glib/gio/gsocket.c
Emmanuele Bassi 7cb953dab8 Add GBytes variants for GSocket receive methods
The current buffer API is pretty much C-specific, and cannot be
adequately described in a way that is friendly to introspection and
language bindings: the passed buffer is allocated by the caller, but the
written size of the buffer is in the return value.

Using GBytes, we get a better API at the cost of an additional
allocation.
2023-12-18 14:23:03 +00:00

6558 lines
195 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* GIO - GLib Input, Output and Streaming Library
*
* Copyright (C) 2008 Christian Kellner, Samuel Cormier-Iijima
* Copyright © 2009 Codethink Limited
* Copyright © 2009 Red Hat, Inc
* Copyright © 2015 Collabora, Ltd.
*
* SPDX-License-Identifier: LGPL-2.1-or-later
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General
* Public License along with this library; if not, see <http://www.gnu.org/licenses/>.
*
* Authors: Christian Kellner <gicmo@gnome.org>
* Samuel Cormier-Iijima <sciyoshi@gmail.com>
* Ryan Lortie <desrt@desrt.ca>
* Alexander Larsson <alexl@redhat.com>
* Philip Withnall <philip.withnall@collabora.co.uk>
*/
#include "config.h"
#include "gsocket.h"
#ifdef G_OS_UNIX
#include "glib-unix.h"
#endif
#include <errno.h>
#include <signal.h>
#include <string.h>
#include <stdlib.h>
#ifndef G_OS_WIN32
# include <fcntl.h>
# include <unistd.h>
# include <sys/ioctl.h>
#endif
#ifdef HAVE_SIOCGIFADDR
#include <net/if.h>
#endif
#ifdef HAVE_SYS_FILIO_H
# include <sys/filio.h>
#endif
#ifdef G_OS_UNIX
#include <sys/uio.h>
#endif
#define GOBJECT_COMPILATION
#include "gobject/gtype-private.h" /* For _PRELUDE type define */
#undef GOBJECT_COMPILATION
#include "gcancellable.h"
#include "gdatagrambased.h"
#include "gioenumtypes.h"
#include "ginetaddress.h"
#include "ginetsocketaddress.h"
#include "ginitable.h"
#include "gioerror.h"
#include "gioenums.h"
#include "gioerror.h"
#include "gnetworkingprivate.h"
#include "gsocketaddress.h"
#include "gsocketcontrolmessage.h"
#include "gcredentials.h"
#include "gcredentialsprivate.h"
#include "glibintl.h"
#include "gioprivate.h"
#ifdef G_OS_WIN32
#include "giowin32-afunix.h"
#endif
/**
* GSocket:
*
* A `GSocket` is a low-level networking primitive. It is a more or less
* direct mapping of the BSD socket API in a portable GObject based API.
* It supports both the UNIX socket implementations and winsock2 on Windows.
*
* `GSocket` is the platform independent base upon which the higher level
* network primitives are based. Applications are not typically meant to
* use it directly, but rather through classes like [class@Gio.SocketClient],
* [class@Gio.SocketService] and [class@Gio.SocketConnection]. However there may
* be cases where direct use of `GSocket` is useful.
*
* `GSocket` implements the [iface@Gio.Initable] interface, so if it is manually
* constructed by e.g. [ctor@GObject.Object.new] you must call
* [method@Gio.Initable.init] and check the results before using the object.
* This is done automatically in [ctor@Gio.Socket.new] and
* [ctor@Gio.Socket.new_from_fd], so these functions can return `NULL`.
*
* Sockets operate in two general modes, blocking or non-blocking. When
* in blocking mode all operations (which dont take an explicit blocking
* parameter) block until the requested operation
* is finished or there is an error. In non-blocking mode all calls that
* would block return immediately with a `G_IO_ERROR_WOULD_BLOCK` error.
* To know when a call would successfully run you can call
* [method@Gio.Socket.condition_check], or [method@Gio.Socket.condition_wait].
* You can also use [method@Gio.Socket.create_source] and attach it to a
* [type@GLib.MainContext] to get callbacks when I/O is possible.
* Note that all sockets are always set to non blocking mode in the system, and
* blocking mode is emulated in `GSocket`.
*
* When working in non-blocking mode applications should always be able to
* handle getting a `G_IO_ERROR_WOULD_BLOCK` error even when some other
* function said that I/O was possible. This can easily happen in case
* of a race condition in the application, but it can also happen for other
* reasons. For instance, on Windows a socket is always seen as writable
* until a write returns `G_IO_ERROR_WOULD_BLOCK`.
*
* `GSocket`s can be either connection oriented or datagram based.
* For connection oriented types you must first establish a connection by
* either connecting to an address or accepting a connection from another
* address. For connectionless socket types the target/source address is
* specified or received in each I/O operation.
*
* All socket file descriptors are set to be close-on-exec.
*
* Note that creating a `GSocket` causes the signal `SIGPIPE` to be
* ignored for the remainder of the program. If you are writing a
* command-line utility that uses `GSocket`, you may need to take into
* account the fact that your program will not automatically be killed
* if it tries to write to `stdout` after it has been closed.
*
* Like most other APIs in GLib, `GSocket` is not inherently thread safe. To use
* a `GSocket` concurrently from multiple threads, you must implement your own
* locking.
*
* ## Nagles algorithm
*
* Since GLib 2.80, `GSocket` will automatically set the `TCP_NODELAY` option on
* all `G_SOCKET_TYPE_STREAM` sockets. This disables
* [Nagles algorithm](https://en.wikipedia.org/wiki/Nagle%27s_algorithm) as it
* typically does more harm than good on modern networks.
*
* If your application needs Nagles algorithm enabled, call
* [method@Gio.Socket.set_option] after constructing a `GSocket` to enable it:
* ```c
* socket = g_socket_new (…, G_SOCKET_TYPE_STREAM, …);
* if (socket != NULL)
* {
* g_socket_set_option (socket, IPPROTO_TCP, TCP_NODELAY, FALSE, &local_error);
* // handle error if needed
* }
* ```
*
* Since: 2.22
*/
static void g_socket_initable_iface_init (GInitableIface *iface);
static gboolean g_socket_initable_init (GInitable *initable,
GCancellable *cancellable,
GError **error);
static void g_socket_datagram_based_iface_init (GDatagramBasedInterface *iface);
static gint g_socket_datagram_based_receive_messages (GDatagramBased *self,
GInputMessage *messages,
guint num_messages,
gint flags,
gint64 timeout_us,
GCancellable *cancellable,
GError **error);
static gint g_socket_datagram_based_send_messages (GDatagramBased *self,
GOutputMessage *messages,
guint num_messages,
gint flags,
gint64 timeout_us,
GCancellable *cancellable,
GError **error);
static GSource *g_socket_datagram_based_create_source (GDatagramBased *self,
GIOCondition condition,
GCancellable *cancellable);
static GIOCondition g_socket_datagram_based_condition_check (GDatagramBased *datagram_based,
GIOCondition condition);
static gboolean g_socket_datagram_based_condition_wait (GDatagramBased *datagram_based,
GIOCondition condition,
gint64 timeout_us,
GCancellable *cancellable,
GError **error);
static GSocketAddress *
cache_recv_address (GSocket *socket, struct sockaddr *native, size_t native_len);
static gssize
g_socket_receive_message_with_timeout (GSocket *socket,
GSocketAddress **address,
GInputVector *vectors,
gint num_vectors,
GSocketControlMessage ***messages,
gint *num_messages,
gint *flags,
gint64 timeout_us,
GCancellable *cancellable,
GError **error);
static gint
g_socket_receive_messages_with_timeout (GSocket *socket,
GInputMessage *messages,
guint num_messages,
gint flags,
gint64 timeout_us,
GCancellable *cancellable,
GError **error);
static gint
g_socket_send_messages_with_timeout (GSocket *socket,
GOutputMessage *messages,
guint num_messages,
gint flags,
gint64 timeout_us,
GCancellable *cancellable,
GError **error);
enum
{
PROP_0,
PROP_FAMILY,
PROP_TYPE,
PROP_PROTOCOL,
PROP_FD,
PROP_BLOCKING,
PROP_LISTEN_BACKLOG,
PROP_KEEPALIVE,
PROP_LOCAL_ADDRESS,
PROP_REMOTE_ADDRESS,
PROP_TIMEOUT,
PROP_TTL,
PROP_BROADCAST,
PROP_MULTICAST_LOOPBACK,
PROP_MULTICAST_TTL
};
/* Size of the receiver cache for g_socket_receive_from() */
#define RECV_ADDR_CACHE_SIZE 8
struct _GSocketPrivate
{
GSocketFamily family;
GSocketType type;
GSocketProtocol protocol;
gint fd;
gint listen_backlog;
guint timeout;
GError *construct_error;
GSocketAddress *remote_address;
guint inited : 1;
guint blocking : 1;
guint keepalive : 1;
guint closed : 1;
guint connected_read : 1;
guint connected_write : 1;
guint listening : 1;
guint timed_out : 1;
guint connect_pending : 1;
#ifdef G_OS_WIN32
WSAEVENT event;
gboolean waiting;
DWORD waiting_result;
int current_events;
int current_errors;
int selected_events;
GList *requested_conditions; /* list of requested GIOCondition * */
GMutex win32_source_lock;
GCond win32_source_cond;
#endif
struct {
GSocketAddress *addr;
struct sockaddr *native;
gsize native_len;
guint64 last_used;
} recv_addr_cache[RECV_ADDR_CACHE_SIZE];
};
_G_DEFINE_TYPE_EXTENDED_WITH_PRELUDE (GSocket, g_socket, G_TYPE_OBJECT, 0,
/* Need a prelude for https://bugzilla.gnome.org/show_bug.cgi?id=674885 */
g_type_ensure (G_TYPE_SOCKET_FAMILY);
g_type_ensure (G_TYPE_SOCKET_TYPE);
g_type_ensure (G_TYPE_SOCKET_PROTOCOL);
g_type_ensure (G_TYPE_SOCKET_ADDRESS);
/* And networking init is appropriate for the prelude */
g_networking_init ();
, /* And now the regular type init code */
G_ADD_PRIVATE (GSocket)
G_IMPLEMENT_INTERFACE (G_TYPE_INITABLE,
g_socket_initable_iface_init);
G_IMPLEMENT_INTERFACE (G_TYPE_DATAGRAM_BASED,
g_socket_datagram_based_iface_init));
static int
get_socket_errno (void)
{
#ifndef G_OS_WIN32
return errno;
#else
return WSAGetLastError ();
#endif
}
static GIOErrorEnum
socket_io_error_from_errno (int err)
{
#ifdef G_OS_WIN32
return g_io_error_from_win32_error (err);
#else
return g_io_error_from_errno (err);
#endif
}
static const char *
socket_strerror (int err)
{
#ifndef G_OS_WIN32
return g_strerror (err);
#else
const char *msg_ret;
char *msg;
msg = g_win32_error_message (err);
msg_ret = g_intern_string (msg);
g_free (msg);
return msg_ret;
#endif
}
/* Wrapper around g_set_error() to avoid doing excess work */
#define socket_set_error_lazy(err, errsv, fmt) \
G_STMT_START { \
GError **__err = (err); \
int __errsv = (errsv); \
\
if (__err) \
{ \
int __code = socket_io_error_from_errno (__errsv); \
const char *__strerr = socket_strerror (__errsv); \
\
if (__code == G_IO_ERROR_WOULD_BLOCK) \
g_set_error_literal (__err, G_IO_ERROR, __code, __strerr); \
else \
g_set_error (__err, G_IO_ERROR, __code, fmt, __strerr); \
} \
} G_STMT_END
#ifdef G_OS_WIN32
#define win32_unset_event_mask(_socket, _mask) _win32_unset_event_mask (_socket, _mask)
static void
_win32_unset_event_mask (GSocket *socket, int mask)
{
g_mutex_lock (&socket->priv->win32_source_lock);
socket->priv->current_events &= ~mask;
socket->priv->current_errors &= ~mask;
g_mutex_unlock (&socket->priv->win32_source_lock);
}
#else
#define win32_unset_event_mask(_socket, _mask)
#endif
/* Windows has broken prototypes... */
#ifdef G_OS_WIN32
#define getsockopt(sockfd, level, optname, optval, optlen) \
getsockopt (sockfd, level, optname, (gpointer) optval, (int*) optlen)
#define setsockopt(sockfd, level, optname, optval, optlen) \
setsockopt (sockfd, level, optname, (gpointer) optval, optlen)
#define getsockname(sockfd, addr, addrlen) \
getsockname (sockfd, addr, (int *)addrlen)
#define getpeername(sockfd, addr, addrlen) \
getpeername (sockfd, addr, (int *)addrlen)
#define recv(sockfd, buf, len, flags) \
recv (sockfd, (gpointer)buf, len, flags)
#endif
static gchar *
address_to_string (GSocketAddress *address)
{
GString *ret = g_string_new ("");
if (G_IS_INET_SOCKET_ADDRESS (address))
{
GInetSocketAddress *isa = G_INET_SOCKET_ADDRESS (address);
GInetAddress *ia = g_inet_socket_address_get_address (isa);
GSocketFamily family = g_inet_address_get_family (ia);
gchar *tmp;
/* Represent IPv6 addresses in URL style:
* ::1 port 12345 -> [::1]:12345 */
if (family == G_SOCKET_FAMILY_IPV6)
g_string_append_c (ret, '[');
tmp = g_inet_address_to_string (ia);
g_string_append (ret, tmp);
g_free (tmp);
if (family == G_SOCKET_FAMILY_IPV6)
{
guint32 scope = g_inet_socket_address_get_scope_id (isa);
if (scope != 0)
g_string_append_printf (ret, "%%%u", scope);
g_string_append_c (ret, ']');
}
g_string_append_c (ret, ':');
g_string_append_printf (ret, "%u", g_inet_socket_address_get_port (isa));
}
else
{
/* For unknown address types, just show the type */
g_string_append_printf (ret, "(%s)", G_OBJECT_TYPE_NAME (address));
}
return g_string_free (ret, FALSE);
}
static gboolean
check_socket (GSocket *socket,
GError **error)
{
if (!socket->priv->inited)
{
g_set_error_literal (error, G_IO_ERROR, G_IO_ERROR_NOT_INITIALIZED,
_("Invalid socket, not initialized"));
return FALSE;
}
if (socket->priv->construct_error)
{
g_set_error (error, G_IO_ERROR, G_IO_ERROR_NOT_INITIALIZED,
_("Invalid socket, initialization failed due to: %s"),
socket->priv->construct_error->message);
return FALSE;
}
if (socket->priv->closed)
{
g_set_error_literal (error, G_IO_ERROR, G_IO_ERROR_CLOSED,
_("Socket is already closed"));
return FALSE;
}
return TRUE;
}
static gboolean
check_timeout (GSocket *socket,
GError **error)
{
if (socket->priv->timed_out)
{
socket->priv->timed_out = FALSE;
g_set_error_literal (error, G_IO_ERROR, G_IO_ERROR_TIMED_OUT,
_("Socket I/O timed out"));
return FALSE;
}
return TRUE;
}
static void
g_socket_details_from_fd (GSocket *socket)
{
union {
struct sockaddr_storage storage;
struct sockaddr sa;
} address;
gint fd;
socklen_t addrlen;
int value, family;
int errsv;
memset (&address, 0, sizeof (address));
fd = socket->priv->fd;
if (!g_socket_get_option (socket, SOL_SOCKET, SO_TYPE, &value, NULL))
{
errsv = get_socket_errno ();
goto err;
}
switch (value)
{
case SOCK_STREAM:
socket->priv->type = G_SOCKET_TYPE_STREAM;
break;
case SOCK_DGRAM:
socket->priv->type = G_SOCKET_TYPE_DATAGRAM;
break;
case SOCK_SEQPACKET:
socket->priv->type = G_SOCKET_TYPE_SEQPACKET;
break;
default:
socket->priv->type = G_SOCKET_TYPE_INVALID;
break;
}
addrlen = sizeof address;
if (getsockname (fd, &address.sa, &addrlen) != 0)
{
errsv = get_socket_errno ();
goto err;
}
if (addrlen > 0)
{
g_assert (G_STRUCT_OFFSET (struct sockaddr, sa_family) +
(socklen_t) sizeof address.storage.ss_family <= addrlen);
family = address.storage.ss_family;
}
else
{
/* On Solaris, this happens if the socket is not yet connected.
