synced 2025-01-19 10:46:14 +01:00
409ff69bd1
Rather than duplicating the alignment checks when constructing a new GVariant, re-use the alignment checks from GVariantSerialised. This ensures that the same checks are done everywhere in the GVariant code. Signed-off-by: Philip Withnall <withnall@endlessm.com> https://gitlab.gnome.org/GNOME/glib/issues/1342
1751 lines
53 KiB
C
1751 lines
53 KiB
C
/*
|
|
* Copyright © 2007, 2008 Ryan Lortie
|
|
* Copyright © 2010 Codethink Limited
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Author: Ryan Lortie <desrt@desrt.ca>
|
|
*/
|
|
|
|
/* Prologue {{{1 */
|
|
#include "config.h"
|
|
|
|
#include "gvariant-serialiser.h"
|
|
|
|
#include <glib/gvariant-internal.h>
|
|
#include <glib/gtestutils.h>
|
|
#include <glib/gstrfuncs.h>
|
|
#include <glib/gtypes.h>
|
|
|
|
#include <string.h>
|
|
|
|
|
|
/* GVariantSerialiser
|
|
*
|
|
* After this prologue section, this file has roughly 2 parts.
|
|
*
|
|
* The first part is split up into sections according to various
|
|
* container types. Maybe, Array, Tuple, Variant. The Maybe and Array
|
|
* sections are subdivided for element types being fixed or
|
|
* variable-sized types.
|
|
*
|
|
* Each section documents the format of that particular type of
|
|
* container and implements 5 functions for dealing with it:
|
|
*
|
|
* n_children:
|
|
* - determines (according to serialised data) how many child values
|
|
* are inside a particular container value.
|
|
*
|
|
* get_child:
|
|
* - gets the type of and the serialised data corresponding to a
|
|
* given child value within the container value.
|
|
*
|
|
* needed_size:
|
|
* - determines how much space would be required to serialise a
|
|
* container of this type, containing the given children so that
|
|
* buffers can be preallocated before serialising.
|
|
*
|
|
* serialise:
|
|
* - write the serialised data for a container of this type,
|
|
* containing the given children, to a buffer.
|
|
*
|
|
* is_normal:
|
|
* - check the given data to ensure that it is in normal form. For a
|
|
* given set of child values, there is exactly one normal form for
|
|
* the serialised data of a container. Other forms are possible
|
|
* while maintaining the same children (for example, by inserting
|
|
* something other than zero bytes as padding) but only one form is
|
|
* the normal form.
|
|
*
|
|
* The second part contains the main entry point for each of the above 5
|
|
* functions and logic to dispatch it to the handler for the appropriate
|
|
* container type code.
|
|
*
|
|
* The second part also contains a routine to byteswap serialised
|
|
* values. This code makes use of the n_children() and get_child()
|
|
* functions above to do its work so no extra support is needed on a
|
|
* per-container-type basis.
|
|
*
|
|
* There is also additional code for checking for normal form. All
|
|
* numeric types are always in normal form since the full range of
|
|
* values is permitted (eg: 0 to 255 is a valid byte). Special checks
|
|
* need to be performed for booleans (only 0 or 1 allowed), strings
|
|
* (properly nul-terminated) and object paths and signature strings
|
|
* (meeting the D-Bus specification requirements). Depth checks need to be
|
|
* performed for nested types (arrays, tuples, and variants), to avoid massive
|
|
* recursion which could exhaust our stack when handling untrusted input.
|
|
*/
|
|
|
|
/* < private >
|
|
* GVariantSerialised:
|
|
* @type_info: the #GVariantTypeInfo of this value
|
|
* @data: (nullable): the serialised data of this value, or %NULL
|
|
* @size: the size of this value
|
|
*
|
|
* A structure representing a GVariant in serialised form. This
|
|
* structure is used with #GVariantSerialisedFiller functions and as the
|
|
* primary interface to the serialiser. See #GVariantSerialisedFiller
|
|
* for a description of its use there.
|
|
*
|
|
* When used with the serialiser API functions, the following invariants
|
|
* apply to all #GVariantTypeSerialised structures passed to and
|
|
* returned from the serialiser.
|
|
*
|
|
* @type_info must be non-%NULL.
|
|
*
|
|
* @data must be properly aligned for the type described by @type_info.
|
|
*
|
|
* If @type_info describes a fixed-sized type then @size must always be
|
|
* equal to the fixed size of that type.
|
|
*
|
|
* For fixed-sized types (and only fixed-sized types), @data may be
|
|
* %NULL even if @size is non-zero. This happens when a framing error
|
|
* occurs while attempting to extract a fixed-sized value out of a
|
|
* variable-sized container. There is no data to return for the
|
|
* fixed-sized type, yet @size must be non-zero. The effect of this
|
|
* combination should be as if @data were a pointer to an
|
|
* appropriately-sized zero-filled region.
|
|
*
|
|
* @depth has no restrictions; the depth of a top-level serialised #GVariant is
|
|
* zero, and it increases for each level of nested child.
|
|
*/
|
|
|
|
/* < private >
|
|
* g_variant_serialised_check:
|
|
* @serialised: a #GVariantSerialised struct
|
|
*
|
|
* Checks @serialised for validity according to the invariants described
|
|
* above.
|
|
*
|
|
* Returns: %TRUE if @serialised is valid; %FALSE otherwise
|
|
*/
|
|
gboolean
|
|
g_variant_serialised_check (GVariantSerialised serialised)
|
|
{
|
|
gsize fixed_size;
|
|
guint alignment;
|
|
|
|
if (serialised.type_info == NULL)
|
|
return FALSE;
|
|
g_variant_type_info_query (serialised.type_info, &alignment, &fixed_size);
|
|
|
|
if (fixed_size != 0 && serialised.size != fixed_size)
|
|
return FALSE;
|
|
else if (fixed_size == 0 &&
|
|
!(serialised.size == 0 || serialised.data != NULL))
|
|
return FALSE;
|
|
|
|
/* Depending on the native alignment requirements of the machine, the
|
|
* compiler will insert either 3 or 7 padding bytes after the char.
|
|
* This will result in the sizeof() the struct being 12 or 16.
|
|
* Subtract 9 to get 3 or 7 which is a nice bitmask to apply to get
|
|
* the alignment bits that we "care about" being zero: in the
|
|
* 4-aligned case, we care about 2 bits, and in the 8-aligned case, we
|
|
* care about 3 bits.
|
|
*/
|
|
alignment &= sizeof (struct {
|
|
char a;
|
|
union {
|
|
guint64 x;
|
|
void *y;
|
|
gdouble z;
|
|
} b;
|
|
}
|
|
) - 9;
|
|
|
|
/* Some OSes (FreeBSD is a known example) have a malloc() that returns
|
|
* unaligned memory if you request small sizes. 'malloc (1);', for
|
|
* example, has been seen to return pointers aligned to 6 mod 16.
|
|
*
|
|
* Check if this is a small allocation and return without enforcing
|
|
* the alignment assertion if this is the case.
|
|
*/
|
|
return (serialised.size <= alignment ||
|
|
(alignment & (gsize) serialised.data) == 0);
|
|
}
|
|
|
|
/* < private >
|
|
* GVariantSerialisedFiller:
|
|
* @serialised: a #GVariantSerialised instance to fill
|
|
* @data: data from the children array
|
|
*
|
|
* This function is called back from g_variant_serialiser_needed_size()
|
|
* and g_variant_serialiser_serialise(). It fills in missing details
|
|
* from a partially-complete #GVariantSerialised.
|
|
*
|
|
* The @data parameter passed back to the function is one of the items
|
|
* that was passed to the serialiser in the @children array. It
|
|
* represents a single child item of the container that is being
|
|
* serialised. The information filled in to @serialised is the
|
|
* information for this child.
|
|
*
|
|
* If the @type_info field of @serialised is %NULL then the callback
|
|
* function must set it to the type information corresponding to the
|
|
* type of the child. No reference should be added. If it is non-%NULL
|
|
* then the callback should assert that it is equal to the actual type
|
|
* of the child.
|
|
*
|
|
* If the @size field is zero then the callback must fill it in with the
|
|
* required amount of space to store the serialised form of the child.
|
|
* If it is non-zero then the callback should assert that it is equal to
|
|
* the needed size of the child.
|
|
*
|
|
* If @data is non-%NULL then it points to a space that is properly
|
|
* aligned for and large enough to store the serialised data of the
|
|
* child. The callback must store the serialised form of the child at
|
|
* @data.
|
|
*
|
|
* If the child value is another container then the callback will likely
|
|
* recurse back into the serialiser by calling
|
|
* g_variant_serialiser_needed_size() to determine @size and
|
|
* g_variant_serialiser_serialise() to write to @data.
|
|
*/
|
|
|
|
/* PART 1: Container types {{{1
|
|
*
|
|
* This section contains the serialiser implementation functions for
|
|
* each container type.
|
|
*/
|
|
|
|
/* Maybe {{{2
|
|
*
|
|
* Maybe types are handled depending on if the element type of the maybe
|
|
* type is a fixed-sized or variable-sized type. Although all maybe
|
|
* types themselves are variable-sized types, herein, a maybe value with
|
|
* a fixed-sized element type is called a "fixed-sized maybe" for
|
|
* convenience and a maybe value with a variable-sized element type is
|
|
* called a "variable-sized maybe".
|
|
*/
|
|
|
|
/* Fixed-sized Maybe {{{3
|
|
*
|
|
* The size of a maybe value with a fixed-sized element type is either 0
|
|
* or equal to the fixed size of its element type. The case where the
|
|
* size of the maybe value is zero corresponds to the "Nothing" case and
|
|
* the case where the size of the maybe value is equal to the fixed size
|
|
* of the element type corresponds to the "Just" case; in that case, the
|
|
* serialised data of the child value forms the entire serialised data
|
|
* of the maybe value.
|
|
*
|
|
* In the event that a fixed-sized maybe value is presented with a size
|
|
* that is not equal to the fixed size of the element type then the
|
|
* value must be taken to be "Nothing".
|
|
*/
|
|
|
|
static gsize
|
|
gvs_fixed_sized_maybe_n_children (GVariantSerialised value)
|
|
{
|
|
gsize element_fixed_size;
|
|
|
|
g_variant_type_info_query_element (value.type_info, NULL,
|
|
&element_fixed_size);
|
|
|
|
return (element_fixed_size == value.size) ? 1 : 0;
|
|
}
|
|
|
|
static GVariantSerialised
|
|
gvs_fixed_sized_maybe_get_child (GVariantSerialised value,
|
|
gsize index_)
|
|
{
|
|
/* the child has the same bounds as the
|
|
* container, so just update the type.
|
|
*/
|
|
value.type_info = g_variant_type_info_element (value.type_info);
|
|
g_variant_type_info_ref (value.type_info);
|
|
value.depth++;
|
|
|
|
return value;
|
|
}
|
|
|
|
static gsize
|
|
gvs_fixed_sized_maybe_needed_size (GVariantTypeInfo *type_info,
|
|
GVariantSerialisedFiller gvs_filler,
|
|
const gpointer *children,
|
|
gsize n_children)
|
|
{
|
|
if (n_children)
|
|
{
|
|
gsize element_fixed_size;
|
|
|
|
g_variant_type_info_query_element (type_info, NULL,
|
|
&element_fixed_size);
|
|
|
|
return element_fixed_size;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
gvs_fixed_sized_maybe_serialise (GVariantSerialised value,
|
|
GVariantSerialisedFiller gvs_filler,
|
|
const gpointer *children,
|
|
gsize n_children)
|
|
{
|
|
if (n_children)
|
|
{
|
|
GVariantSerialised child = { NULL, value.data, value.size, value.depth + 1 };
|
|
|
|
gvs_filler (&child, children[0]);
|
|
}
|
|
}
|
|
|
|
static gboolean
|
|
gvs_fixed_sized_maybe_is_normal (GVariantSerialised value)
|
|
{
|
|
if (value.size > 0)
|
|
{
|
|
gsize element_fixed_size;
|
|
|
|
g_variant_type_info_query_element (value.type_info,
|
|
NULL, &element_fixed_size);
|
|
|
|
if (value.size != element_fixed_size)
|
|
return FALSE;
|
|
|
|
/* proper element size: "Just". recurse to the child. */
|
|
value.type_info = g_variant_type_info_element (value.type_info);
|
|
value.depth++;
|
|
|
|
return g_variant_serialised_is_normal (value);
|
|
}
|
|
|
|
/* size of 0: "Nothing" */
|
|
return TRUE;
|
|
}
|
|
|
|
/* Variable-sized Maybe
|
|
*
|
|
* The size of a maybe value with a variable-sized element type is
|
|
* either 0 or strictly greater than 0. The case where the size of the
|
|
* maybe value is zero corresponds to the "Nothing" case and the case
|
|
* where the size of the maybe value is greater than zero corresponds to
|
|
* the "Just" case; in that case, the serialised data of the child value
|
|
* forms the first part of the serialised data of the maybe value and is
|
|
* followed by a single zero byte. This zero byte is always appended,
|
|
* regardless of any zero bytes that may already be at the end of the
|
|
* serialised ata of the child value.
|
|
*/
|
|
|
|
static gsize
|
|
gvs_variable_sized_maybe_n_children (GVariantSerialised value)
|
|
{
|
|
return (value.size > 0) ? 1 : 0;
|
|
}
|
|
|
|
static GVariantSerialised
|
|
gvs_variable_sized_maybe_get_child (GVariantSerialised value,
|
|
gsize index_)
|
|
{
|
|
/* remove the padding byte and update the type. */
|
|
value.type_info = g_variant_type_info_element (value.type_info);
|
|
g_variant_type_info_ref (value.type_info);
|
|
value.size--;
|
|
|
|
/* if it's zero-sized then it may as well be NULL */
|
|
if (value.size == 0)
|
|
value.data = NULL;
|
|
|
|
value.depth++;
|
|
|
|
return value;
|
|
}
|
|
|
|
static gsize
|
|
gvs_variable_sized_maybe_needed_size (GVariantTypeInfo *type_info,
|
|
GVariantSerialisedFiller gvs_filler,
|
|
const gpointer *children,
|
|
gsize n_children)
|
|
{
|
|
if (n_children)
|
|
{
|
|
GVariantSerialised child = { 0, };
|
|
|
|
gvs_filler (&child, children[0]);
|
|
|
|
return child.size + 1;
|
|
}
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
gvs_variable_sized_maybe_serialise (GVariantSerialised value,
|
|
GVariantSerialisedFiller gvs_filler,
|
|
const gpointer *children,
|
|
gsize n_children)
|
|
{
|
|
if (n_children)
|
|
{
|
|
GVariantSerialised child = { NULL, value.data, value.size - 1, value.depth + 1 };
|
|
|
|
/* write the data for the child. */
|
|
gvs_filler (&child, children[0]);
|
|
value.data[child.size] = '\0';
|
|
}
|
|
}
|
|
|
|
static gboolean
|
|
gvs_variable_sized_maybe_is_normal (GVariantSerialised value)
|
|
{
|
|
if (value.size == 0)
|
|
return TRUE;
|
|
|
|
if (value.data[value.size - 1] != '\0')
|
|
return FALSE;
|
|
|
|
value.type_info = g_variant_type_info_element (value.type_info);
|
|
value.size--;
|
|
value.depth++;
|
|
|
|
return g_variant_serialised_is_normal (value);
|
|
}
|
|
|
|
/* Arrays {{{2
|
|
*
|
|
* Just as with maybe types, array types are handled depending on if the
|
|
* element type of the array type is a fixed-sized or variable-sized
|
|
* type. Similar to maybe types, for convenience, an array value with a
|
|
* fixed-sized element type is called a "fixed-sized array" and an array
|
|
* value with a variable-sized element type is called a "variable sized
|
|
* array".