* But we can use SO_DOMAIN as a workaround there.
*/
#ifdef SO_DOMAIN
if (!g_socket_get_option (socket, SOL_SOCKET, SO_DOMAIN, &family, NULL))
{
errsv = get_socket_errno ();
goto err;
}
#else
/* This will translate to G_IO_ERROR_FAILED on either unix or windows */
errsv = -1;
goto err;
#endif
}
switch (family)
{
case G_SOCKET_FAMILY_IPV4:
case G_SOCKET_FAMILY_IPV6:
socket->priv->family = address.storage.ss_family;
switch (socket->priv->type)
{
case G_SOCKET_TYPE_STREAM:
socket->priv->protocol = G_SOCKET_PROTOCOL_TCP;
break;
case G_SOCKET_TYPE_DATAGRAM:
socket->priv->protocol = G_SOCKET_PROTOCOL_UDP;
break;
case G_SOCKET_TYPE_SEQPACKET:
socket->priv->protocol = G_SOCKET_PROTOCOL_SCTP;
break;
default:
break;
}
break;
case G_SOCKET_FAMILY_UNIX:
socket->priv->family = G_SOCKET_FAMILY_UNIX;
socket->priv->protocol = G_SOCKET_PROTOCOL_DEFAULT;
break;
default:
socket->priv->family = G_SOCKET_FAMILY_INVALID;
break;
}
if (socket->priv->family != G_SOCKET_FAMILY_INVALID)
{
addrlen = sizeof address;
if (getpeername (fd, &address.sa, &addrlen) >= 0)
{
socket->priv->connected_read = TRUE;
socket->priv->connected_write = TRUE;
}
}
if (g_socket_get_option (socket, SOL_SOCKET, SO_KEEPALIVE, &value, NULL))
{
socket->priv->keepalive = !!value;
}
else
{
/* Can't read, maybe not supported, assume FALSE */
socket->priv->keepalive = FALSE;
}
return;
err:
g_set_error (&socket->priv->construct_error, G_IO_ERROR,
socket_io_error_from_errno (errsv),
_("creating GSocket from fd: %s"),
socket_strerror (errsv));
}
static void
socket_set_nonblock (int fd)
{
#ifndef G_OS_WIN32
GError *error = NULL;
#else
gulong arg;
#endif
/* Always use native nonblocking sockets, as Windows sets sockets to
* nonblocking automatically in certain operations. This way we make
* things work the same on all platforms.
*/
#ifndef G_OS_WIN32
if (!g_unix_set_fd_nonblocking (fd, TRUE, &error))
{
g_warning ("Error setting socket to nonblocking mode: %s", error->message);
g_clear_error (&error);
}
#else
arg = TRUE;
if (ioctlsocket (fd, FIONBIO, &arg) == SOCKET_ERROR)
{
int errsv = get_socket_errno ();
g_warning ("Error setting socket status flags: %s", socket_strerror (errsv));
}
#endif
}
/* Wrapper around socket() that is shared with gnetworkmonitornetlink.c.
* It always sets SOCK_CLOEXEC | SOCK_NONBLOCK. */
gint
g_socket (gint domain,
gint type,
gint protocol,
GError **error)
{
int fd, errsv;
#if defined(SOCK_CLOEXEC) && defined(SOCK_NONBLOCK)
fd = socket (domain, type | SOCK_CLOEXEC | SOCK_NONBLOCK, protocol);
errsv = errno;
if (fd != -1)
return fd;
/* It's possible that libc has SOCK_CLOEXEC and/or SOCK_NONBLOCK but the kernel does not */
if (fd < 0 && (errsv == EINVAL || errsv == EPROTOTYPE))
#endif
fd = socket (domain, type, protocol);
if (fd < 0)
{
errsv = get_socket_errno ();
g_set_error (error, G_IO_ERROR, socket_io_error_from_errno (errsv),
_("Unable to create socket: %s"), socket_strerror (errsv));
errno = errsv;
return -1;
}
#ifndef G_OS_WIN32
{
int flags;
/* We always want to set close-on-exec to protect users. If you
need to so some weird inheritance to exec you can re-enable this
using lower level hacks with g_socket_get_fd(). */
flags = fcntl (fd, F_GETFD, 0);
if (flags != -1 &&
(flags & FD_CLOEXEC) == 0)
{
flags |= FD_CLOEXEC;
(void) fcntl (fd, F_SETFD, flags);
}
}
#else
if ((domain == AF_INET || domain == AF_INET6) && type == SOCK_DGRAM)
{
BOOL new_behavior = FALSE;
DWORD bytes_returned = 0;
/* Disable connection reset error on ICMP port unreachable. */
WSAIoctl (fd, SIO_UDP_CONNRESET, &new_behavior, sizeof (new_behavior),
NULL, 0, &bytes_returned, NULL, NULL);
}
#endif
/* Ensure the socket is non-blocking. */
socket_set_nonblock (fd);
return fd;
}
/* Returned socket has SOCK_CLOEXEC | SOCK_NONBLOCK set. */
static gint
g_socket_create_socket (GSocketFamily family,
GSocketType type,
int protocol,
GError **error)
{
gint native_type;
switch (type)
{
case G_SOCKET_TYPE_STREAM:
native_type = SOCK_STREAM;
break;
case G_SOCKET_TYPE_DATAGRAM:
native_type = SOCK_DGRAM;
break;
case G_SOCKET_TYPE_SEQPACKET:
native_type = SOCK_SEQPACKET;
break;
default:
g_assert_not_reached ();
}
if (family <= 0)
{
g_set_error (error, G_IO_ERROR, G_IO_ERROR_INVALID_ARGUMENT,
_("Unable to create socket: %s"), _("Unknown family was specified"));
return -1;
}
if (protocol == -1)
{
g_set_error (error, G_IO_ERROR, G_IO_ERROR_INVALID_ARGUMENT,
_("Unable to create socket: %s"), _("Unknown protocol was specified"));
return -1;
}
return g_socket (family, native_type, protocol, error);
}
static void
g_socket_constructed (GObject *object)
{
GSocket *socket = G_SOCKET (object);
if (socket->priv->fd >= 0)
{
/* create socket->priv info from the fd and ensure its non-blocking */
g_socket_details_from_fd (socket);
socket_set_nonblock (socket->priv->fd);
}
else
{
/* create the fd from socket->priv info; this sets it non-blocking by construction */
socket->priv->fd = g_socket_create_socket (socket->priv->family,
socket->priv->type,
socket->priv->protocol,
&socket->priv->construct_error);
}
if (socket->priv->fd != -1)
{
#ifdef SO_NOSIGPIPE
/* See note about SIGPIPE below. */
g_socket_set_option (socket, SOL_SOCKET, SO_NOSIGPIPE, TRUE, NULL);
#endif
if (socket->priv->type == G_SOCKET_TYPE_STREAM)
g_socket_set_option (socket, IPPROTO_TCP, TCP_NODELAY, TRUE, NULL);
}
}
static void
g_socket_get_property (GObject *object,
guint prop_id,
GValue *value,
GParamSpec *pspec)
{
GSocket *socket = G_SOCKET (object);
GSocketAddress *address;
switch (prop_id)
{
case PROP_FAMILY:
g_value_set_enum (value, socket->priv->family);
break;
case PROP_TYPE:
g_value_set_enum (value, socket->priv->type);
break;
case PROP_PROTOCOL:
g_value_set_enum (value, socket->priv->protocol);
break;
case PROP_FD:
g_value_set_int (value, socket->priv->fd);
break;
case PROP_BLOCKING:
g_value_set_boolean (value, socket->priv->blocking);
break;
case PROP_LISTEN_BACKLOG:
g_value_set_int (value, socket->priv->listen_backlog);
break;
case PROP_KEEPALIVE:
g_value_set_boolean (value, socket->priv->keepalive);
break;
case PROP_LOCAL_ADDRESS:
address = g_socket_get_local_address (socket, NULL);
g_value_take_object (value, address);
break;
case PROP_REMOTE_ADDRESS:
address = g_socket_get_remote_address (socket, NULL);
g_value_take_object (value, address);
break;
case PROP_TIMEOUT:
g_value_set_uint (value, socket->priv->timeout);
break;
case PROP_TTL:
g_value_set_uint (value, g_socket_get_ttl (socket));
break;
case PROP_BROADCAST:
g_value_set_boolean (value, g_socket_get_broadcast (socket));
break;
case PROP_MULTICAST_LOOPBACK:
g_value_set_boolean (value, g_socket_get_multicast_loopback (socket));
break;
case PROP_MULTICAST_TTL:
g_value_set_uint (value, g_socket_get_multicast_ttl (socket));
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
}
}
static void
g_socket_set_property (GObject *object,
guint prop_id,
const GValue *value,
GParamSpec *pspec)
{
GSocket *socket = G_SOCKET (object);
switch (prop_id)
{
case PROP_FAMILY:
socket->priv->family = g_value_get_enum (value);
break;
case PROP_TYPE:
socket->priv->type = g_value_get_enum (value);
break;
case PROP_PROTOCOL:
socket->priv->protocol = g_value_get_enum (value);
break;
case PROP_FD:
socket->priv->fd = g_value_get_int (value);
break;
case PROP_BLOCKING:
g_socket_set_blocking (socket, g_value_get_boolean (value));
break;
case PROP_LISTEN_BACKLOG:
g_socket_set_listen_backlog (socket, g_value_get_int (value));
break;
case PROP_KEEPALIVE:
g_socket_set_keepalive (socket, g_value_get_boolean (value));
break;
case PROP_TIMEOUT:
g_socket_set_timeout (socket, g_value_get_uint (value));
break;
case PROP_TTL:
g_socket_set_ttl (socket, g_value_get_uint (value));
break;
case PROP_BROADCAST:
g_socket_set_broadcast (socket, g_value_get_boolean (value));
break;
case PROP_MULTICAST_LOOPBACK:
g_socket_set_multicast_loopback (socket, g_value_get_boolean (value));
break;
case PROP_MULTICAST_TTL:
g_socket_set_multicast_ttl (socket, g_value_get_uint (value));
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
}
}
static void
g_socket_finalize (GObject *object)
{
GSocket *socket = G_SOCKET (object);
gint i;
g_clear_error (&socket->priv->construct_error);
if (socket->priv->fd != -1 &&
!socket->priv->closed)
g_socket_close (socket, NULL);
if (socket->priv->remote_address)
g_object_unref (socket->priv->remote_address);
#ifdef G_OS_WIN32
if (socket->priv->event != WSA_INVALID_EVENT)
{
WSACloseEvent (socket->priv->event);
socket->priv->event = WSA_INVALID_EVENT;
}
g_assert (socket->priv->requested_conditions == NULL);
g_mutex_clear (&socket->priv->win32_source_lock);
g_cond_clear (&socket->priv->win32_source_cond);
#endif
for (i = 0; i < RECV_ADDR_CACHE_SIZE; i++)
{
if (socket->priv->recv_addr_cache[i].addr)
{
g_object_unref (socket->priv->recv_addr_cache[i].addr);
g_free (socket->priv->recv_addr_cache[i].native);
}
}
if (G_OBJECT_CLASS (g_socket_parent_class)->finalize)
(*G_OBJECT_CLASS (g_socket_parent_class)->finalize) (object);
}
static void
g_socket_class_init (GSocketClass *klass)
{
GObjectClass *gobject_class G_GNUC_UNUSED = G_OBJECT_CLASS (klass);
#ifdef SIGPIPE
/* There is no portable, thread-safe way to avoid having the process
* be killed by SIGPIPE when calling send() or sendmsg(), so we are
* forced to simply ignore the signal process-wide.
*
* Even if we ignore it though, gdb will still stop if the app
* receives a SIGPIPE, which can be confusing and annoying. So when
* possible, we also use MSG_NOSIGNAL / SO_NOSIGPIPE elsewhere to
* prevent the signal from occurring at all.
*/
signal (SIGPIPE, SIG_IGN);
#endif
gobject_class->finalize = g_socket_finalize;
gobject_class->constructed = g_socket_constructed;
gobject_class->set_property = g_socket_set_property;
gobject_class->get_property = g_socket_get_property;
/**
* GSocket:family:
*
* The sockets address family.
*
* Since: 2.22
*/
g_object_class_install_property (gobject_class, PROP_FAMILY,
g_param_spec_enum ("family", NULL, NULL,
G_TYPE_SOCKET_FAMILY,
G_SOCKET_FAMILY_INVALID,
G_PARAM_CONSTRUCT_ONLY |
G_PARAM_READWRITE |
G_PARAM_STATIC_STRINGS));
/**
* GSocket:type:
*
* The sockets type.
*
* Since: 2.22
*/
g_object_class_install_property (gobject_class, PROP_TYPE,
g_param_spec_enum ("type", NULL, NULL,
G_TYPE_SOCKET_TYPE,
G_SOCKET_TYPE_STREAM,
G_PARAM_CONSTRUCT_ONLY |
G_PARAM_READWRITE |
G_PARAM_STATIC_STRINGS));
/**
* GSocket:protocol:
*
* The ID of the protocol to use, or `-1` for unknown.
*
* Since: 2.22
*/
g_object_class_install_property (gobject_class, PROP_PROTOCOL,
g_param_spec_enum ("protocol", NULL, NULL,
G_TYPE_SOCKET_PROTOCOL,
G_SOCKET_PROTOCOL_UNKNOWN,
G_PARAM_CONSTRUCT_ONLY |
G_PARAM_READWRITE |
G_PARAM_STATIC_STRINGS));
/**
* GSocket:fd:
*
* The sockets file descriptor.
*
* Since: 2.22
*/
g_object_class_install_property (gobject_class, PROP_FD,
g_param_spec_int ("fd", NULL, NULL,
G_MININT,
G_MAXINT,
-1,
G_PARAM_CONSTRUCT_ONLY |
G_PARAM_READWRITE |
G_PARAM_STATIC_STRINGS));
/**
* GSocket:blocking:
*
* Whether I/O on this socket is blocking.
*
* Since: 2.22
*/
g_object_class_install_property (gobject_class, PROP_BLOCKING,
g_param_spec_boolean ("blocking", NULL, NULL,
TRUE,
G_PARAM_READWRITE |
G_PARAM_STATIC_STRINGS));
/**
* GSocket:listen-backlog:
*
* The number of outstanding connections in the listen queue.
*
* Since: 2.22
*/
g_object_class_install_property (gobject_class, PROP_LISTEN_BACKLOG,
g_param_spec_int ("listen-backlog", NULL, NULL,
0,
SOMAXCONN,
10,
G_PARAM_READWRITE |
G_PARAM_STATIC_STRINGS));
/**
* GSocket:keepalive:
*
* Whether to keep the connection alive by sending periodic pings.
*
* Since: 2.22
*/
g_object_class_install_property (gobject_class, PROP_KEEPALIVE,
g_param_spec_boolean ("keepalive", NULL, NULL,
FALSE,
G_PARAM_READWRITE |
G_PARAM_STATIC_STRINGS));
/**
* GSocket:local-address:
*
* The local address the socket is bound to.
*
* Since: 2.22
*/
g_object_class_install_property (gobject_class, PROP_LOCAL_ADDRESS,
g_param_spec_object ("local-address", NULL, NULL,
G_TYPE_SOCKET_ADDRESS,
G_PARAM_READABLE |
G_PARAM_STATIC_STRINGS));
/**
* GSocket:remote-address:
*
* The remote address the socket is connected to.
*
* Since: 2.22
*/
g_object_class_install_property (gobject_class, PROP_REMOTE_ADDRESS,
g_param_spec_object ("remote-address", NULL, NULL,
G_TYPE_SOCKET_ADDRESS,
G_PARAM_READABLE |
G_PARAM_STATIC_STRINGS));
/**
* GSocket:timeout:
*
* The timeout in seconds on socket I/O
*
* Since: 2.26
*/
g_object_class_install_property (gobject_class, PROP_TIMEOUT,
g_param_spec_uint ("timeout", NULL, NULL,
0,
G_MAXUINT,
0,
G_PARAM_READWRITE |
G_PARAM_STATIC_STRINGS));
/**
* GSocket:broadcast:
*
* Whether the socket should allow sending to broadcast addresses.
*
* Since: 2.32
*/
g_object_class_install_property (gobject_class, PROP_BROADCAST,
g_param_spec_boolean ("broadcast", NULL, NULL,
FALSE,
G_PARAM_READWRITE |
G_PARAM_STATIC_STRINGS));
/**
* GSocket:ttl:
*
* Time-to-live for outgoing unicast packets
*
* Since: 2.32
*/
g_object_class_install_property (gobject_class, PROP_TTL,
g_param_spec_uint ("ttl", NULL, NULL,
0, G_MAXUINT, 0,
G_PARAM_READWRITE |
G_PARAM_STATIC_STRINGS));
/**
* GSocket:multicast-loopback:
*
* Whether outgoing multicast packets loop back to the local host.
*
* Since: 2.32
*/
g_object_class_install_property (gobject_class, PROP_MULTICAST_LOOPBACK,
g_param_spec_boolean ("multicast-loopback", NULL, NULL,
TRUE,
G_PARAM_READWRITE |
G_PARAM_STATIC_STRINGS));
/**
* GSocket:multicast-ttl:
*
* Time-to-live out outgoing multicast packets
*
* Since: 2.32
*/
g_object_class_install_property (gobject_class, PROP_MULTICAST_TTL,
g_param_spec_uint ("multicast-ttl", NULL, NULL,
0, G_MAXUINT, 1,
G_PARAM_READWRITE |
G_PARAM_STATIC_STRINGS));
}
static void
g_socket_initable_iface_init (GInitableIface *iface)
{
iface->init = g_socket_initable_init;
}
static void
g_socket_datagram_based_iface_init (GDatagramBasedInterface *iface)
{
iface->receive_messages = g_socket_datagram_based_receive_messages;
iface->send_messages = g_socket_datagram_based_send_messages;
iface->create_source = g_socket_datagram_based_create_source;
iface->condition_check = g_socket_datagram_based_condition_check;
iface->condition_wait = g_socket_datagram_based_condition_wait;
}
static void
g_socket_init (GSocket *socket)
{
socket->priv = g_socket_get_instance_private (socket);
socket->priv->fd = -1;
socket->priv->blocking = TRUE;
socket->priv->listen_backlog = 10;
socket->priv->construct_error = NULL;
#ifdef G_OS_WIN32
socket->priv->event = WSA_INVALID_EVENT;
g_mutex_init (&socket->priv->win32_source_lock);
g_cond_init (&socket->priv->win32_source_cond);
#endif
}
static gboolean
g_socket_initable_init (GInitable *initable,
GCancellable *cancellable,
GError **error)
{
GSocket *socket;
g_return_val_if_fail (G_IS_SOCKET (initable), FALSE);
socket = G_SOCKET (initable);
if (cancellable != NULL)
{
g_set_error_literal (error, G_IO_ERROR, G_IO_ERROR_NOT_SUPPORTED,
_("Cancellable initialization not supported"));
return FALSE;
}
socket->priv->inited = TRUE;
if (socket->priv->construct_error)
{
if (error)
*error = g_error_copy (socket->priv->construct_error);
return FALSE;
}
return TRUE;
}
static gboolean
check_datagram_based (GDatagramBased *self,
GError **error)
{
switch (g_socket_get_socket_type (G_SOCKET (self)))
{
case G_SOCKET_TYPE_INVALID:
case G_SOCKET_TYPE_STREAM:
g_set_error (error, G_IO_ERROR, G_IO_ERROR_NOT_SUPPORTED,
_("Cannot use datagram operations on a non-datagram "
"socket."));
return FALSE;
case G_SOCKET_TYPE_DATAGRAM:
case G_SOCKET_TYPE_SEQPACKET:
/* Fall through. */
break;
}
/* Due to us sharing #GSocketSource with the #GSocket implementation, it is
* pretty tricky to split out #GSocket:timeout so that it does not affect
* #GDatagramBased operations (but still affects #GSocket operations). It is
* not worth that effort — just disallow it and require the user to specify
* timeouts on a per-operation basis. */
if (g_socket_get_timeout (G_SOCKET (self)) != 0)
{
g_set_error (error, G_IO_ERROR, G_IO_ERROR_NOT_SUPPORTED,
_("Cannot use datagram operations on a socket with a "
"timeout set."));
return FALSE;
}
return TRUE;
}
static gint
g_socket_datagram_based_receive_messages (GDatagramBased *self,
GInputMessage *messages,
guint num_messages,
gint flags,
gint64 timeout_us,
GCancellable *cancellable,
GError **error)
{
if (!check_datagram_based (self, error))
return FALSE;
return g_socket_receive_messages_with_timeout (G_SOCKET (self), messages,
num_messages, flags, timeout_us,
cancellable, error);
}
static gint
g_socket_datagram_based_send_messages (GDatagramBased *self,
GOutputMessage *messages,
guint num_messages,
gint flags,
gint64 timeout_us,
GCancellable *cancellable,
GError **error)
{
if (!check_datagram_based (self, error))
return FALSE;
return g_socket_send_messages_with_timeout (G_SOCKET (self), messages,
num_messages, flags, timeout_us,
cancellable, error);
}
static GSource *
g_socket_datagram_based_create_source (GDatagramBased *self,
GIOCondition condition,
GCancellable *cancellable)
{
if (!check_datagram_based (self, NULL))
return NULL;
return g_socket_create_source (G_SOCKET (self), condition, cancellable);
}
static GIOCondition
g_socket_datagram_based_condition_check (GDatagramBased *datagram_based,
GIOCondition condition)
{
if (!check_datagram_based (datagram_based, NULL))
return G_IO_ERR;
return g_socket_condition_check (G_SOCKET (datagram_based), condition);
}
static gboolean
g_socket_datagram_based_condition_wait (GDatagramBased *datagram_based,
GIOCondition condition,
gint64 timeout_us,
GCancellable *cancellable,
GError **error)
{
if (!check_datagram_based (datagram_based, error))
return FALSE;
return g_socket_condition_timed_wait (G_SOCKET (datagram_based), condition,
timeout_us, cancellable, error);
}
/**
* g_socket_new:
* @family: the socket family to use, e.g. %G_SOCKET_FAMILY_IPV4.
* @type: the socket type to use.
* @protocol: the id of the protocol to use, or 0 for default.
* @error: #GError for error reporting, or %NULL to ignore.
*
* Creates a new #GSocket with the defined family, type and protocol.
* If @protocol is 0 (%G_SOCKET_PROTOCOL_DEFAULT) the default protocol type
* for the family and type is used.
*
* The @protocol is a family and type specific int that specifies what
* kind of protocol to use. #GSocketProtocol lists several common ones.
* Many families only support one protocol, and use 0 for this, others
* support several and using 0 means to use the default protocol for
* the family and type.
*
* The protocol id is passed directly to the operating
* system, so you can use protocols not listed in #GSocketProtocol if you
* know the protocol number used for it.
*
* Returns: a #GSocket or %NULL on error.
* Free the returned object with g_object_unref().
*
* Since: 2.22
*/
GSocket *
g_socket_new (GSocketFamily family,
GSocketType type,
GSocketProtocol protocol,
GError **error)
{
return G_SOCKET (g_initable_new (G_TYPE_SOCKET,
NULL, error,
"family", family,
"type", type,
"protocol", protocol,
NULL));
}
/**
* g_socket_new_from_fd:
* @fd: a native socket file descriptor.
* @error: #GError for error reporting, or %NULL to ignore.
*
* Creates a new #GSocket from a native file descriptor
* or winsock SOCKET handle.
*
* This reads all the settings from the file descriptor so that
* all properties should work. Note that the file descriptor
* will be set to non-blocking mode, independent on the blocking
* mode of the #GSocket.
*
* On success, the returned #GSocket takes ownership of @fd. On failure, the
* caller must close @fd themselves.
*
* Since GLib 2.46, it is no longer a fatal error to call this on a non-socket
* descriptor. Instead, a GError will be set with code %G_IO_ERROR_FAILED
*
* Returns: a #GSocket or %NULL on error.
* Free the returned object with g_object_unref().
*
* Since: 2.22
*/
GSocket *
g_socket_new_from_fd (gint fd,
GError **error)
{
return G_SOCKET (g_initable_new (G_TYPE_SOCKET,
NULL, error,
"fd", fd,
NULL));
}
/**
* g_socket_set_blocking:
* @socket: a #GSocket.
* @blocking: Whether to use blocking I/O or not.
*
* Sets the blocking mode of the socket. In blocking mode
* all operations (which dont take an explicit blocking parameter) block until
* they succeed or there is an error. In
* non-blocking mode all functions return results immediately or
* with a %G_IO_ERROR_WOULD_BLOCK error.
*
* All sockets are created in blocking mode. However, note that the
* platform level socket is always non-blocking, and blocking mode
* is a GSocket level feature.
*
* Since: 2.22
*/
void
g_socket_set_blocking (GSocket *socket,
gboolean blocking)
{
g_return_if_fail (G_IS_SOCKET (socket));
blocking = !!blocking;
if (socket->priv->blocking == blocking)
return;
socket->priv->blocking = blocking;
g_object_notify (G_OBJECT (socket), "blocking");
}
/**
* g_socket_get_blocking:
* @socket: a #GSocket.
*
* Gets the blocking mode of the socket. For details on blocking I/O,
* see g_socket_set_blocking().
*
* Returns: %TRUE if blocking I/O is used, %FALSE otherwise.
*
* Since: 2.22
*/
gboolean
g_socket_get_blocking (GSocket *socket)
{
g_return_val_if_fail (G_IS_SOCKET (socket), FALSE);
return socket->priv->blocking;
}
/**
* g_socket_set_keepalive:
* @socket: a #GSocket.
* @keepalive: Value for the keepalive flag
*
* Sets or unsets the %SO_KEEPALIVE flag on the underlying socket. When
* this flag is set on a socket, the system will attempt to verify that the
* remote socket endpoint is still present if a sufficiently long period of
* time passes with no data being exchanged. If the system is unable to
* verify the presence of the remote endpoint, it will automatically close
* the connection.
*
* This option is only functional on certain kinds of sockets. (Notably,
* %G_SOCKET_PROTOCOL_TCP sockets.)
*
* The exact time between pings is system- and protocol-dependent, but will
* normally be at least two hours. Most commonly, you would set this flag
* on a server socket if you want to allow clients to remain idle for long
* periods of time, but also want to ensure that connections are eventually
* garbage-collected if clients crash or become unreachable.
*
* Since: 2.22
*/
void
g_socket_set_keepalive (GSocket *socket,
gboolean keepalive)
{
GError *error = NULL;
g_return_if_fail (G_IS_SOCKET (socket));
keepalive = !!keepalive;
if (socket->priv->keepalive == keepalive)
return;
if (!g_socket_set_option (socket, SOL_SOCKET, SO_KEEPALIVE,
keepalive, &error))
{
g_warning ("error setting keepalive: %s", error->message);
g_error_free (error);
return;
}
socket->priv->keepalive = keepalive;
g_object_notify (G_OBJECT (socket), "keepalive");
}
/**
* g_socket_get_keepalive:
* @socket: a #GSocket.
*
* Gets the keepalive mode of the socket. For details on this,
* see g_socket_set_keepalive().
*
* Returns: %TRUE if keepalive is active, %FALSE otherwise.
*
* Since: 2.22
*/
gboolean
g_socket_get_keepalive (GSocket *socket)
{
g_return_val_if_fail (G_IS_SOCKET (socket), FALSE);
return socket->priv->keepalive;
}
/**
* g_socket_get_listen_backlog:
* @socket: a #GSocket.
*
* Gets the listen backlog setting of the socket. For details on this,
* see g_socket_set_listen_backlog().
*
* Returns: the maximum number of pending connections.
*
* Since: 2.22
*/
gint
g_socket_get_listen_backlog (GSocket *socket)
{
g_return_val_if_fail (G_IS_SOCKET (socket), 0);
return socket->priv->listen_backlog;
}
/**
* g_socket_set_listen_backlog:
* @socket: a #GSocket.