|
|
*/
|
|
|
|
/* Fixed-sized Array {{{3
|
|
*
|
|
* For fixed sized arrays, the serialised data is simply a concatenation
|
|
* of the serialised data of each element, in order. Since fixed-sized
|
|
* values always have a fixed size that is a multiple of their alignment
|
|
* requirement no extra padding is required.
|
|
*
|
|
* In the event that a fixed-sized array is presented with a size that
|
|
* is not an integer multiple of the element size then the value of the
|
|
* array must be taken as being empty.
|
|
*/
|
|
|
|
static gsize
|
|
gvs_fixed_sized_array_n_children (GVariantSerialised value)
|
|
{
|
|
gsize element_fixed_size;
|
|
|
|
g_variant_type_info_query_element (value.type_info, NULL,
|
|
&element_fixed_size);
|
|
|
|
if (value.size % element_fixed_size == 0)
|
|
return value.size / element_fixed_size;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static GVariantSerialised
|
|
gvs_fixed_sized_array_get_child (GVariantSerialised value,
|
|
gsize index_)
|
|
{
|
|
GVariantSerialised child = { 0, };
|
|
|
|
child.type_info = g_variant_type_info_element (value.type_info);
|
|
g_variant_type_info_query (child.type_info, NULL, &child.size);
|
|
child.data = value.data + (child.size * index_);
|
|
g_variant_type_info_ref (child.type_info);
|
|
child.depth = value.depth + 1;
|
|
|
|
return child;
|
|
}
|
|
|
|
static gsize
|
|
gvs_fixed_sized_array_needed_size (GVariantTypeInfo *type_info,
|
|
GVariantSerialisedFiller gvs_filler,
|
|
const gpointer *children,
|
|
gsize n_children)
|
|
{
|
|
gsize element_fixed_size;
|
|
|
|
g_variant_type_info_query_element (type_info, NULL, &element_fixed_size);
|
|
|
|
return element_fixed_size * n_children;
|
|
}
|
|
|
|
static void
|
|
gvs_fixed_sized_array_serialise (GVariantSerialised value,
|
|
GVariantSerialisedFiller gvs_filler,
|
|
const gpointer *children,
|
|
gsize n_children)
|
|
{
|
|
GVariantSerialised child = { 0, };
|
|
gsize i;
|
|
|
|
child.type_info = g_variant_type_info_element (value.type_info);
|
|
g_variant_type_info_query (child.type_info, NULL, &child.size);
|
|
child.data = value.data;
|
|
child.depth = value.depth + 1;
|
|
|
|
for (i = 0; i < n_children; i++)
|
|
{
|
|
gvs_filler (&child, children[i]);
|
|
child.data += child.size;
|
|
}
|
|
}
|
|
|
|
static gboolean
|
|
gvs_fixed_sized_array_is_normal (GVariantSerialised value)
|
|
{
|
|
GVariantSerialised child = { 0, };
|
|
|
|
child.type_info = g_variant_type_info_element (value.type_info);
|
|
g_variant_type_info_query (child.type_info, NULL, &child.size);
|
|
child.depth = value.depth + 1;
|
|
|
|
if (value.size % child.size != 0)
|
|
return FALSE;
|
|
|
|
for (child.data = value.data;
|
|
child.data < value.data + value.size;
|
|
child.data += child.size)
|
|
{
|
|
if (!g_variant_serialised_is_normal (child))
|
|
return FALSE;
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Variable-sized Array {{{3
|
|
*
|
|
* Variable sized arrays, containing variable-sized elements, must be
|
|
* able to determine the boundaries between the elements. The items
|
|
* cannot simply be concatenated. Additionally, we are faced with the
|
|
* fact that non-fixed-sized values do not necessarily have a size that
|
|
* is a multiple of their alignment requirement, so we may need to
|
|
* insert zero-filled padding.
|
|
*
|
|
* While it is possible to find the start of an item by starting from
|
|
* the end of the item before it and padding for alignment, it is not
|
|
* generally possible to do the reverse operation. For this reason, we
|
|
* record the end point of each element in the array.
|
|
*
|
|
* GVariant works in terms of "offsets". An offset is a pointer to a
|
|
* boundary between two bytes. In 4 bytes of serialised data, there
|
|
* would be 5 possible offsets: one at the start ('0'), one between each
|
|
* pair of adjacent bytes ('1', '2', '3') and one at the end ('4').
|
|
*
|
|
* The numeric value of an offset is an unsigned integer given relative
|
|
* to the start of the serialised data of the array. Offsets are always
|
|
* stored in little endian byte order and are always only as big as they
|
|
* need to be. For example, in 255 bytes of serialised data, there are
|
|
* 256 offsets. All possibilities can be stored in an 8 bit unsigned
|
|
* integer. In 256 bytes of serialised data, however, there are 257
|
|
* possible offsets so 16 bit integers must be used. The size of an
|
|
* offset is always a power of 2.
|
|
*
|
|
* The offsets are stored at the end of the serialised data of the
|
|
* array. They are simply concatenated on without any particular
|
|
* alignment. The size of the offsets is included in the size of the
|
|
* serialised data for purposes of determining the size of the offsets.
|
|
* This presents a possibly ambiguity; in certain cases, a particular
|
|
* value of array could have two different serialised forms.
|
|
*
|
|
* Imagine an array containing a single string of 253 bytes in length
|
|
* (so, 254 bytes including the nul terminator). Now the offset must be
|
|
* written. If an 8 bit offset is written, it will bring the size of
|
|
* the array's serialised data to 255 -- which means that the use of an
|
|
* 8 bit offset was valid. If a 16 bit offset is used then the total
|
|
* size of the array will be 256 -- which means that the use of a 16 bit
|
|
* offset was valid. Although both of these will be accepted by the
|
|
* deserialiser, only the smaller of the two is considered to be in
|
|
* normal form and that is the one that the serialiser must produce.