* @backlog: the maximum number of pending connections.
*
* Sets the maximum number of outstanding connections allowed
* when listening on this socket. If more clients than this are
* connecting to the socket and the application is not handling them
* on time then the new connections will be refused.
*
* Note that this must be called before g_socket_listen() and has no
* effect if called after that.
*
* Since: 2.22
*/
void
g_socket_set_listen_backlog (GSocket *socket,
gint backlog)
{
g_return_if_fail (G_IS_SOCKET (socket));
g_return_if_fail (!socket->priv->listening);
if (backlog != socket->priv->listen_backlog)
{
socket->priv->listen_backlog = backlog;
g_object_notify (G_OBJECT (socket), "listen-backlog");
}
}
/**
* g_socket_get_timeout:
* @socket: a #GSocket.
*
* Gets the timeout setting of the socket. For details on this, see
* g_socket_set_timeout().
*
* Returns: the timeout in seconds
*
* Since: 2.26
*/
guint
g_socket_get_timeout (GSocket *socket)
{
g_return_val_if_fail (G_IS_SOCKET (socket), 0);
return socket->priv->timeout;
}
/**
* g_socket_set_timeout:
* @socket: a #GSocket.
* @timeout: the timeout for @socket, in seconds, or 0 for none
*
* Sets the time in seconds after which I/O operations on @socket will
* time out if they have not yet completed.
*
* On a blocking socket, this means that any blocking #GSocket
* operation will time out after @timeout seconds of inactivity,
* returning %G_IO_ERROR_TIMED_OUT.
*
* On a non-blocking socket, calls to g_socket_condition_wait() will
* also fail with %G_IO_ERROR_TIMED_OUT after the given time. Sources
* created with g_socket_create_source() will trigger after
* @timeout seconds of inactivity, with the requested condition
* set, at which point calling g_socket_receive(), g_socket_send(),
* g_socket_check_connect_result(), etc, will fail with
* %G_IO_ERROR_TIMED_OUT.
*
* If @timeout is 0 (the default), operations will never time out
* on their own.
*
* Note that if an I/O operation is interrupted by a signal, this may
* cause the timeout to be reset.
*
* Since: 2.26
*/
void
g_socket_set_timeout (GSocket *socket,
guint timeout)
{
g_return_if_fail (G_IS_SOCKET (socket));
if (timeout != socket->priv->timeout)
{
socket->priv->timeout = timeout;
g_object_notify (G_OBJECT (socket), "timeout");
}
}
/**
* g_socket_get_ttl:
* @socket: a #GSocket.
*
* Gets the unicast time-to-live setting on @socket; see
* g_socket_set_ttl() for more details.
*
* Returns: the time-to-live setting on @socket
*
* Since: 2.32
*/
guint
g_socket_get_ttl (GSocket *socket)
{
GError *error = NULL;
gint value;
g_return_val_if_fail (G_IS_SOCKET (socket), 0);
if (socket->priv->family == G_SOCKET_FAMILY_IPV4)
{
g_socket_get_option (socket, IPPROTO_IP, IP_TTL,
&value, &error);
}
else if (socket->priv->family == G_SOCKET_FAMILY_IPV6)
{
g_socket_get_option (socket, IPPROTO_IPV6, IPV6_UNICAST_HOPS,
&value, &error);
}
else
g_return_val_if_reached (0);
if (error)
{
g_warning ("error getting unicast ttl: %s", error->message);
g_error_free (error);
return 0;
}
return value;
}
/**
* g_socket_set_ttl:
* @socket: a #GSocket.
* @ttl: the time-to-live value for all unicast packets on @socket
*
* Sets the time-to-live for outgoing unicast packets on @socket.
* By default the platform-specific default value is used.
*
* Since: 2.32
*/
void
g_socket_set_ttl (GSocket *socket,
guint ttl)
{
GError *error = NULL;
g_return_if_fail (G_IS_SOCKET (socket));
if (socket->priv->family == G_SOCKET_FAMILY_IPV4)
{
g_socket_set_option (socket, IPPROTO_IP, IP_TTL,
ttl, &error);
}
else if (socket->priv->family == G_SOCKET_FAMILY_IPV6)
{
g_socket_set_option (socket, IPPROTO_IP, IP_TTL,
ttl, NULL);
g_socket_set_option (socket, IPPROTO_IPV6, IPV6_UNICAST_HOPS,
ttl, &error);
}
else
g_return_if_reached ();
if (error)
{
g_warning ("error setting unicast ttl: %s", error->message);
g_error_free (error);
return;
}
g_object_notify (G_OBJECT (socket), "ttl");
}
/**
* g_socket_get_broadcast:
* @socket: a #GSocket.
*
* Gets the broadcast setting on @socket; if %TRUE,
* it is possible to send packets to broadcast
* addresses.
*
* Returns: the broadcast setting on @socket
*
* Since: 2.32
*/
gboolean
g_socket_get_broadcast (GSocket *socket)
{
GError *error = NULL;
gint value;
g_return_val_if_fail (G_IS_SOCKET (socket), FALSE);
if (!g_socket_get_option (socket, SOL_SOCKET, SO_BROADCAST,
&value, &error))
{
g_warning ("error getting broadcast: %s", error->message);
g_error_free (error);
return FALSE;
}
return !!value;
}
/**
* g_socket_set_broadcast:
* @socket: a #GSocket.
* @broadcast: whether @socket should allow sending to broadcast
* addresses
*
* Sets whether @socket should allow sending to broadcast addresses.
* This is %FALSE by default.
*
* Since: 2.32
*/
void
g_socket_set_broadcast (GSocket *socket,
gboolean broadcast)
{
GError *error = NULL;
g_return_if_fail (G_IS_SOCKET (socket));
broadcast = !!broadcast;
if (!g_socket_set_option (socket, SOL_SOCKET, SO_BROADCAST,
broadcast, &error))
{
g_warning ("error setting broadcast: %s", error->message);
g_error_free (error);
return;
}
g_object_notify (G_OBJECT (socket), "broadcast");
}
/**
* g_socket_get_multicast_loopback:
* @socket: a #GSocket.
*
* Gets the multicast loopback setting on @socket; if %TRUE (the
* default), outgoing multicast packets will be looped back to
* multicast listeners on the same host.
*
* Returns: the multicast loopback setting on @socket
*
* Since: 2.32
*/
gboolean
g_socket_get_multicast_loopback (GSocket *socket)
{
GError *error = NULL;
gint value;
g_return_val_if_fail (G_IS_SOCKET (socket), FALSE);
if (socket->priv->family == G_SOCKET_FAMILY_IPV4)
{
g_socket_get_option (socket, IPPROTO_IP, IP_MULTICAST_LOOP,
&value, &error);
}
else if (socket->priv->family == G_SOCKET_FAMILY_IPV6)
{
g_socket_get_option (socket, IPPROTO_IPV6, IPV6_MULTICAST_LOOP,
&value, &error);
}
else
g_return_val_if_reached (FALSE);
if (error)
{
g_warning ("error getting multicast loopback: %s", error->message);
g_error_free (error);
return FALSE;
}
return !!value;
}
/**
* g_socket_set_multicast_loopback:
* @socket: a #GSocket.
* @loopback: whether @socket should receive messages sent to its
* multicast groups from the local host
*
* Sets whether outgoing multicast packets will be received by sockets
* listening on that multicast address on the same host. This is %TRUE
* by default.
*
* Since: 2.32
*/
void
g_socket_set_multicast_loopback (GSocket *socket,
gboolean loopback)
{
GError *error = NULL;
g_return_if_fail (G_IS_SOCKET (socket));
loopback = !!loopback;
if (socket->priv->family == G_SOCKET_FAMILY_IPV4)
{
g_socket_set_option (socket, IPPROTO_IP, IP_MULTICAST_LOOP,
loopback, &error);
}
else if (socket->priv->family == G_SOCKET_FAMILY_IPV6)
{
g_socket_set_option (socket, IPPROTO_IP, IP_MULTICAST_LOOP,
loopback, NULL);
g_socket_set_option (socket, IPPROTO_IPV6, IPV6_MULTICAST_LOOP,
loopback, &error);
}
else
g_return_if_reached ();
if (error)
{
g_warning ("error setting multicast loopback: %s", error->message);
g_error_free (error);
return;
}
g_object_notify (G_OBJECT (socket), "multicast-loopback");
}
/**
* g_socket_get_multicast_ttl:
* @socket: a #GSocket.
*
* Gets the multicast time-to-live setting on @socket; see
* g_socket_set_multicast_ttl() for more details.
*
* Returns: the multicast time-to-live setting on @socket
*
* Since: 2.32
*/
guint
g_socket_get_multicast_ttl (GSocket *socket)
{
GError *error = NULL;
gint value;
g_return_val_if_fail (G_IS_SOCKET (socket), 0);
if (socket->priv->family == G_SOCKET_FAMILY_IPV4)
{
g_socket_get_option (socket, IPPROTO_IP, IP_MULTICAST_TTL,
&value, &error);
}
else if (socket->priv->family == G_SOCKET_FAMILY_IPV6)
{
g_socket_get_option (socket, IPPROTO_IPV6, IPV6_MULTICAST_HOPS,
&value, &error);
}
else
g_return_val_if_reached (FALSE);
if (error)
{
g_warning ("error getting multicast ttl: %s", error->message);
g_error_free (error);
return FALSE;
}
return value;
}
/**
* g_socket_set_multicast_ttl:
* @socket: a #GSocket.
* @ttl: the time-to-live value for all multicast datagrams on @socket
*
* Sets the time-to-live for outgoing multicast datagrams on @socket.
* By default, this is 1, meaning that multicast packets will not leave
* the local network.
*
* Since: 2.32
*/
void
g_socket_set_multicast_ttl (GSocket *socket,
guint ttl)
{
GError *error = NULL;
g_return_if_fail (G_IS_SOCKET (socket));
if (socket->priv->family == G_SOCKET_FAMILY_IPV4)
{
g_socket_set_option (socket, IPPROTO_IP, IP_MULTICAST_TTL,
ttl, &error);
}
else if (socket->priv->family == G_SOCKET_FAMILY_IPV6)
{
g_socket_set_option (socket, IPPROTO_IP, IP_MULTICAST_TTL,
ttl, NULL);
g_socket_set_option (socket, IPPROTO_IPV6, IPV6_MULTICAST_HOPS,
ttl, &error);
}
else
g_return_if_reached ();
if (error)
{
g_warning ("error setting multicast ttl: %s", error->message);
g_error_free (error);
return;
}
g_object_notify (G_OBJECT (socket), "multicast-ttl");
}
/**
* g_socket_get_family:
* @socket: a #GSocket.
*
* Gets the socket family of the socket.
*
* Returns: a #GSocketFamily
*
* Since: 2.22
*/
GSocketFamily
g_socket_get_family (GSocket *socket)
{
g_return_val_if_fail (G_IS_SOCKET (socket), G_SOCKET_FAMILY_INVALID);
return socket->priv->family;
}
/**
* g_socket_get_socket_type:
* @socket: a #GSocket.
*
* Gets the socket type of the socket.
*
* Returns: a #GSocketType
*
* Since: 2.22
*/
GSocketType
g_socket_get_socket_type (GSocket *socket)
{
g_return_val_if_fail (G_IS_SOCKET (socket), G_SOCKET_TYPE_INVALID);
return socket->priv->type;
}
/**
* g_socket_get_protocol:
* @socket: a #GSocket.
*
* Gets the socket protocol id the socket was created with.
* In case the protocol is unknown, -1 is returned.
*
* Returns: a protocol id, or -1 if unknown
*
* Since: 2.22
*/
GSocketProtocol
g_socket_get_protocol (GSocket *socket)
{
g_return_val_if_fail (G_IS_SOCKET (socket), -1);
return socket->priv->protocol;
}
/**
* g_socket_get_fd:
* @socket: a #GSocket.
*
* Returns the underlying OS socket object. On unix this
* is a socket file descriptor, and on Windows this is
* a Winsock2 SOCKET handle. This may be useful for
* doing platform specific or otherwise unusual operations
* on the socket.
*
* Returns: the file descriptor of the socket.
*
* Since: 2.22
*/
int
g_socket_get_fd (GSocket *socket)
{
g_return_val_if_fail (G_IS_SOCKET (socket), -1);
return socket->priv->fd;
}
/**
* g_socket_get_local_address:
* @socket: a #GSocket.
* @error: #GError for error reporting, or %NULL to ignore.
*
* Try to get the local address of a bound socket. This is only
* useful if the socket has been bound to a local address,
* either explicitly or implicitly when connecting.
*
* Returns: (transfer full): a #GSocketAddress or %NULL on error.
* Free the returned object with g_object_unref().
*
* Since: 2.22
*/
GSocketAddress *
g_socket_get_local_address (GSocket *socket,
GError **error)
{
union {
struct sockaddr_storage storage;
struct sockaddr sa;
} buffer;
socklen_t len = sizeof (buffer);
g_return_val_if_fail (G_IS_SOCKET (socket), NULL);
if (getsockname (socket->priv->fd, &buffer.sa, &len) < 0)
{
int errsv = get_socket_errno ();
g_set_error (error, G_IO_ERROR, socket_io_error_from_errno (errsv),
_("could not get local address: %s"), socket_strerror (errsv));
return NULL;
}
return g_socket_address_new_from_native (&buffer.storage, len);
}
/**
* g_socket_get_remote_address:
* @socket: a #GSocket.
* @error: #GError for error reporting, or %NULL to ignore.
*
* Try to get the remote address of a connected socket. This is only
* useful for connection oriented sockets that have been connected.
*
* Returns: (transfer full): a #GSocketAddress or %NULL on error.
* Free the returned object with g_object_unref().
*
* Since: 2.22
*/
GSocketAddress *
g_socket_get_remote_address (GSocket *socket,
GError **error)
{
union {
struct sockaddr_storage storage;
struct sockaddr sa;
} buffer;
socklen_t len = sizeof (buffer);
g_return_val_if_fail (G_IS_SOCKET (socket), NULL);
if (socket->priv->connect_pending)
{
if (!g_socket_check_connect_result (socket, error))
return NULL;
else
socket->priv->connect_pending = FALSE;
}
if (!socket->priv->remote_address)
{
if (getpeername (socket->priv->fd, &buffer.sa, &len) < 0)
{
int errsv = get_socket_errno ();
g_set_error (error, G_IO_ERROR, socket_io_error_from_errno (errsv),
_("could not get remote address: %s"), socket_strerror (errsv));
return NULL;
}
socket->priv->remote_address = g_socket_address_new_from_native (&buffer.storage, len);
}
return g_object_ref (socket->priv->remote_address);
}
/**
* g_socket_is_connected:
* @socket: a #GSocket.
*
* Check whether the socket is connected. This is only useful for
* connection-oriented sockets.