|
|
*/
|
|
|
|
/* bytes may be NULL if (size == 0). */
|
|
static inline gsize
|
|
gvs_read_unaligned_le (guchar *bytes,
|
|
guint size)
|
|
{
|
|
union
|
|
{
|
|
guchar bytes[GLIB_SIZEOF_SIZE_T];
|
|
gsize integer;
|
|
} tmpvalue;
|
|
|
|
tmpvalue.integer = 0;
|
|
if (bytes != NULL)
|
|
memcpy (&tmpvalue.bytes, bytes, size);
|
|
|
|
return GSIZE_FROM_LE (tmpvalue.integer);
|
|
}
|
|
|
|
static inline void
|
|
gvs_write_unaligned_le (guchar *bytes,
|
|
gsize value,
|
|
guint size)
|
|
{
|
|
union
|
|
{
|
|
guchar bytes[GLIB_SIZEOF_SIZE_T];
|
|
gsize integer;
|
|
} tmpvalue;
|
|
|
|
tmpvalue.integer = GSIZE_TO_LE (value);
|
|
memcpy (bytes, &tmpvalue.bytes, size);
|
|
}
|
|
|
|
static guint
|
|
gvs_get_offset_size (gsize size)
|
|
{
|
|
if (size > G_MAXUINT32)
|
|
return 8;
|
|
|
|
else if (size > G_MAXUINT16)
|
|
return 4;
|
|
|
|
else if (size > G_MAXUINT8)
|
|
return 2;
|
|
|
|
else if (size > 0)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static gsize
|
|
gvs_calculate_total_size (gsize body_size,
|
|
gsize offsets)
|
|
{
|
|
if (body_size + 1 * offsets <= G_MAXUINT8)
|
|
return body_size + 1 * offsets;
|
|
|
|
if (body_size + 2 * offsets <= G_MAXUINT16)
|
|
return body_size + 2 * offsets;
|
|
|
|
if (body_size + 4 * offsets <= G_MAXUINT32)
|
|
return body_size + 4 * offsets;
|
|
|
|
return body_size + 8 * offsets;
|
|
}
|
|
|
|
static gsize
|
|
gvs_variable_sized_array_n_children (GVariantSerialised value)
|
|
{
|
|
gsize offsets_array_size;
|
|
gsize offset_size;
|
|
gsize last_end;
|
|
|
|
if (value.size == 0)
|
|
return 0;
|
|
|
|
offset_size = gvs_get_offset_size (value.size);
|
|
|
|
last_end = gvs_read_unaligned_le (value.data + value.size -
|
|
offset_size, offset_size);
|
|
|
|
if (last_end > value.size)
|
|
return 0;
|
|
|
|
offsets_array_size = value.size - last_end;
|
|
|
|
if (offsets_array_size % offset_size)
|
|
return 0;
|
|
|
|
return offsets_array_size / offset_size;
|
|
}
|
|
|
|
static GVariantSerialised
|
|
gvs_variable_sized_array_get_child (GVariantSerialised value,
|
|
gsize index_)
|
|
{
|
|
GVariantSerialised child = { 0, };
|
|
gsize offset_size;
|
|
gsize last_end;
|
|
gsize start;
|
|
gsize end;
|
|
|
|
child.type_info = g_variant_type_info_element (value.type_info);
|
|
g_variant_type_info_ref (child.type_info);
|
|
child.depth = value.depth + 1;
|
|
|
|
offset_size = gvs_get_offset_size (value.size);
|
|
|
|
last_end = gvs_read_unaligned_le (value.data + value.size -
|
|
offset_size, offset_size);
|
|
|
|
if (index_ > 0)
|
|
{
|
|
guint alignment;
|
|
|
|
start = gvs_read_unaligned_le (value.data + last_end +
|
|
(offset_size * (index_ - 1)),
|
|
offset_size);
|
|
|
|
g_variant_type_info_query (child.type_info, &alignment, NULL);
|
|
start += (-start) & alignment;
|
|
}
|
|
else
|
|
start = 0;
|
|
|
|
end = gvs_read_unaligned_le (value.data + last_end +
|
|
(offset_size * index_),
|
|
offset_size);
|
|
|
|
if (start < end && end <= value.size && end <= last_end)
|
|
{
|
|
child.data = value.data + start;
|
|
child.size = end - start;
|
|
}
|
|
|
|
return child;
|
|
}
|
|
|
|
static gsize
|
|
gvs_variable_sized_array_needed_size (GVariantTypeInfo *type_info,
|
|
GVariantSerialisedFiller gvs_filler,
|
|
const gpointer *children,
|
|
gsize n_children)
|
|
{
|
|
guint alignment;
|
|
gsize offset;
|
|
gsize i;
|
|
|
|
g_variant_type_info_query (type_info, &alignment, NULL);
|
|
offset = 0;
|
|
|
|
for (i = 0; i < n_children; i++)
|
|
{
|
|
GVariantSerialised child = { 0, };
|
|
|
|
offset += (-offset) & alignment;
|
|
gvs_filler (&child, children[i]);
|
|
offset += child.size;
|
|
}
|
|
|
|
return gvs_calculate_total_size (offset, n_children);
|
|
}
|
|
|
|
static void
|
|
gvs_variable_sized_array_serialise (GVariantSerialised value,
|
|
GVariantSerialisedFiller gvs_filler,
|
|
const gpointer *children,
|
|
gsize n_children)
|
|
{
|
|
guchar *offset_ptr;
|
|
gsize offset_size;
|
|
guint alignment;
|
|
gsize offset;
|
|
gsize i;
|
|
|
|
g_variant_type_info_query (value.type_info, &alignment, NULL);
|
|
offset_size = gvs_get_offset_size (value.size);
|
|
offset = 0;
|
|
|
|
offset_ptr = value.data + value.size - offset_size * n_children;
|
|
|
|
for (i = 0; i < n_children; i++)
|
|
{
|
|
GVariantSerialised child = { 0, };
|
|
|
|
while (offset & alignment)
|
|
value.data[offset++] = '\0';
|
|
|
|
child.data = value.data + offset;
|
|
gvs_filler (&child, children[i]);
|
|
offset += child.size;
|
|
|
|
gvs_write_unaligned_le (offset_ptr, offset, offset_size);
|
|
offset_ptr += offset_size;
|
|
}
|
|
}
|
|
|
|
static gboolean
|
|
gvs_variable_sized_array_is_normal (GVariantSerialised value)
|
|
{
|
|
GVariantSerialised child = { 0, };
|
|
gsize offsets_array_size;
|
|
guchar *offsets_array;
|
|
guint offset_size;
|
|
guint alignment;
|
|
gsize last_end;
|
|
gsize length;
|
|
gsize offset;
|
|
gsize i;
|
|
|
|
if (value.size == 0)
|
|
return TRUE;
|
|
|
|
offset_size = gvs_get_offset_size (value.size);
|
|
last_end = gvs_read_unaligned_le (value.data + value.size -
|
|
offset_size, offset_size);
|
|
|
|
if (last_end > value.size)
|
|
return FALSE;
|
|
|
|
offsets_array_size = value.size - last_end;
|
|
|
|
if (offsets_array_size % offset_size)
|
|
return FALSE;
|
|
|
|
offsets_array = value.data + value.size - offsets_array_size;
|
|
length = offsets_array_size / offset_size;
|
|
|
|
if (length == 0)
|
|
return FALSE;
|
|
|
|
child.type_info = g_variant_type_info_element (value.type_info);
|
|
g_variant_type_info_query (child.type_info, &alignment, NULL);
|
|
child.depth = value.depth + 1;
|
|
offset = 0;
|
|
|
|
for (i = 0; i < length; i++)
|
|
{
|
|
gsize this_end;
|
|
|
|
this_end = gvs_read_unaligned_le (offsets_array + offset_size * i,
|
|
offset_size);
|
|
|
|
if (this_end < offset || this_end > last_end)
|
|
return FALSE;
|
|
|
|
while (offset & alignment)
|
|
{
|
|
if (!(offset < this_end && value.data[offset] == '\0'))
|
|
return FALSE;
|
|
offset++;
|
|
}
|
|
|
|
child.data = value.data + offset;
|
|
child.size = this_end - offset;
|
|
|
|
if (child.size == 0)
|
|
child.data = NULL;
|
|
|
|
if (!g_variant_serialised_is_normal (child))
|
|
return FALSE;
|
|
|
|
offset = this_end;
|
|
}
|
|
|
|
g_assert (offset == last_end);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Tuples {{{2
|
|
*
|
|
* Since tuples can contain a mix of variable- and fixed-sized items,
|
|
* they are, in terms of serialisation, a hybrid of variable-sized and
|
|
* fixed-sized arrays.