*
* If using g_socket_shutdown(), this function will return %TRUE until the
* socket has been shut down for reading and writing. If you do a non-blocking
* connect, this function will not return %TRUE until after you call
* g_socket_check_connect_result().
*
* Returns: %TRUE if socket is connected, %FALSE otherwise.
*
* Since: 2.22
*/
gboolean
g_socket_is_connected (GSocket *socket)
{
g_return_val_if_fail (G_IS_SOCKET (socket), FALSE);
return (socket->priv->connected_read || socket->priv->connected_write);
}
/**
* g_socket_listen:
* @socket: a #GSocket.
* @error: #GError for error reporting, or %NULL to ignore.
*
* Marks the socket as a server socket, i.e. a socket that is used
* to accept incoming requests using g_socket_accept().
*
* Before calling this the socket must be bound to a local address using
* g_socket_bind().
*
* To set the maximum amount of outstanding clients, use
* g_socket_set_listen_backlog().
*
* Returns: %TRUE on success, %FALSE on error.
*
* Since: 2.22
*/
gboolean
g_socket_listen (GSocket *socket,
GError **error)
{
g_return_val_if_fail (G_IS_SOCKET (socket), FALSE);
if (!check_socket (socket, error))
return FALSE;
if (listen (socket->priv->fd, socket->priv->listen_backlog) < 0)
{
int errsv = get_socket_errno ();
g_set_error (error, G_IO_ERROR, socket_io_error_from_errno (errsv),
_("could not listen: %s"), socket_strerror (errsv));
return FALSE;
}
socket->priv->listening = TRUE;
return TRUE;
}
/**
* g_socket_bind:
* @socket: a #GSocket.
* @address: a #GSocketAddress specifying the local address.
* @allow_reuse: whether to allow reusing this address
* @error: #GError for error reporting, or %NULL to ignore.
*
* When a socket is created it is attached to an address family, but it
* doesn't have an address in this family. g_socket_bind() assigns the
* address (sometimes called name) of the socket.
*
* It is generally required to bind to a local address before you can
* receive connections. (See g_socket_listen() and g_socket_accept() ).
* In certain situations, you may also want to bind a socket that will be
* used to initiate connections, though this is not normally required.
*
* If @socket is a TCP socket, then @allow_reuse controls the setting
* of the `SO_REUSEADDR` socket option; normally it should be %TRUE for
* server sockets (sockets that you will eventually call
* g_socket_accept() on), and %FALSE for client sockets. (Failing to
* set this flag on a server socket may cause g_socket_bind() to return
* %G_IO_ERROR_ADDRESS_IN_USE if the server program is stopped and then
* immediately restarted.)
*
* If @socket is a UDP socket, then @allow_reuse determines whether or
* not other UDP sockets can be bound to the same address at the same
* time. In particular, you can have several UDP sockets bound to the
* same address, and they will all receive all of the multicast and
* broadcast packets sent to that address. (The behavior of unicast
* UDP packets to an address with multiple listeners is not defined.)
*
* Returns: %TRUE on success, %FALSE on error.
*
* Since: 2.22
*/
gboolean
g_socket_bind (GSocket *socket,
GSocketAddress *address,
gboolean reuse_address,
GError **error)
{
union {
struct sockaddr_storage storage;
struct sockaddr sa;
} addr;
gboolean so_reuseaddr;
#ifdef SO_REUSEPORT
gboolean so_reuseport;
#endif
g_return_val_if_fail (G_IS_SOCKET (socket) && G_IS_SOCKET_ADDRESS (address), FALSE);
if (!check_socket (socket, error))
return FALSE;
if (!g_socket_address_to_native (address, &addr.storage, sizeof addr, error))
return FALSE;
/* On Windows, SO_REUSEADDR has the semantics we want for UDP
* sockets, but has nasty side effects we don't want for TCP
* sockets.
*
* On other platforms, we set SO_REUSEPORT, if it exists, for
* UDP sockets, and SO_REUSEADDR for all sockets, hoping that
* if SO_REUSEPORT doesn't exist, then SO_REUSEADDR will have
* the desired semantics on UDP (as it does on Linux, although
* Linux has SO_REUSEPORT too as of 3.9).
*/
#ifdef G_OS_WIN32
so_reuseaddr = reuse_address && (socket->priv->type == G_SOCKET_TYPE_DATAGRAM);
#else
so_reuseaddr = !!reuse_address;
#endif
#ifdef SO_REUSEPORT
so_reuseport = reuse_address && (socket->priv->type == G_SOCKET_TYPE_DATAGRAM);
#endif
/* Ignore errors here, the only likely error is "not supported", and
* this is a "best effort" thing mainly.
*/
g_socket_set_option (socket, SOL_SOCKET, SO_REUSEADDR, so_reuseaddr, NULL);
#ifdef SO_REUSEPORT
g_socket_set_option (socket, SOL_SOCKET, SO_REUSEPORT, so_reuseport, NULL);
#endif
if (bind (socket->priv->fd, &addr.sa,
g_socket_address_get_native_size (address)) < 0)
{
int errsv = get_socket_errno ();
gchar *address_string = address_to_string (address);
g_set_error (error,
G_IO_ERROR, socket_io_error_from_errno (errsv),
_("Error binding to address %s: %s"),
address_string, socket_strerror (errsv));
g_free (address_string);
return FALSE;
}
return TRUE;
}
#ifdef G_OS_WIN32
static gulong
g_socket_w32_get_adapter_ipv4_addr (const gchar *name_or_ip)
{
ULONG bufsize = 15000; /* MS-recommended initial bufsize */
DWORD ret = ERROR_BUFFER_OVERFLOW;
unsigned int malloc_iterations = 0;
PIP_ADAPTER_ADDRESSES addr_buf = NULL, eth_adapter;
wchar_t *wchar_name_or_ip = NULL;
gulong ip_result = 0;
NET_IFINDEX if_index;
/*
* For Windows OS only - return adapter IPv4 address in network byte order.
*
* Input string can be either friendly name of adapter, IP address of adapter,
* indextoname, or fullname of adapter.
* Example:
* 192.168.1.109 ===> IP address given directly,
* convert directly with inet_addr() function
* Wi-Fi ===> Adapter friendly name "Wi-Fi",
* scan with GetAdapterAddresses and adapter->FriendlyName
* ethernet_32774 ===> Adapter name as returned by if_indextoname
* {33E8F5CD-BAEA-4214-BE13-B79AB8080CAB} ===> Adaptername,
* as returned in GetAdapterAddresses and adapter->AdapterName
*/
/* Step 1: Check if string is an IP address: */
if (inet_pton (AF_INET, name_or_ip, &ip_result) == 1)
return ip_result; /* Success, IP address string was given directly */
/*
* Step 2: Check if name represents a valid Interface index (e.g. ethernet_75521)
* function if_nametoindex will return >=1 if a valid index, or 0=no match
* valid index will be used later in GetAdaptersAddress loop for lookup of adapter IP address
*/
if_index = if_nametoindex (name_or_ip);
/* Step 3: Prepare wchar string for friendly name comparison */
if (if_index == 0)
{
size_t if_name_len = strlen (name_or_ip);
if (if_name_len >= MAX_ADAPTER_NAME_LENGTH + 4)
return INADDR_NONE;
/* Name-check only needed if index=0... */
wchar_name_or_ip = (wchar_t *) g_try_malloc ((if_name_len + 1) * sizeof(wchar_t));
if (wchar_name_or_ip)
mbstowcs (wchar_name_or_ip, name_or_ip, if_name_len + 1);
/* NOTE: Even if malloc fails here, some comparisons can still be done later... so no exit here! */
}
/*
* Step 4: Allocate memory and get adapter addresses.
* Buffer allocation loop recommended by MS, since size can be dynamic
* https://docs.microsoft.com/en-us/windows/desktop/api/iphlpapi/nf-iphlpapi-getadaptersaddresses
*/
#define MAX_ALLOC_ITERATIONS 3
do
{
malloc_iterations++;
addr_buf = (PIP_ADAPTER_ADDRESSES) g_try_realloc (addr_buf, bufsize);
if (addr_buf)
ret = GetAdaptersAddresses (AF_UNSPEC, GAA_FLAG_INCLUDE_PREFIX, NULL, addr_buf, &bufsize);
}
while (addr_buf &&
ret == ERROR_BUFFER_OVERFLOW &&
malloc_iterations < MAX_ALLOC_ITERATIONS);
#undef MAX_ALLOC_ITERATIONS
if (addr_buf == 0 || ret != NO_ERROR)
{
g_free (addr_buf);
g_free (wchar_name_or_ip);
return INADDR_NONE;
}
/* Step 5: Loop through adapters and check match for index or name */
for (eth_adapter = addr_buf; eth_adapter != NULL; eth_adapter = eth_adapter->Next)
{
/* Check if match for interface index/name: */
gboolean any_match = (if_index > 0) && (eth_adapter->IfIndex == if_index);
/* Check if match for friendly name - but only if NO if_index! */
if (!any_match && if_index == 0 && eth_adapter->FriendlyName &&
eth_adapter->FriendlyName[0] != 0 && wchar_name_or_ip != NULL)
any_match = (_wcsicmp (eth_adapter->FriendlyName, wchar_name_or_ip) == 0);
/* Check if match for adapter low level name - but only if NO if_index: */
if (!any_match && if_index == 0 && eth_adapter->AdapterName &&
eth_adapter->AdapterName[0] != 0)
any_match = (stricmp (eth_adapter->AdapterName, name_or_ip) == 0);
if (any_match)
{
/* We have match for this adapter, lets get its local unicast IP address! */
PIP_ADAPTER_UNICAST_ADDRESS uni_addr;
for (uni_addr = eth_adapter->FirstUnicastAddress;
uni_addr != NULL; uni_addr = uni_addr->Next)
{
if (uni_addr->Address.lpSockaddr->sa_family == AF_INET)
{
ip_result = ((PSOCKADDR_IN) uni_addr->Address.lpSockaddr)->sin_addr.S_un.S_addr;
break; /* finished, exit unicast addr loop */
}
}
}
}
g_free (addr_buf);
g_free (wchar_name_or_ip);
return ip_result;
}
#endif
static gboolean
g_socket_multicast_group_operation (GSocket *socket,
GInetAddress *group,
gboolean source_specific,
const gchar *iface,
gboolean join_group,
GError **error)
{
const guint8 *native_addr;
gint optname, result;
g_return_val_if_fail (G_IS_SOCKET (socket), FALSE);
g_return_val_if_fail (socket->priv->type == G_SOCKET_TYPE_DATAGRAM, FALSE);
g_return_val_if_fail (G_IS_INET_ADDRESS (group), FALSE);
if (!check_socket (socket, error))
return FALSE;
native_addr = g_inet_address_to_bytes (group);
if (g_inet_address_get_family (group) == G_SOCKET_FAMILY_IPV4)
{
#ifdef HAVE_IP_MREQN
struct ip_mreqn mc_req;
#else
struct ip_mreq mc_req;
#endif
memset (&mc_req, 0, sizeof (mc_req));
memcpy (&mc_req.imr_multiaddr, native_addr, sizeof (struct in_addr));
#ifdef HAVE_IP_MREQN
if (iface)
mc_req.imr_ifindex = if_nametoindex (iface);
else
mc_req.imr_ifindex = 0; /* Pick any. */
#elif defined(G_OS_WIN32)
if (iface)
mc_req.imr_interface.s_addr = g_socket_w32_get_adapter_ipv4_addr (iface);
else
mc_req.imr_interface.s_addr = g_htonl (INADDR_ANY);
#else
mc_req.imr_interface.s_addr = g_htonl (INADDR_ANY);
#endif
if (source_specific)
{
#ifdef IP_ADD_SOURCE_MEMBERSHIP
optname = join_group ? IP_ADD_SOURCE_MEMBERSHIP : IP_DROP_SOURCE_MEMBERSHIP;
#else
g_set_error (error, G_IO_ERROR, G_IO_ERROR_NOT_SUPPORTED,
join_group ?
_("Error joining multicast group: %s") :
_("Error leaving multicast group: %s"),
_("No support for source-specific multicast"));
return FALSE;
#endif
}
else
optname = join_group ? IP_ADD_MEMBERSHIP : IP_DROP_MEMBERSHIP;
result = setsockopt (socket->priv->fd, IPPROTO_IP, optname,
&mc_req, sizeof (mc_req));
}
else if (g_inet_address_get_family (group) == G_SOCKET_FAMILY_IPV6)
{
struct ipv6_mreq mc_req_ipv6;
memset (&mc_req_ipv6, 0, sizeof (mc_req_ipv6));
memcpy (&mc_req_ipv6.ipv6mr_multiaddr, native_addr, sizeof (struct in6_addr));
#ifdef HAVE_IF_NAMETOINDEX
if (iface)
mc_req_ipv6.ipv6mr_interface = if_nametoindex (iface);
else
#endif
mc_req_ipv6.ipv6mr_interface = 0;
optname = join_group ? IPV6_JOIN_GROUP : IPV6_LEAVE_GROUP;
result = setsockopt (socket->priv->fd, IPPROTO_IPV6, optname,
&mc_req_ipv6, sizeof (mc_req_ipv6));
}
else
g_return_val_if_reached (FALSE);
if (result < 0)
{
int errsv = get_socket_errno ();
g_set_error (error, G_IO_ERROR, socket_io_error_from_errno (errsv),
join_group ?
_("Error joining multicast group: %s") :
_("Error leaving multicast group: %s"),
socket_strerror (errsv));
return FALSE;
}
return TRUE;
}
/**
* g_socket_join_multicast_group:
* @socket: a #GSocket.
* @group: a #GInetAddress specifying the group address to join.
* @iface: (nullable): Name of the interface to use, or %NULL
* @source_specific: %TRUE if source-specific multicast should be used
* @error: #GError for error reporting, or %NULL to ignore.
*
* Registers @socket to receive multicast messages sent to @group.
* @socket must be a %G_SOCKET_TYPE_DATAGRAM socket, and must have
* been bound to an appropriate interface and port with
* g_socket_bind().
*
* If @iface is %NULL, the system will automatically pick an interface
* to bind to based on @group.
*
* If @source_specific is %TRUE, source-specific multicast as defined
* in RFC 4604 is used. Note that on older platforms this may fail
* with a %G_IO_ERROR_NOT_SUPPORTED error.
*
* To bind to a given source-specific multicast address, use
* g_socket_join_multicast_group_ssm() instead.
*
* Returns: %TRUE on success, %FALSE on error.
*
* Since: 2.32
*/
gboolean
g_socket_join_multicast_group (GSocket *socket,
GInetAddress *group,
gboolean source_specific,
const gchar *iface,
GError **error)
{
return g_socket_multicast_group_operation (socket, group, source_specific, iface, TRUE, error);
}
/**
* g_socket_leave_multicast_group:
* @socket: a #GSocket.