|
|
*
|
|
* Offsets are only stored for variable-sized items. Also, since the
|
|
* number of items in a tuple is known from its type, we are able to
|
|
* know exactly how many offsets to expect in the serialised data (and
|
|
* therefore how much space is taken up by the offset array). This
|
|
* means that we know where the end of the serialised data for the last
|
|
* item is -- we can just subtract the size of the offset array from the
|
|
* total size of the tuple. For this reason, the last item in the tuple
|
|
* doesn't need an offset stored.
|
|
*
|
|
* Tuple offsets are stored in reverse. This design choice allows
|
|
* iterator-based deserialisers to be more efficient.
|
|
*
|
|
* Most of the "heavy lifting" here is handled by the GVariantTypeInfo
|
|
* for the tuple. See the notes in gvarianttypeinfo.h.
|
|
*/
|
|
|
|
static gsize
|
|
gvs_tuple_n_children (GVariantSerialised value)
|
|
{
|
|
return g_variant_type_info_n_members (value.type_info);
|
|
}
|
|
|
|
static GVariantSerialised
|
|
gvs_tuple_get_child (GVariantSerialised value,
|
|
gsize index_)
|
|
{
|
|
const GVariantMemberInfo *member_info;
|
|
GVariantSerialised child = { 0, };
|
|
gsize offset_size;
|
|
gsize start, end, last_end;
|
|
|
|
member_info = g_variant_type_info_member_info (value.type_info, index_);
|
|
child.type_info = g_variant_type_info_ref (member_info->type_info);
|
|
child.depth = value.depth + 1;
|
|
offset_size = gvs_get_offset_size (value.size);
|
|
|
|
/* tuples are the only (potentially) fixed-sized containers, so the
|
|
* only ones that have to deal with the possibility of having %NULL
|
|
* data with a non-zero %size if errors occurred elsewhere.
|
|
*/
|
|
if G_UNLIKELY (value.data == NULL && value.size != 0)
|
|
{
|
|
g_variant_type_info_query (child.type_info, NULL, &child.size);
|
|
|
|
/* this can only happen in fixed-sized tuples,
|
|
* so the child must also be fixed sized.
|
|
*/
|
|
g_assert (child.size != 0);
|
|
child.data = NULL;
|
|
|
|
return child;
|
|
}
|
|
|
|
if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_OFFSET)
|
|
{
|
|
if (offset_size * (member_info->i + 2) > value.size)
|
|
return child;
|
|
}
|
|
else
|
|
{
|
|
if (offset_size * (member_info->i + 1) > value.size)
|
|
{
|
|
/* if the child is fixed size, return its size.
|
|
* if child is not fixed-sized, return size = 0.
|
|
*/
|
|
g_variant_type_info_query (child.type_info, NULL, &child.size);
|
|
|
|
return child;
|
|
}
|
|
}
|
|
|
|
if (member_info->i + 1)
|
|
start = gvs_read_unaligned_le (value.data + value.size -
|
|
offset_size * (member_info->i + 1),
|
|
offset_size);
|
|
else
|
|
start = 0;
|
|
|
|
start += member_info->a;
|
|
start &= member_info->b;
|
|
start |= member_info->c;
|
|
|
|
if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_LAST)
|
|
end = value.size - offset_size * (member_info->i + 1);
|
|
|
|
else if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_FIXED)
|
|
{
|
|
gsize fixed_size;
|
|
|
|
g_variant_type_info_query (child.type_info, NULL, &fixed_size);
|
|
end = start + fixed_size;
|
|
child.size = fixed_size;
|
|
}
|
|
|
|
else /* G_VARIANT_MEMBER_ENDING_OFFSET */
|
|
end = gvs_read_unaligned_le (value.data + value.size -
|
|
offset_size * (member_info->i + 2),
|
|
offset_size);
|
|
|
|
/* The child should not extend into the offset table. */
|
|
if (index_ != g_variant_type_info_n_members (value.type_info) - 1)
|
|
{
|
|
GVariantSerialised last_child;
|
|
last_child = gvs_tuple_get_child (value,
|
|
g_variant_type_info_n_members (value.type_info) - 1);
|
|
last_end = last_child.data + last_child.size - value.data;
|
|
g_variant_type_info_unref (last_child.type_info);
|
|
}
|
|
else
|
|
last_end = end;
|
|
|
|
if (start < end && end <= value.size && end <= last_end)
|
|
{
|
|
child.data = value.data + start;
|
|
child.size = end - start;
|
|
}
|
|
|
|
return child;
|
|
}
|
|
|
|
static gsize
|
|
gvs_tuple_needed_size (GVariantTypeInfo *type_info,
|
|
GVariantSerialisedFiller gvs_filler,
|
|
const gpointer *children,
|
|
gsize n_children)
|
|
{
|
|
const GVariantMemberInfo *member_info = NULL;
|
|
gsize fixed_size;
|
|
gsize offset;
|
|
gsize i;
|
|
|
|
g_variant_type_info_query (type_info, NULL, &fixed_size);
|
|
|
|
if (fixed_size)
|
|
return fixed_size;
|
|
|
|
offset = 0;
|
|
|
|
for (i = 0; i < n_children; i++)
|
|
{
|
|
guint alignment;
|
|
|
|
member_info = g_variant_type_info_member_info (type_info, i);
|
|
g_variant_type_info_query (member_info->type_info,
|
|
&alignment, &fixed_size);
|
|
offset += (-offset) & alignment;
|
|
|
|
if (fixed_size)
|
|
offset += fixed_size;
|
|
else
|
|
{
|
|
GVariantSerialised child = { 0, };
|
|
|
|
gvs_filler (&child, children[i]);
|
|
offset += child.size;
|
|
}
|
|
}
|
|
|
|
return gvs_calculate_total_size (offset, member_info->i + 1);
|
|
}
|
|
|
|
static void
|
|
gvs_tuple_serialise (GVariantSerialised value,
|
|
GVariantSerialisedFiller gvs_filler,
|
|
const gpointer *children,
|
|
gsize n_children)
|
|
{
|
|
gsize offset_size;
|
|
gsize offset;
|
|
gsize i;
|
|
|
|
offset_size = gvs_get_offset_size (value.size);
|
|
offset = 0;
|
|
|
|
for (i = 0; i < n_children; i++)
|
|
{
|
|
const GVariantMemberInfo *member_info;
|
|
GVariantSerialised child = { 0, };
|
|
guint alignment;
|
|
|
|
member_info = g_variant_type_info_member_info (value.type_info, i);
|
|
g_variant_type_info_query (member_info->type_info, &alignment, NULL);
|
|
|
|
while (offset & alignment)
|
|
value.data[offset++] = '\0';
|
|
|
|
child.data = value.data + offset;
|
|
gvs_filler (&child, children[i]);
|
|
offset += child.size;
|
|
|
|
if (member_info->ending_type == G_VARIANT_MEMBER_ENDING_OFFSET)
|
|
{
|
|
value.size -= offset_size;
|
|
gvs_write_unaligned_le (value.data + value.size,
|
|
offset, offset_size);
|
|
}
|
|
}
|
|
|
|
while (offset < value.size)
|
|
value.data[offset++] = '\0';
|
|
}
|
|
|
|
static gboolean
|
|
gvs_tuple_is_normal (GVariantSerialised value)
|
|
{
|
|
guint offset_size;
|
|
gsize offset_ptr;
|
|
gsize length;
|
|
gsize offset;
|
|
gsize i;
|
|
|
|
/* as per the comment in gvs_tuple_get_child() */
|
|
if G_UNLIKELY (value.data == NULL && value.size != 0)
|
|
return FALSE;
|
|
|
|
offset_size = gvs_get_offset_size (value.size);