* @group: a #GInetAddress specifying the group address to leave.
* @iface: (nullable): Interface used
* @source_specific: %TRUE if source-specific multicast was used
* @error: #GError for error reporting, or %NULL to ignore.
*
* Removes @socket from the multicast group defined by @group, @iface,
* and @source_specific (which must all have the same values they had
* when you joined the group).
*
* @socket remains bound to its address and port, and can still receive
* unicast messages after calling this.
*
* To unbind to a given source-specific multicast address, use
* g_socket_leave_multicast_group_ssm() instead.
*
* Returns: %TRUE on success, %FALSE on error.
*
* Since: 2.32
*/
gboolean
g_socket_leave_multicast_group (GSocket *socket,
GInetAddress *group,
gboolean source_specific,
const gchar *iface,
GError **error)
{
return g_socket_multicast_group_operation (socket, group, source_specific, iface, FALSE, error);
}
static gboolean
g_socket_multicast_group_operation_ssm (GSocket *socket,
GInetAddress *group,
GInetAddress *source_specific,
const gchar *iface,
gboolean join_group,
GError **error)
{
gint result;
g_return_val_if_fail (G_IS_SOCKET (socket), FALSE);
g_return_val_if_fail (socket->priv->type == G_SOCKET_TYPE_DATAGRAM, FALSE);
g_return_val_if_fail (G_IS_INET_ADDRESS (group), FALSE);
g_return_val_if_fail (iface == NULL || *iface != '\0', FALSE);
g_return_val_if_fail (error == NULL || *error == NULL, FALSE);
if (!source_specific)
{
return g_socket_multicast_group_operation (socket, group, FALSE, iface,
join_group, error);
}
if (!check_socket (socket, error))
return FALSE;
switch (g_inet_address_get_family (group))
{
case G_SOCKET_FAMILY_INVALID:
case G_SOCKET_FAMILY_UNIX:
{
g_set_error (error, G_IO_ERROR, G_IO_ERROR_NOT_SUPPORTED,
join_group ?
_("Error joining multicast group: %s") :
_("Error leaving multicast group: %s"),
_("Unsupported socket family"));
return FALSE;
}
break;
case G_SOCKET_FAMILY_IPV4:
{
#ifdef IP_ADD_SOURCE_MEMBERSHIP
#ifdef BROKEN_IP_MREQ_SOURCE_STRUCT
#define S_ADDR_FIELD(src) src.imr_interface
#else
#define S_ADDR_FIELD(src) src.imr_interface.s_addr
#endif
gint optname;
struct ip_mreq_source mc_req_src;
if (g_inet_address_get_family (source_specific) !=
G_SOCKET_FAMILY_IPV4)
{
g_set_error (error, G_IO_ERROR, G_IO_ERROR_NOT_SUPPORTED,
join_group ?
_("Error joining multicast group: %s") :
_("Error leaving multicast group: %s"),
_("source-specific not an IPv4 address"));
return FALSE;
}
memset (&mc_req_src, 0, sizeof (mc_req_src));
/* By default use the default IPv4 multicast interface. */
S_ADDR_FIELD(mc_req_src) = g_htonl (INADDR_ANY);
if (iface)
{
#if defined(G_OS_WIN32)
S_ADDR_FIELD(mc_req_src) = g_socket_w32_get_adapter_ipv4_addr (iface);
#elif defined (HAVE_SIOCGIFADDR)
int ret;
struct ifreq ifr;
struct sockaddr_in *iface_addr;
size_t if_name_len = strlen (iface);
memset (&ifr, 0, sizeof (ifr));
if (if_name_len >= sizeof (ifr.ifr_name))
{
g_set_error (error, G_IO_ERROR, G_IO_ERROR_FILENAME_TOO_LONG,
_("Interface name too long"));
return FALSE;
}
memcpy (ifr.ifr_name, iface, if_name_len);
/* Get the IPv4 address of the given network interface name. */
ret = ioctl (socket->priv->fd, SIOCGIFADDR, &ifr);
if (ret < 0)
{
int errsv = errno;
g_set_error (error, G_IO_ERROR, g_io_error_from_errno (errsv),
_("Interface not found: %s"), g_strerror (errsv));
return FALSE;
}
iface_addr = (struct sockaddr_in *) &ifr.ifr_addr;
S_ADDR_FIELD(mc_req_src) = iface_addr->sin_addr.s_addr;
#endif /* defined(G_OS_WIN32) && defined (HAVE_IF_NAMETOINDEX) */
}
g_assert (g_inet_address_get_native_size (group) == sizeof (mc_req_src.imr_multiaddr));
memcpy (&mc_req_src.imr_multiaddr, g_inet_address_to_bytes (group),
g_inet_address_get_native_size (group));
g_assert (g_inet_address_get_native_size (source_specific) == sizeof (mc_req_src.imr_sourceaddr));
memcpy (&mc_req_src.imr_sourceaddr,
g_inet_address_to_bytes (source_specific),
g_inet_address_get_native_size (source_specific));
optname =
join_group ? IP_ADD_SOURCE_MEMBERSHIP : IP_DROP_SOURCE_MEMBERSHIP;
result = setsockopt (socket->priv->fd, IPPROTO_IP, optname,
&mc_req_src, sizeof (mc_req_src));
#undef S_ADDR_FIELD
#else
g_set_error (error, G_IO_ERROR, G_IO_ERROR_NOT_SUPPORTED,
join_group ?
_("Error joining multicast group: %s") :
_("Error leaving multicast group: %s"),
_("No support for IPv4 source-specific multicast"));
return FALSE;
#endif /* IP_ADD_SOURCE_MEMBERSHIP */
}
break;
case G_SOCKET_FAMILY_IPV6:
{
#ifdef MCAST_JOIN_SOURCE_GROUP
gboolean res;
gint optname;
struct group_source_req mc_req_src;
GSocketAddress *saddr_group, *saddr_source_specific;
guint iface_index = 0;
#if defined (HAVE_IF_NAMETOINDEX)
if (iface)
{
iface_index = if_nametoindex (iface);
if (iface_index == 0)
{
int errsv = errno;
g_set_error (error, G_IO_ERROR, g_io_error_from_errno (errsv),
_("Interface not found: %s"), g_strerror (errsv));
return FALSE;
}
}
#endif /* defined (HAVE_IF_NAMETOINDEX) */
mc_req_src.gsr_interface = iface_index;
saddr_group = g_inet_socket_address_new (group, 0);
res = g_socket_address_to_native (saddr_group, &mc_req_src.gsr_group,
sizeof (mc_req_src.gsr_group),
error);
g_object_unref (saddr_group);
if (!res)
return FALSE;
saddr_source_specific = g_inet_socket_address_new (source_specific, 0);
res = g_socket_address_to_native (saddr_source_specific,
&mc_req_src.gsr_source,
sizeof (mc_req_src.gsr_source),
error);
g_object_unref (saddr_source_specific);
if (!res)
return FALSE;
optname =
join_group ? MCAST_JOIN_SOURCE_GROUP : MCAST_LEAVE_SOURCE_GROUP;
result = setsockopt (socket->priv->fd, IPPROTO_IPV6, optname,
&mc_req_src, sizeof (mc_req_src));
#else
g_set_error (error, G_IO_ERROR, G_IO_ERROR_NOT_SUPPORTED,
join_group ?
_("Error joining multicast group: %s") :
_("Error leaving multicast group: %s"),
_("No support for IPv6 source-specific multicast"));
return FALSE;
#endif /* MCAST_JOIN_SOURCE_GROUP */
}
break;
default:
g_return_val_if_reached (FALSE);
}
if (result < 0)
{
int errsv = get_socket_errno ();
g_set_error (error, G_IO_ERROR, socket_io_error_from_errno (errsv),
join_group ?
_("Error joining multicast group: %s") :
_("Error leaving multicast group: %s"),
socket_strerror (errsv));
return FALSE;
}
return TRUE;
}
/**
* g_socket_join_multicast_group_ssm:
* @socket: a #GSocket.
* @group: a #GInetAddress specifying the group address to join.
* @source_specific: (nullable): a #GInetAddress specifying the
* source-specific multicast address or %NULL to ignore.
* @iface: (nullable): Name of the interface to use, or %NULL
* @error: #GError for error reporting, or %NULL to ignore.
*
* Registers @socket to receive multicast messages sent to @group.
* @socket must be a %G_SOCKET_TYPE_DATAGRAM socket, and must have
* been bound to an appropriate interface and port with
* g_socket_bind().
*
* If @iface is %NULL, the system will automatically pick an interface
* to bind to based on @group.
*
* If @source_specific is not %NULL, use source-specific multicast as
* defined in RFC 4604. Note that on older platforms this may fail
* with a %G_IO_ERROR_NOT_SUPPORTED error.
*
* Note that this function can be called multiple times for the same
* @group with different @source_specific in order to receive multicast
* packets from more than one source.
*
* Returns: %TRUE on success, %FALSE on error.
*
* Since: 2.56
*/
gboolean
g_socket_join_multicast_group_ssm (GSocket *socket,
GInetAddress *group,
GInetAddress *source_specific,
const gchar *iface,
GError **error)
{
return g_socket_multicast_group_operation_ssm (socket, group,
source_specific, iface, TRUE, error);
}
/**
* g_socket_leave_multicast_group_ssm:
* @socket: a #GSocket.
* @group: a #GInetAddress specifying the group address to leave.
* @source_specific: (nullable): a #GInetAddress specifying the
* source-specific multicast address or %NULL to ignore.
* @iface: (nullable): Name of the interface to use, or %NULL
* @error: #GError for error reporting, or %NULL to ignore.
*
* Removes @socket from the multicast group defined by @group, @iface,
* and @source_specific (which must all have the same values they had
* when you joined the group).
*
* @socket remains bound to its address and port, and can still receive
* unicast messages after calling this.
*
* Returns: %TRUE on success, %FALSE on error.
*
* Since: 2.56
*/
gboolean
g_socket_leave_multicast_group_ssm (GSocket *socket,
GInetAddress *group,
GInetAddress *source_specific,
const gchar *iface,
GError **error)
{
return g_socket_multicast_group_operation_ssm (socket, group,
source_specific, iface, FALSE, error);
}
/**
* g_socket_speaks_ipv4:
* @socket: a #GSocket
*
* Checks if a socket is capable of speaking IPv4.
*
* IPv4 sockets are capable of speaking IPv4. On some operating systems
* and under some combinations of circumstances IPv6 sockets are also
* capable of speaking IPv4. See RFC 3493 section 3.7 for more
* information.
*
* No other types of sockets are currently considered as being capable
* of speaking IPv4.
*
* Returns: %TRUE if this socket can be used with IPv4.
*
* Since: 2.22
**/
gboolean
g_socket_speaks_ipv4 (GSocket *socket)
{
switch (socket->priv->family)
{
case G_SOCKET_FAMILY_IPV4:
return TRUE;
case G_SOCKET_FAMILY_IPV6:
#if defined (IPPROTO_IPV6) && defined (IPV6_V6ONLY)
{
gint v6_only;
if (!g_socket_get_option (socket,
IPPROTO_IPV6, IPV6_V6ONLY,
&v6_only, NULL))
return FALSE;
return !v6_only;
}
#else
return FALSE;
#endif
default:
return FALSE;
}
}
/**
* g_socket_accept:
* @socket: a #GSocket.
* @cancellable: (nullable): a %GCancellable or %NULL
* @error: #GError for error reporting, or %NULL to ignore.
*
* Accept incoming connections on a connection-based socket. This removes
* the first outstanding connection request from the listening socket and
* creates a #GSocket object for it.
*
* The @socket must be bound to a local address with g_socket_bind() and
* must be listening for incoming connections (g_socket_listen()).
*
* If there are no outstanding connections then the operation will block
* or return %G_IO_ERROR_WOULD_BLOCK if non-blocking I/O is enabled.
* To be notified of an incoming connection, wait for the %G_IO_IN condition.
*
* Returns: (transfer full): a new #GSocket, or %NULL on error.
* Free the returned object with g_object_unref().
*
* Since: 2.22
*/
GSocket *
g_socket_accept (GSocket *socket,
GCancellable *cancellable,
GError **error)
{
#ifdef HAVE_ACCEPT4
gboolean try_accept4 = TRUE;
#endif
GSocket *new_socket;
gint ret;
g_return_val_if_fail (G_IS_SOCKET (socket), NULL);
if (!check_socket (socket, error))
return NULL;
if (!check_timeout (socket, error))
return NULL;
while (TRUE)
{
gboolean try_accept = TRUE;
#ifdef HAVE_ACCEPT4
if (try_accept4)
{
ret = accept4 (socket->priv->fd, NULL, 0, SOCK_CLOEXEC);
if (ret < 0 && errno == ENOSYS)
{
try_accept4 = FALSE;
}
else
{
try_accept = FALSE;
}
}
g_assert (try_accept4 || try_accept);
#endif
if (try_accept)
ret = accept (socket->priv->fd, NULL, 0);
if (ret < 0)
{
int errsv = get_socket_errno ();
if (errsv == EINTR)
continue;
#ifdef WSAEWOULDBLOCK
if (errsv == WSAEWOULDBLOCK)
#else
if (errsv == EWOULDBLOCK ||
errsv == EAGAIN)
#endif
{
win32_unset_event_mask (socket, FD_ACCEPT);
if (socket->priv->blocking)
{
if (!g_socket_condition_wait (socket,
G_IO_IN, cancellable, error))
return NULL;
continue;
}
}
socket_set_error_lazy (error, errsv, _("Error accepting connection: %s"));
return NULL;
}
break;
}
win32_unset_event_mask (socket, FD_ACCEPT);
#ifdef G_OS_WIN32
{
/* The socket inherits the accepting sockets event mask and even object,
we need to remove that */
WSAEventSelect (ret, NULL, 0);
}
#else
{
int flags;
/* We always want to set close-on-exec to protect users. If you
need to so some weird inheritance to exec you can re-enable this
using lower level hacks with g_socket_get_fd(). */
flags = fcntl (ret, F_GETFD, 0);
if (flags != -1 &&
(flags & FD_CLOEXEC) == 0)
{
flags |= FD_CLOEXEC;
fcntl (ret, F_SETFD, flags);
}
}
#endif
new_socket = g_socket_new_from_fd (ret, error);
if (new_socket == NULL)
{
#ifdef G_OS_WIN32
closesocket (ret);
#else
close (ret);
#endif
}
else
new_socket->priv->protocol = socket->priv->protocol;
return new_socket;
}
/**
* g_socket_connect:
* @socket: a #GSocket.
* @address: a #GSocketAddress specifying the remote address.
* @cancellable: (nullable): a %GCancellable or %NULL
* @error: #GError for error reporting, or %NULL to ignore.
*
* Connect the socket to the specified remote address.
*
* For connection oriented socket this generally means we attempt to make
* a connection to the @address. For a connection-less socket it sets
* the default address for g_socket_send() and discards all incoming datagrams
* from other sources.
*
* Generally connection oriented sockets can only connect once, but
* connection-less sockets can connect multiple times to change the
* default address.
*
* If the connect call needs to do network I/O it will block, unless
* non-blocking I/O is enabled. Then %G_IO_ERROR_PENDING is returned
* and the user can be notified of the connection finishing by waiting
* for the G_IO_OUT condition. The result of the connection must then be
* checked with g_socket_check_connect_result().
*
* Returns: %TRUE if connected, %FALSE on error.
*
* Since: 2.22
*/
gboolean
g_socket_connect (GSocket *socket,
GSocketAddress *address,
GCancellable *cancellable,
GError **error)
{
union {
struct sockaddr_storage storage;
struct sockaddr sa;
} buffer;
g_return_val_if_fail (G_IS_SOCKET (socket) && G_IS_SOCKET_ADDRESS (address), FALSE);
if (!check_socket (socket, error))
return FALSE;
if (!g_socket_address_to_native (address, &buffer.storage, sizeof buffer, error))
return FALSE;
if (socket->priv->remote_address)
g_object_unref (socket->priv->remote_address);
socket->priv->remote_address = g_object_ref (address);
while (1)
{
if (connect (socket->priv->fd, &buffer.sa,
g_socket_address_get_native_size (address)) < 0)
{
int errsv = get_socket_errno ();
if (errsv == EINTR)
continue;
#ifndef G_OS_WIN32
if (errsv == EINPROGRESS)
#else
if (errsv == WSAEWOULDBLOCK)
#endif
{
win32_unset_event_mask (socket, FD_CONNECT);
if (socket->priv->blocking)
{
if (g_socket_condition_wait (socket, G_IO_OUT, cancellable, error))
{
if (g_socket_check_connect_result (socket, error))
break;
}
}
else
{
g_set_error_literal (error, G_IO_ERROR, G_IO_ERROR_PENDING,
_("Connection in progress"));
socket->priv->connect_pending = TRUE;
}
}
else
g_set_error_literal (error, G_IO_ERROR,
socket_io_error_from_errno (errsv),
socket_strerror (errsv));
return FALSE;
}
break;
}
win32_unset_event_mask (socket, FD_CONNECT);
socket->priv->connected_read = TRUE;
socket->priv->connected_write = TRUE;
return TRUE;
}
/**
* g_socket_check_connect_result:
* @socket: a #GSocket
* @error: #GError for error reporting, or %NULL to ignore.
*
* Checks and resets the pending connect error for the socket.
* This is used to check for errors when g_socket_connect() is
* used in non-blocking mode.
*
* Returns: %TRUE if no error, %FALSE otherwise, setting @error to the error
*
* Since: 2.22
*/
gboolean
g_socket_check_connect_result (GSocket *socket,
GError **error)
{
int value;
g_return_val_if_fail (G_IS_SOCKET (socket), FALSE);
if (!check_socket (socket, error))
return FALSE;
if (!check_timeout (socket, error))
return FALSE;
if (!g_socket_get_option (socket, SOL_SOCKET, SO_ERROR, &value, error))
{
g_prefix_error (error, _("Unable to get pending error: "));
return FALSE;
}
if (value != 0)
{
g_set_error_literal (error, G_IO_ERROR, socket_io_error_from_errno (value),
socket_strerror (value));
if (socket->priv->remote_address)
{
g_object_unref (socket->priv->remote_address);
socket->priv->remote_address = NULL;
}
return FALSE;
}
socket->priv->connected_read = TRUE;
socket->priv->connected_write = TRUE;
return TRUE;
}
/**
* g_socket_get_available_bytes:
* @socket: a #GSocket
*
* Get the amount of data pending in the OS input buffer, without blocking.
*
* If @socket is a UDP or SCTP socket, this will return the size of
* just the next packet, even if additional packets are buffered after
* that one.
*
* Note that on Windows, this function is rather inefficient in the
* UDP case, and so if you know any plausible upper bound on the size
* of the incoming packet, it is better to just do a
* g_socket_receive() with a buffer of that size, rather than calling
* g_socket_get_available_bytes() first and then doing a receive of
* exactly the right size.
*
* Returns: the number of bytes that can be read from the socket
* without blocking or truncating, or -1 on error.
*
* Since: 2.32
*/
gssize
g_socket_get_available_bytes (GSocket *socket)
{
#ifndef SO_NREAD
const gint bufsize = 64 * 1024;
static guchar *buf = NULL;
#endif
#ifdef G_OS_WIN32
u_long avail;
#else
gint avail;
#endif
g_return_val_if_fail (G_IS_SOCKET (socket), -1);
if (!check_socket (socket, NULL))
return -1;
#ifdef SO_NREAD
if (!g_socket_get_option (socket, SOL_SOCKET, SO_NREAD, &avail, NULL))
return -1;
#else
if (socket->priv->type == G_SOCKET_TYPE_DATAGRAM)
{
if (G_UNLIKELY (g_once_init_enter_pointer (&buf)))
g_once_init_leave_pointer (&buf, g_malloc (bufsize));
/* On datagram sockets, FIONREAD ioctl is not reliable because many
* systems add internal header size to the reported size, making it
* unusable for this function. */
avail = recv (socket->priv->fd, buf, bufsize, MSG_PEEK);
if ((gint) avail == -1)
{
int errsv = get_socket_errno ();
#ifdef G_OS_WIN32
if (errsv == WSAEWOULDBLOCK)
#else
if (errsv == EWOULDBLOCK || errsv == EAGAIN)
#endif
avail = 0;
}
}
else
{
#ifdef G_OS_WIN32
if (ioctlsocket (socket->priv->fd, FIONREAD, &avail) < 0)
#else
if (ioctl (socket->priv->fd, FIONREAD, &avail) < 0)
#endif
avail = -1;
}
#endif
return avail;
}
/* Block on a timed wait for @condition until (@start_time + @timeout).
* Return %G_IO_ERROR_TIMED_OUT if the timeout is reached; otherwise %TRUE.
*/
static gboolean
block_on_timeout (GSocket *socket,
GIOCondition condition,
gint64 timeout_us,
gint64 start_time,
GCancellable *cancellable,
GError **error)
{
gint64 wait_timeout = -1;
g_return_val_if_fail (timeout_us != 0, TRUE);
/* check if we've timed out or how much time to wait at most */
if (timeout_us >= 0)
{
gint64 elapsed = g_get_monotonic_time () - start_time;
if (elapsed >= timeout_us)
{
g_set_error_literal (error,
G_IO_ERROR, G_IO_ERROR_TIMED_OUT,
_("Socket I/O timed out"));
return FALSE;
}
wait_timeout = timeout_us - elapsed;
}
return g_socket_condition_timed_wait (socket, condition, wait_timeout,
cancellable, error);
}
static gssize
g_socket_receive_with_timeout (GSocket *socket,
guint8 *buffer,
gsize size,
gint64 timeout_us,
GCancellable *cancellable,
GError **error)
{
gssize ret;
gint64 start_time;
g_return_val_if_fail (G_IS_SOCKET (socket) && buffer != NULL, -1);
start_time = g_get_monotonic_time ();
if (!check_socket (socket, error))
return -1;
if (!check_timeout (socket, error))
return -1;
if (g_cancellable_set_error_if_cancelled (cancellable, error))
return -1;
while (1)
{
if ((ret = recv (socket->priv->fd, buffer, size, 0)) < 0)
{
int errsv = get_socket_errno ();
if (errsv == EINTR)
continue;
#ifdef WSAEWOULDBLOCK
if (errsv == WSAEWOULDBLOCK)
#else
if (errsv == EWOULDBLOCK ||
errsv == EAGAIN)
#endif
{
win32_unset_event_mask (socket, FD_READ);
if (timeout_us != 0)
{
if (!block_on_timeout (socket, G_IO_IN, timeout_us, start_time,
cancellable, error))
return -1;
continue;
}
}
win32_unset_event_mask (socket, FD_READ);
socket_set_error_lazy (error, errsv, _("Error receiving data: %s"));
return -1;
}
win32_unset_event_mask (socket, FD_READ);
break;
}
return ret;
}
/**
* g_socket_receive_bytes:
* @socket: a #GSocket
* @size: the number of bytes you want to read from the socket
* @timeout_us: the timeout to wait for, in microseconds, or `-1` to block
* indefinitely
* @cancellable: (nullable): a %GCancellable, or `NULL`
* @error: return location for a #GError, or `NULL`
*
* Receives data (up to @size bytes) from a socket.
*
* This function is a variant of [method@Gio.Socket.receive] which returns a
* [struct@GLib.Bytes] rather than a plain buffer.
*
* Pass `-1` to @timeout_us to block indefinitely until data is received (or
* the connection is closed, or there is an error). Pass `0` to use the default
* timeout from [property@Gio.Socket:timeout], or pass a positive number to wait
* for that many microseconds for data before returning `G_IO_ERROR_TIMED_OUT`.
*
* Returns: (transfer full): a bytes buffer containing the
* received bytes, or `NULL` on error
* Since: 2.80
*/
GBytes *
g_socket_receive_bytes (GSocket *socket,
gsize size,
gint64 timeout_us,
GCancellable *cancellable,
GError **error)
{
guint8 *data;
gssize res;
GBytes *buf;
g_return_val_if_fail (G_IS_SOCKET (socket), NULL);
g_return_val_if_fail (cancellable == NULL || G_IS_CANCELLABLE (cancellable), NULL);
g_return_val_if_fail (error == NULL || *error == NULL, NULL);
data = g_new0 (guint8, size);
res = g_socket_receive_with_timeout (socket, data, size, timeout_us, cancellable, error);
if (res < 0)
{
g_free (data);
return NULL;
}
if ((gsize) res == size)
{
buf = g_bytes_new_take (g_steal_pointer (&data), (gsize) res);
}
else
{
GBytes *sub_buf;
buf = g_bytes_new_take (g_steal_pointer (&data), size);
sub_buf = g_bytes_new_from_bytes (buf, 0, (gsize) res);
g_bytes_unref (buf);
buf = g_steal_pointer (&sub_buf);
}
return g_steal_pointer (&buf);
}
/**
* g_socket_receive:
* @socket: a #GSocket
* @buffer: (array length=size) (element-type guint8) (out caller-allocates):
* a buffer to read data into (which should be at least @size bytes long).
* @size: (in): the number of bytes you want to read from the socket
* @cancellable: (nullable): a %GCancellable or %NULL
* @error: #GError for error reporting, or %NULL to ignore.
*
* Receive data (up to @size bytes) from a socket. This is mainly used by
* connection-oriented sockets; it is identical to g_socket_receive_from()
* with @address set to %NULL.
*
* For %G_SOCKET_TYPE_DATAGRAM and %G_SOCKET_TYPE_SEQPACKET sockets,
* g_socket_receive() will always read either 0 or 1 complete messages from
* the socket. If the received message is too large to fit in @buffer, then
* the data beyond @size bytes will be discarded, without any explicit
* indication that this has occurred.
*
* For %G_SOCKET_TYPE_STREAM sockets, g_socket_receive() can return any
* number of bytes, up to @size. If more than @size bytes have been
* received, the additional data will be returned in future calls to
* g_socket_receive().
*
* If the socket is in blocking mode the call will block until there
* is some data to receive, the connection is closed, or there is an
* error. If there is no data available and the socket is in
* non-blocking mode, a %G_IO_ERROR_WOULD_BLOCK error will be
* returned. To be notified when data is available, wait for the
* %G_IO_IN condition.
*
* On error -1 is returned and @error is set accordingly.
*
* Returns: Number of bytes read, or 0 if the connection was closed by
* the peer, or -1 on error
*
* Since: 2.22
*/
gssize
g_socket_receive (GSocket *socket,
gchar *buffer,
gsize size,
GCancellable *cancellable,
GError **error)
{
return g_socket_receive_with_timeout (socket, (guint8 *) buffer, size,
socket->priv->blocking ? -1 : 0,
cancellable, error);
}
/**
* g_socket_receive_with_blocking:
* @socket: a #GSocket
* @buffer: (array length=size) (element-type guint8) (out caller-allocates):
* a buffer to read data into (which should be at least @size bytes long).
* @size: (in): the number of bytes you want to read from the socket
* @blocking: whether to do blocking or non-blocking I/O
* @cancellable: (nullable): a %GCancellable or %NULL
* @error: #GError for error reporting, or %NULL to ignore.
*
* This behaves exactly the same as g_socket_receive(), except that
* the choice of blocking or non-blocking behavior is determined by
* the @blocking argument rather than by @socket's properties.
*
* Returns: Number of bytes read, or 0 if the connection was closed by
* the peer, or -1 on error
*
* Since: 2.26
*/
gssize
g_socket_receive_with_blocking (GSocket *socket,
gchar *buffer,
gsize size,
gboolean blocking,
GCancellable *cancellable,
GError **error)
{
return g_socket_receive_with_timeout (socket, (guint8 *) buffer, size,
blocking ? -1 : 0, cancellable, error);
}
/**
* g_socket_receive_bytes_from:
* @socket: a #GSocket
* @address: (out) (optional): return location for a #GSocketAddress
* @size: the number of bytes you want to read from the socket
* @timeout_us: the timeout to wait for, in microseconds, or `-1` to block
* indefinitely
* @cancellable: (nullable): a #GCancellable, or `NULL`
* @error: return location for a #GError, or `NULL`
*
* Receive data (up to @size bytes) from a socket.
*
* This function is a variant of [method@Gio.Socket.receive_from] which returns
* a [struct@GLib.Bytes] rather than a plain buffer.
*
* If @address is non-%NULL then @address will be set equal to the
* source address of the received packet.
*
* The @address is owned by the caller.
*
* Pass `-1` to @timeout_us to block indefinitely until data is received (or
* the connection is closed, or there is an error). Pass `0` to use the default
* timeout from [property@Gio.Socket:timeout], or pass a positive number to wait
* for that many microseconds for data before returning `G_IO_ERROR_TIMED_OUT`.