|
|
length = g_variant_type_info_n_members (value.type_info);
|
|
offset_ptr = value.size;
|
|
offset = 0;
|
|
|
|
for (i = 0; i < length; i++)
|
|
{
|
|
const GVariantMemberInfo *member_info;
|
|
GVariantSerialised child;
|
|
gsize fixed_size;
|
|
guint alignment;
|
|
gsize end;
|
|
|
|
member_info = g_variant_type_info_member_info (value.type_info, i);
|
|
child.type_info = member_info->type_info;
|
|
child.depth = value.depth + 1;
|
|
|
|
g_variant_type_info_query (child.type_info, &alignment, &fixed_size);
|
|
|
|
while (offset & alignment)
|
|
{
|
|
if (offset > value.size || value.data[offset] != '\0')
|
|
return FALSE;
|
|
offset++;
|
|
}
|
|
|
|
child.data = value.data + offset;
|
|
|
|
switch (member_info->ending_type)
|
|
{
|
|
case G_VARIANT_MEMBER_ENDING_FIXED:
|
|
end = offset + fixed_size;
|
|
break;
|
|
|
|
case G_VARIANT_MEMBER_ENDING_LAST:
|
|
end = offset_ptr;
|
|
break;
|
|
|
|
case G_VARIANT_MEMBER_ENDING_OFFSET:
|
|
if (offset_ptr < offset_size)
|
|
return FALSE;
|
|
|
|
offset_ptr -= offset_size;
|
|
|
|
if (offset_ptr < offset)
|
|
return FALSE;
|
|
|
|
end = gvs_read_unaligned_le (value.data + offset_ptr, offset_size);
|
|
break;
|
|
|
|
default:
|
|
g_assert_not_reached ();
|
|
}
|
|
|
|
if (end < offset || end > offset_ptr)
|
|
return FALSE;
|
|
|
|
child.size = end - offset;
|
|
|
|
if (child.size == 0)
|
|
child.data = NULL;
|
|
|
|
if (!g_variant_serialised_is_normal (child))
|
|
return FALSE;
|
|
|
|
offset = end;
|
|
}
|
|
|
|
{
|
|
gsize fixed_size;
|
|
guint alignment;
|
|
|
|
g_variant_type_info_query (value.type_info, &alignment, &fixed_size);
|
|
|
|
if (fixed_size)
|
|
{
|
|
g_assert (fixed_size == value.size);
|
|
g_assert (offset_ptr == value.size);
|
|
|
|
if (i == 0)
|
|
{
|
|
if (value.data[offset++] != '\0')
|
|
return FALSE;
|
|
}
|
|
else
|
|
{
|
|
while (offset & alignment)
|
|
if (value.data[offset++] != '\0')
|
|
return FALSE;
|
|
}
|
|
|
|
g_assert (offset == value.size);
|
|
}
|
|
}
|
|
|
|
return offset_ptr == offset;
|
|
}
|
|
|
|
/* Variants {{{2
|
|
*
|
|
* Variants are stored by storing the serialised data of the child,
|
|
* followed by a '\0' character, followed by the type string of the
|
|
* child.
|
|
*
|
|
* In the case that a value is presented that contains no '\0'
|
|
* character, or doesn't have a single well-formed definite type string
|
|
* following that character, the variant must be taken as containing the
|
|
* unit tuple: ().
|
|
*/
|
|
|
|
static inline gsize
|
|
gvs_variant_n_children (GVariantSerialised value)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static inline GVariantSerialised
|
|
gvs_variant_get_child (GVariantSerialised value,
|
|
gsize index_)
|
|
{
|
|
GVariantSerialised child = { 0, };
|
|
|
|
/* NOTE: not O(1) and impossible for it to be... */
|
|
if (value.size)
|
|
{
|
|
/* find '\0' character */
|
|
for (child.size = value.size - 1; child.size; child.size--)
|
|
if (value.data[child.size] == '\0')
|
|
break;
|
|
|
|
/* ensure we didn't just hit the start of the string */
|
|
if (value.data[child.size] == '\0')
|
|
{
|
|
const gchar *type_string = (gchar *) &value.data[child.size + 1];
|
|
const gchar *limit = (gchar *) &value.data[value.size];
|
|
const gchar *end;
|
|
|
|
if (g_variant_type_string_scan (type_string, limit, &end) &&
|
|
end == limit)
|
|
{
|
|
const GVariantType *type = (GVariantType *) type_string;
|
|
|
|
if (g_variant_type_is_definite (type))
|
|
{
|
|
gsize fixed_size;
|
|
gsize child_type_depth;
|
|
|
|
child.type_info = g_variant_type_info_get (type);
|
|
child.depth = value.depth + 1;
|
|
|
|
if (child.size != 0)
|
|
/* only set to non-%NULL if size > 0 */
|
|
child.data = value.data;
|
|
|
|
g_variant_type_info_query (child.type_info,
|
|
NULL, &fixed_size);
|
|
child_type_depth = g_variant_type_info_query_depth (child.type_info);
|
|
|
|
if ((!fixed_size || fixed_size == child.size) &&
|
|
value.depth < G_VARIANT_MAX_RECURSION_DEPTH - child_type_depth)
|
|
return child;
|
|
|
|
g_variant_type_info_unref (child.type_info);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
child.type_info = g_variant_type_info_get (G_VARIANT_TYPE_UNIT);
|
|
child.data = NULL;
|
|
child.size = 1;
|
|
child.depth = value.depth + 1;
|
|
|
|
return child;
|
|
}
|
|
|
|
static inline gsize
|
|
gvs_variant_needed_size (GVariantTypeInfo *type_info,
|
|
GVariantSerialisedFiller gvs_filler,
|
|
const gpointer *children,
|
|
gsize n_children)
|
|
{
|
|
GVariantSerialised child = { 0, };
|
|
const gchar *type_string;
|
|
|
|
gvs_filler (&child, children[0]);
|
|
type_string = g_variant_type_info_get_type_string (child.type_info);
|
|
|
|
return child.size + 1 + strlen (type_string);
|
|
}
|
|
|
|
static inline void
|
|
gvs_variant_serialise (GVariantSerialised value,
|
|
GVariantSerialisedFiller gvs_filler,
|
|
const gpointer *children,
|
|
gsize n_children)
|
|
{
|
|
GVariantSerialised child = { 0, };
|
|
const gchar *type_string;
|
|
|
|
child.data = value.data;
|
|
|
|
gvs_filler (&child, children[0]);
|
|
type_string = g_variant_type_info_get_type_string (child.type_info);
|
|
value.data[child.size] = '\0';
|
|
memcpy (value.data + child.size + 1, type_string, strlen (type_string));
|
|
}
|
|
|
|
static inline gboolean
|
|
gvs_variant_is_normal (GVariantSerialised value)
|
|
{
|
|
GVariantSerialised child;
|
|
gboolean normal;
|
|
gsize child_type_depth;
|
|
|
|
child = gvs_variant_get_child (value, 0);
|
|
child_type_depth = g_variant_type_info_query_depth (child.type_info);
|
|
|
|
normal = (value.depth < G_VARIANT_MAX_RECURSION_DEPTH - child_type_depth) &&
|
|
(child.data != NULL || child.size == 0) &&
|
|
g_variant_serialised_is_normal (child);
|
|
|
|
g_variant_type_info_unref (child.type_info);
|
|
|
|
return normal;
|
|
}
|
|
|
|
|
|
|
|
/* PART 2: Serialiser API {{{1
|
|
*
|
|
* This is the implementation of the API of the serialiser as advertised
|
|
* in gvariant-serialiser.h.
|
|
*/
|
|
|
|
/* Dispatch Utilities {{{2
|
|
*
|
|
* These macros allow a given function (for example,
|
|
* g_variant_serialiser_serialise) to be dispatched to the appropriate
|
|
* type-specific function above (fixed/variable-sized maybe,
|
|
* fixed/variable-sized array, tuple or variant).
|
|
*/
|
|
#define DISPATCH_FIXED(type_info, before, after) \
|
|
{ \
|
|
gsize fixed_size; \
|
|
\
|
|
g_variant_type_info_query_element (type_info, NULL, \
|
|
&fixed_size); \
|
|
\
|
|
if (fixed_size) \
|
|
{ \
|
|
before ## fixed_sized ## after \
|
|
} \
|
|
else \
|
|
{ \
|
|
before ## variable_sized ## after \
|
|
} \
|
|
}
|
|
|
|
#define DISPATCH_CASES(type_info, before, after) \
|
|
switch (g_variant_type_info_get_type_char (type_info)) \
|
|
{ \
|
|
case G_VARIANT_TYPE_INFO_CHAR_MAYBE: \
|
|
DISPATCH_FIXED (type_info, before, _maybe ## after) \
|
|
\
|
|
case G_VARIANT_TYPE_INFO_CHAR_ARRAY: \
|
|
DISPATCH_FIXED (type_info, before, _array ## after) \
|
|
\
|
|
case G_VARIANT_TYPE_INFO_CHAR_DICT_ENTRY: \
|
|
case G_VARIANT_TYPE_INFO_CHAR_TUPLE: \
|
|
{ \
|
|
before ## tuple ## after \
|
|
} \
|
|
\
|
|
case G_VARIANT_TYPE_INFO_CHAR_VARIANT: \
|
|
{ \
|
|
before ## variant ## after \
|
|
} \
|
|
}
|
|
|
|
/* Serialiser entry points {{{2
|
|
*
|
|
* These are the functions that are called in order for the serialiser
|
|
* to do its thing.
|
|
*/
|
|
|
|
/* < private >
|
|
* g_variant_serialised_n_children:
|
|
* @serialised: a #GVariantSerialised
|
|
*
|
|
* For serialised data that represents a container value (maybes,
|
|
* tuples, arrays, variants), determine how many child items are inside
|
|
* that container.
|
|
*
|
|
* Returns: the number of children
|
|
*/
|
|
gsize
|
|
g_variant_serialised_n_children (GVariantSerialised serialised)
|
|
{
|
|
g_assert (g_variant_serialised_check (serialised));
|
|
|
|
DISPATCH_CASES (serialised.type_info,
|
|
|
|
return gvs_/**/,/**/_n_children (serialised);
|
|
|
|
)
|
|
g_assert_not_reached ();
|
|
}
|
|
|
|
/* < private >
|
|
* g_variant_serialised_get_child:
|
|
* @serialised: a #GVariantSerialised
|
|
* @index_: the index of the child to fetch
|
|
*
|
|
* Extracts a child from a serialised data representing a container
|
|
* value.
|
|
*
|
|
* It is an error to call this function with an index out of bounds.
|
|
*
|
|
* If the result .data == %NULL and .size > 0 then there has been an
|
|
* error extracting the requested fixed-sized value. This number of
|
|
* zero bytes needs to be allocated instead.
|
|
*
|
|
* In the case that .data == %NULL and .size == 0 then a zero-sized
|
|
* item of a variable-sized type is being returned.
|
|
*
|
|
* .data is never non-%NULL if size is 0.
|
|
*
|
|
* Returns: a #GVariantSerialised for the child
|
|
*/
|
|
GVariantSerialised
|
|
g_variant_serialised_get_child (GVariantSerialised serialised,
|
|
gsize index_)
|
|
{
|
|
GVariantSerialised child;
|
|
|
|
g_assert (g_variant_serialised_check (serialised));
|
|
|
|
if G_LIKELY (index_ < g_variant_serialised_n_children (serialised))
|
|
{
|
|
DISPATCH_CASES (serialised.type_info,
|
|
|
|
child = gvs_/**/,/**/_get_child (serialised, index_);
|
|
g_assert (child.size || child.data == NULL);
|
|
g_assert (g_variant_serialised_check (child));
|
|
return child;
|
|
|
|
)
|
|
g_assert_not_reached ();
|
|
}
|
|
|
|
g_error ("Attempt to access item %"G_GSIZE_FORMAT
|
|
" in a container with only %"G_GSIZE_FORMAT" items",
|
|
index_, g_variant_serialised_n_children (serialised));
|
|
}
|
|
|
|
/* < private >
|
|
* g_variant_serialiser_serialise:
|
|
* @serialised: a #GVariantSerialised, properly set up
|
|
* @gvs_filler: the filler function
|
|
* @children: an array of child items
|
|
* @n_children: the size of @children
|
|
*
|
|
* Writes data in serialised form.
|
|
*
|
|
* The type_info field of @serialised must be filled in to type info for
|
|
* the type that we are serialising.
|
|
*
|
|
* The size field of @serialised must be filled in with the value
|
|
* returned by a previous call to g_variant_serialiser_needed_size().
|
|
*
|
|
* The data field of @serialised must be a pointer to a properly-aligned
|
|
* memory region large enough to serialise into (ie: at least as big as
|
|
* the size field).
|
|
*
|
|
* This function is only resonsible for serialising the top-level
|
|
* container. @gvs_filler is called on each child of the container in
|
|
* order for all of the data of that child to be filled in.
|
|
*/
|
|
void
|
|
g_variant_serialiser_serialise (GVariantSerialised serialised,
|
|
GVariantSerialisedFiller gvs_filler,
|
|
const gpointer *children,
|
|
gsize n_children)
|
|
{
|
|
g_assert (g_variant_serialised_check (serialised));
|
|
|
|
DISPATCH_CASES (serialised.type_info,
|
|
|
|
gvs_/**/,/**/_serialise (serialised, gvs_filler,
|
|
children, n_children);
|
|
return;
|
|
|
|
)
|
|
g_assert_not_reached ();
|
|
}
|
|
|
|
/* < private >
|
|
* g_variant_serialiser_needed_size:
|
|
* @type_info: the type to serialise for
|
|
* @gvs_filler: the filler function
|
|
* @children: an array of child items
|
|
* @n_children: the size of @children
|
|
*
|
|
* Determines how much memory would be needed to serialise this value.
|
|
*
|
|
* This function is only resonsible for performing calculations for the
|
|
* top-level container. @gvs_filler is called on each child of the
|
|
* container in order to determine its size.
|
|
*/
|
|
gsize
|
|
g_variant_serialiser_needed_size (GVariantTypeInfo *type_info,
|
|
GVariantSerialisedFiller gvs_filler,
|
|
const gpointer *children,
|
|
gsize n_children)
|
|
{
|
|
DISPATCH_CASES (type_info,
|
|
|
|
return gvs_/**/,/**/_needed_size (type_info, gvs_filler,
|
|
children, n_children);
|
|
|
|
)
|
|
g_assert_not_reached ();
|
|
}
|
|
|
|
/* Byteswapping {{{2 */
|
|
|
|
/* < private >
|
|
* g_variant_serialised_byteswap:
|
|
* @value: a #GVariantSerialised
|
|
*
|
|
* Byte-swap serialised data. The result of this function is only
|
|
* well-defined if the data is in normal form.
|
|
*/
|
|
void
|
|
g_variant_serialised_byteswap (GVariantSerialised serialised)
|
|
{
|
|
gsize fixed_size;
|
|
guint alignment;
|
|
|
|
g_assert (g_variant_serialised_check (serialised));
|
|
|
|
if (!serialised.data)
|
|
return;
|
|
|
|
/* the types we potentially need to byteswap are
|
|
* exactly those with alignment requirements.
|
|
*/
|
|
g_variant_type_info_query (serialised.type_info, &alignment, &fixed_size);
|
|
if (!alignment)
|
|
return;
|
|
|
|
/* if fixed size and alignment are equal then we are down
|
|
* to the base integer type and we should swap it. the
|
|
* only exception to this is if we have a tuple with a
|
|
* single item, and then swapping it will be OK anyway.
|
|
*/
|
|
if (alignment + 1 == fixed_size)
|
|
{
|
|
switch (fixed_size)
|
|
{
|
|
case 2:
|
|
{
|
|
guint16 *ptr = (guint16 *) serialised.data;
|
|
|
|
g_assert_cmpint (serialised.size, ==, 2);
|
|
*ptr = GUINT16_SWAP_LE_BE (*ptr);
|
|
}
|
|
return;
|
|
|
|
case 4:
|
|
{
|
|
guint32 *ptr = (guint32 *) serialised.data;
|
|
|
|
g_assert_cmpint (serialised.size, ==, 4);
|
|
*ptr = GUINT32_SWAP_LE_BE (*ptr);
|
|
}
|
|
return;
|
|
|
|
case 8:
|
|
{
|
|
guint64 *ptr = (guint64 *) serialised.data;
|
|
|
|
g_assert_cmpint (serialised.size, ==, 8);
|
|
*ptr = GUINT64_SWAP_LE_BE (*ptr);
|
|
}
|
|
return;
|
|
|
|
default:
|
|
g_assert_not_reached ();
|
|
}
|
|
}
|
|
|
|
/* else, we have a container that potentially contains
|
|
* some children that need to be byteswapped.
|
|
*/
|
|
else
|
|
{
|
|
gsize children, i;
|
|
|
|
children = g_variant_serialised_n_children (serialised);
|
|
for (i = 0; i < children; i++)
|
|
{
|
|
GVariantSerialised child;
|
|
|
|
child = g_variant_serialised_get_child (serialised, i);
|
|
g_variant_serialised_byteswap (child);
|
|
g_variant_type_info_unref (child.type_info);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Normal form checking {{{2 */
|
|
|
|
/* < private >
|
|
* g_variant_serialised_is_normal:
|
|
* @serialised: a #GVariantSerialised
|
|
*
|
|
* Determines, recursively if @serialised is in normal form. There is
|
|
* precisely one normal form of serialised data for each possible value.
|
|
*
|
|
* It is possible that multiple byte sequences form the serialised data
|
|
* for a given value if, for example, the padding bytes are filled in
|
|
* with something other than zeros, but only one form is the normal
|
|
* form.
|
|
*/
|
|
gboolean
|
|
g_variant_serialised_is_normal (GVariantSerialised serialised)
|
|
{
|
|
DISPATCH_CASES (serialised.type_info,
|
|
|
|
return gvs_/**/,/**/_is_normal (serialised);
|
|
|
|
)
|
|
|
|
if (serialised.data == NULL)
|
|
return FALSE;
|
|
if (serialised.depth >= G_VARIANT_MAX_RECURSION_DEPTH)
|
|
return FALSE;
|
|
|
|
/* some hard-coded terminal cases */
|
|
switch (g_variant_type_info_get_type_char (serialised.type_info))
|
|
{
|
|
case 'b': /* boolean */
|
|
return serialised.data[0] < 2;
|
|
|
|
case 's': /* string */
|
|
return g_variant_serialiser_is_string (serialised.data,
|
|
serialised.size);
|
|
|
|
case 'o':
|
|
return g_variant_serialiser_is_object_path (serialised.data,
|
|
serialised.size);
|
|
|
|
case 'g':
|
|
return g_variant_serialiser_is_signature (serialised.data,
|
|
serialised.size);
|
|
|
|
default:
|
|
/* all of the other types are fixed-sized numerical types for
|
|
* which all possible values are valid (including various NaN
|
|
* representations for floating point values).
|
|
*/
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
/* Validity-checking functions {{{2
|
|
*
|
|
* Checks if strings, object paths and signature strings are valid.
|
|
*/
|
|
|
|
/* < private >
|
|
* g_variant_serialiser_is_string:
|
|
* @data: a possible string
|
|
* @size: the size of @data
|
|
*
|
|
* Ensures that @data is a valid string with a nul terminator at the end
|
|
* and no nul bytes embedded.
|
|
*/
|
|
gboolean
|
|
g_variant_serialiser_is_string (gconstpointer data,
|
|
gsize size)
|
|
{
|
|
const gchar *expected_end;
|
|
const gchar *end;
|
|
|
|
/* Strings must end with a nul terminator. */
|
|
if (size == 0)
|
|
return FALSE;
|
|
|
|
expected_end = ((gchar *) data) + size - 1;
|
|
|
|
if (*expected_end != '\0')
|
|
return FALSE;
|
|
|
|
g_utf8_validate_len (data, size, &end);
|
|
|
|
return end == expected_end;
|
|
}
|
|
|
|
/* < private >
|
|
* g_variant_serialiser_is_object_path:
|
|
* @data: a possible D-Bus object path
|
|
* @size: the size of @data
|
|
*
|
|
* Performs the checks for being a valid string.
|
|
*
|
|
* Also, ensures that @data is a valid DBus object path, as per the D-Bus
|
|
* specification.
|
|
*/
|
|
gboolean
|
|
g_variant_serialiser_is_object_path (gconstpointer data,
|
|
gsize size)
|
|
{
|
|
const gchar *string = data;
|
|
gsize i;
|
|
|
|
if (!g_variant_serialiser_is_string (data, size))
|
|
return FALSE;
|
|
|
|
/* The path must begin with an ASCII '/' (integer 47) character */
|
|
if (string[0] != '/')
|
|
return FALSE;
|
|
|
|
for (i = 1; string[i]; i++)
|
|
/* Each element must only contain the ASCII characters
|
|
* "[A-Z][a-z][0-9]_"
|
|
*/
|
|
if (g_ascii_isalnum (string[i]) || string[i] == '_')
|
|
;
|
|
|
|
/* must consist of elements separated by slash characters. */
|
|
else if (string[i] == '/')
|
|
{
|
|
/* No element may be the empty string. */
|
|
/* Multiple '/' characters cannot occur in sequence. */
|
|
if (string[i - 1] == '/')
|
|
return FALSE;
|
|
}
|
|
|
|
else
|
|
return FALSE;
|
|
|
|
/* A trailing '/' character is not allowed unless the path is the
|
|
* root path (a single '/' character).
|
|
*/
|
|
if (i > 1 && string[i - 1] == '/')
|
|
return FALSE;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* < private >
|
|
* g_variant_serialiser_is_signature:
|
|
* @data: a possible D-Bus signature
|
|
* @size: the size of @data
|
|
*
|
|
* Performs the checks for being a valid string.
|
|
*
|
|
* Also, ensures that @data is a valid D-Bus type signature, as per the
|
|
* D-Bus specification. Note that this means the empty string is valid, as the
|
|
* D-Bus specification defines a signature as “zero or more single complete
|
|
* types”.
|
|
*/
|
|
gboolean
|
|
g_variant_serialiser_is_signature (gconstpointer data,
|
|
gsize size)
|
|
{
|
|
const gchar *string = data;
|
|
gsize first_invalid;
|
|
|
|
if (!g_variant_serialiser_is_string (data, size))
|
|
return FALSE;
|
|
|
|
/* make sure no non-definite characters appear */
|
|
first_invalid = strspn (string, "ybnqiuxthdvasog(){}");
|
|
if (string[first_invalid])
|
|
return FALSE;
|
|
|
|
/* make sure each type string is well-formed */
|
|
while (*string)
|
|
if (!g_variant_type_string_scan (string, NULL, &string))
|
|
return FALSE;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* Epilogue {{{1 */
|
|
/* vim:set foldmethod=marker: */
|