*
* Returns: (transfer full): a bytes buffer containing the
* received bytes, or `NULL` on error
* Since: 2.80
*/
GBytes *
g_socket_receive_bytes_from (GSocket *socket,
GSocketAddress **address,
gsize size,
gint64 timeout_us,
GCancellable *cancellable,
GError **error)
{
GInputVector v;
gssize res;
GBytes *buf;
g_return_val_if_fail (G_IS_SOCKET (socket), NULL);
g_return_val_if_fail (address == NULL || *address == NULL, NULL);
g_return_val_if_fail (cancellable == NULL || G_IS_CANCELLABLE (cancellable), NULL);
g_return_val_if_fail (error == NULL || *error == NULL, NULL);
v.buffer = g_new0 (guint8, size);
v.size = size;
res = g_socket_receive_message_with_timeout (socket,
address,
&v, 1,
NULL, 0, NULL,
timeout_us,
cancellable,
error);
if (res < 0)
{
g_free (v.buffer);
return NULL;
}
if ((gsize) res == size)
{
buf = g_bytes_new_take (g_steal_pointer (&v.buffer), (gsize) res);
}
else
{
GBytes *sub_buf;
buf = g_bytes_new_take (g_steal_pointer (&v.buffer), size);
sub_buf = g_bytes_new_from_bytes (buf, 0, (gsize) res);
g_bytes_unref (buf);
buf = g_steal_pointer (&sub_buf);
}
return g_steal_pointer (&buf);
}
/**
* g_socket_receive_from:
* @socket: a #GSocket
* @address: (out) (optional): a pointer to a #GSocketAddress
* pointer, or %NULL
* @buffer: (array length=size) (element-type guint8) (out caller-allocates):
* a buffer to read data into (which should be at least @size bytes long).
* @size: (in): the number of bytes you want to read from the socket
* @cancellable: (nullable): a %GCancellable or %NULL
* @error: #GError for error reporting, or %NULL to ignore.
*
* Receive data (up to @size bytes) from a socket.
*
* If @address is non-%NULL then @address will be set equal to the
* source address of the received packet.
* @address is owned by the caller.
*
* See g_socket_receive() for additional information.
*
* Returns: Number of bytes read, or 0 if the connection was closed by
* the peer, or -1 on error
*
* Since: 2.22
*/
gssize
g_socket_receive_from (GSocket *socket,
GSocketAddress **address,
gchar *buffer,
gsize size,
GCancellable *cancellable,
GError **error)
{
GInputVector v;
v.buffer = buffer;
v.size = size;
return g_socket_receive_message (socket,
address,
&v, 1,
NULL, 0, NULL,
cancellable,
error);
}
/* See the comment about SIGPIPE above. */
#ifdef MSG_NOSIGNAL
#define G_SOCKET_DEFAULT_SEND_FLAGS MSG_NOSIGNAL
#else
#define G_SOCKET_DEFAULT_SEND_FLAGS 0
#endif
static gssize
g_socket_send_with_timeout (GSocket *socket,
const guint8 *buffer,
gsize size,
gint64 timeout_us,
GCancellable *cancellable,
GError **error)
{
gssize ret;
gint64 start_time;
g_return_val_if_fail (G_IS_SOCKET (socket) && buffer != NULL, -1);
start_time = g_get_monotonic_time ();
if (!check_socket (socket, error))
return -1;
if (!check_timeout (socket, error))
return -1;
if (g_cancellable_set_error_if_cancelled (cancellable, error))
return -1;
while (1)
{
if ((ret = send (socket->priv->fd, (const char *)buffer, size, G_SOCKET_DEFAULT_SEND_FLAGS)) < 0)
{
int errsv = get_socket_errno ();
if (errsv == EINTR)
continue;
#ifdef WSAEWOULDBLOCK
if (errsv == WSAEWOULDBLOCK)
#else
if (errsv == EWOULDBLOCK ||
errsv == EAGAIN)
#endif
{
win32_unset_event_mask (socket, FD_WRITE);
if (timeout_us != 0)
{
if (!block_on_timeout (socket, G_IO_OUT, timeout_us, start_time,
cancellable, error))
return -1;
continue;
}
}
socket_set_error_lazy (error, errsv, _("Error sending data: %s"));
return -1;
}
break;
}
return ret;
}
/**
* g_socket_send:
* @socket: a #GSocket
* @buffer: (array length=size) (element-type guint8): the buffer
* containing the data to send.
* @size: the number of bytes to send
* @cancellable: (nullable): a %GCancellable or %NULL
* @error: #GError for error reporting, or %NULL to ignore.
*
* Tries to send @size bytes from @buffer on the socket. This is
* mainly used by connection-oriented sockets; it is identical to
* g_socket_send_to() with @address set to %NULL.
*
* If the socket is in blocking mode the call will block until there is
* space for the data in the socket queue. If there is no space available
* and the socket is in non-blocking mode a %G_IO_ERROR_WOULD_BLOCK error
* will be returned. To be notified when space is available, wait for the
* %G_IO_OUT condition. Note though that you may still receive
* %G_IO_ERROR_WOULD_BLOCK from g_socket_send() even if you were previously
* notified of a %G_IO_OUT condition. (On Windows in particular, this is
* very common due to the way the underlying APIs work.)
*
* On error -1 is returned and @error is set accordingly.
*
* Returns: Number of bytes written (which may be less than @size), or -1
* on error
*
* Since: 2.22
*/
gssize
g_socket_send (GSocket *socket,
const gchar *buffer,
gsize size,
GCancellable *cancellable,
GError **error)
{
return g_socket_send_with_blocking (socket, buffer, size,
socket->priv->blocking,
cancellable, error);
}
/**
* g_socket_send_with_blocking:
* @socket: a #GSocket
* @buffer: (array length=size) (element-type guint8): the buffer
* containing the data to send.
* @size: the number of bytes to send
* @blocking: whether to do blocking or non-blocking I/O
* @cancellable: (nullable): a %GCancellable or %NULL
* @error: #GError for error reporting, or %NULL to ignore.
*
* This behaves exactly the same as g_socket_send(), except that
* the choice of blocking or non-blocking behavior is determined by
* the @blocking argument rather than by @socket's properties.
*
* Returns: Number of bytes written (which may be less than @size), or -1
* on error
*
* Since: 2.26
*/
gssize
g_socket_send_with_blocking (GSocket *socket,
const gchar *buffer,
gsize size,
gboolean blocking,
GCancellable *cancellable,
GError **error)
{
return g_socket_send_with_timeout (socket, (const guint8 *) buffer, size,
blocking ? -1 : 0, cancellable, error);
}
/**
* g_socket_send_to:
* @socket: a #GSocket
* @address: (nullable): a #GSocketAddress, or %NULL
* @buffer: (array length=size) (element-type guint8): the buffer
* containing the data to send.
* @size: the number of bytes to send
* @cancellable: (nullable): a %GCancellable or %NULL
* @error: #GError for error reporting, or %NULL to ignore.
*
* Tries to send @size bytes from @buffer to @address. If @address is
* %NULL then the message is sent to the default receiver (set by
* g_socket_connect()).
*
* See g_socket_send() for additional information.
*
* Returns: Number of bytes written (which may be less than @size), or -1
* on error
*
* Since: 2.22
*/
gssize
g_socket_send_to (GSocket *socket,
GSocketAddress *address,
const gchar *buffer,
gsize size,
GCancellable *cancellable,
GError **error)
{
GOutputVector v;
v.buffer = buffer;
v.size = size;
return g_socket_send_message (socket,
address,
&v, 1,
NULL, 0,
0,
cancellable,
error);
}
/**
* g_socket_shutdown:
* @socket: a #GSocket
* @shutdown_read: whether to shut down the read side
* @shutdown_write: whether to shut down the write side
* @error: #GError for error reporting, or %NULL to ignore.
*
* Shut down part or all of a full-duplex connection.
*
* If @shutdown_read is %TRUE then the receiving side of the connection
* is shut down, and further reading is disallowed.
*
* If @shutdown_write is %TRUE then the sending side of the connection
* is shut down, and further writing is disallowed.
*
* It is allowed for both @shutdown_read and @shutdown_write to be %TRUE.
*
* One example where it is useful to shut down only one side of a connection is
* graceful disconnect for TCP connections where you close the sending side,
* then wait for the other side to close the connection, thus ensuring that the
* other side saw all sent data.
*
* Returns: %TRUE on success, %FALSE on error
*
* Since: 2.22
*/
gboolean
g_socket_shutdown (GSocket *socket,
gboolean shutdown_read,
gboolean shutdown_write,
GError **error)
{
int how;
g_return_val_if_fail (G_IS_SOCKET (socket), TRUE);
if (!check_socket (socket, error))
return FALSE;
/* Do nothing? */
if (!shutdown_read && !shutdown_write)
return TRUE;
#ifndef G_OS_WIN32
if (shutdown_read && shutdown_write)
how = SHUT_RDWR;
else if (shutdown_read)
how = SHUT_RD;
else
how = SHUT_WR;
#else
if (shutdown_read && shutdown_write)
how = SD_BOTH;
else if (shutdown_read)
how = SD_RECEIVE;
else
how = SD_SEND;
#endif
if (shutdown (socket->priv->fd, how) != 0)
{
int errsv = get_socket_errno ();
g_set_error (error, G_IO_ERROR, socket_io_error_from_errno (errsv),
_("Unable to shutdown socket: %s"), socket_strerror (errsv));
return FALSE;
}
if (shutdown_read)
socket->priv->connected_read = FALSE;
if (shutdown_write)
socket->priv->connected_write = FALSE;
return TRUE;
}
/**
* g_socket_close:
* @socket: a #GSocket
* @error: #GError for error reporting, or %NULL to ignore.
*
* Closes the socket, shutting down any active connection.
*
* Closing a socket does not wait for all outstanding I/O operations
* to finish, so the caller should not rely on them to be guaranteed
* to complete even if the close returns with no error.
*
* Once the socket is closed, all other operations will return
* %G_IO_ERROR_CLOSED. Closing a socket multiple times will not
* return an error.
*
* Sockets will be automatically closed when the last reference
* is dropped, but you might want to call this function to make sure
* resources are released as early as possible.
*
* Beware that due to the way that TCP works, it is possible for
* recently-sent data to be lost if either you close a socket while the
* %G_IO_IN condition is set, or else if the remote connection tries to
* send something to you after you close the socket but before it has
* finished reading all of the data you sent. There is no easy generic
* way to avoid this problem; the easiest fix is to design the network
* protocol such that the client will never send data "out of turn".
* Another solution is for the server to half-close the connection by
* calling g_socket_shutdown() with only the @shutdown_write flag set,
* and then wait for the client to notice this and close its side of the
* connection, after which the server can safely call g_socket_close().
* (This is what #GTcpConnection does if you call
* g_tcp_connection_set_graceful_disconnect(). But of course, this
* only works if the client will close its connection after the server
* does.)
*
* Returns: %TRUE on success, %FALSE on error
*
* Since: 2.22
*/
gboolean
g_socket_close (GSocket *socket,
GError **error)
{
int res;
g_return_val_if_fail (G_IS_SOCKET (socket), TRUE);
if (socket->priv->closed)
return TRUE; /* Multiple close not an error */
if (!check_socket (socket, error))
return FALSE;
while (1)
{
#ifdef G_OS_WIN32
res = closesocket (socket->priv->fd);
#else
res = close (socket->priv->fd);
#endif
if (res == -1)
{
int errsv = get_socket_errno ();
if (errsv == EINTR)
continue;
g_set_error (error, G_IO_ERROR,
socket_io_error_from_errno (errsv),
_("Error closing socket: %s"),
socket_strerror (errsv));
return FALSE;
}
break;
}
socket->priv->fd = -1;
socket->priv->connected_read = FALSE;
socket->priv->connected_write = FALSE;
socket->priv->closed = TRUE;
if (socket->priv->remote_address)
{
g_object_unref (socket->priv->remote_address);
socket->priv->remote_address = NULL;
}
return TRUE;
}
/**
* g_socket_is_closed:
* @socket: a #GSocket
*
* Checks whether a socket is closed.
*
* Returns: %TRUE if socket is closed, %FALSE otherwise
*
* Since: 2.22
*/
gboolean
g_socket_is_closed (GSocket *socket)
{
return socket->priv->closed;
}
/* Broken source, used on errors */
static gboolean
broken_dispatch (GSource *source,
GSourceFunc callback,
gpointer user_data)
{
return TRUE;
}
static GSourceFuncs broken_funcs =
{
NULL,
NULL,
broken_dispatch,
NULL,
NULL,
NULL,
};
#ifdef G_OS_WIN32
static gint
network_events_for_condition (GIOCondition condition)
{
int event_mask = 0;
if (condition & G_IO_IN)
event_mask |= (FD_READ | FD_ACCEPT);
if (condition & G_IO_OUT)
event_mask |= (FD_WRITE | FD_CONNECT);
event_mask |= FD_CLOSE;
return event_mask;
}
static void
ensure_event (GSocket *socket)
{
if (socket->priv->event == WSA_INVALID_EVENT)
socket->priv->event = WSACreateEvent();
}
static void
update_select_events (GSocket *socket)
{
int event_mask;
GIOCondition *ptr;
GList *l;
WSAEVENT event;
if (socket->priv->closed)
return;
ensure_event (socket);
event_mask = 0;
for (l = socket->priv->requested_conditions; l != NULL; l = l->next)
{
ptr = l->data;
event_mask |= network_events_for_condition (*ptr);
}
if (event_mask != socket->priv->selected_events)
{
/* If no events selected, disable event so we can unset
nonblocking mode */
if (event_mask == 0)
event = NULL;
else
event = socket->priv->event;
if (WSAEventSelect (socket->priv->fd, event, event_mask) == 0)
socket->priv->selected_events = event_mask;
}
}
static void
add_condition_watch (GSocket *socket,
GIOCondition *condition)
{
g_mutex_lock (&socket->priv->win32_source_lock);
g_assert (g_list_find (socket->priv->requested_conditions, condition) == NULL);
socket->priv->requested_conditions =
g_list_prepend (socket->priv->requested_conditions, condition);
update_select_events (socket);
g_mutex_unlock (&socket->priv->win32_source_lock);
}
static void
remove_condition_watch (GSocket *socket,
GIOCondition *condition)
{
g_mutex_lock (&socket->priv->win32_source_lock);
g_assert (g_list_find (socket->priv->requested_conditions, condition) != NULL);
socket->priv->requested_conditions =
g_list_remove (socket->priv->requested_conditions, condition);
update_select_events (socket);
g_mutex_unlock (&socket->priv->win32_source_lock);
}
static GIOCondition
update_condition_unlocked (GSocket *socket)
{
WSANETWORKEVENTS events;
GIOCondition condition;
if (!socket->priv->closed &&
WSAEnumNetworkEvents (socket->priv->fd,
socket->priv->event,
&events) == 0)
{
socket->priv->current_events |= events.lNetworkEvents;
if (events.lNetworkEvents & FD_WRITE &&
events.iErrorCode[FD_WRITE_BIT] != 0)
socket->priv->current_errors |= FD_WRITE;
if (events.lNetworkEvents & FD_CONNECT &&
events.iErrorCode[FD_CONNECT_BIT] != 0)
socket->priv->current_errors |= FD_CONNECT;
}
condition = 0;
if (socket->priv->current_events & (FD_READ | FD_ACCEPT))
condition |= G_IO_IN;
if (socket->priv->current_events & FD_CLOSE)
{
int r, errsv = NO_ERROR, buffer;
r = recv (socket->priv->fd, &buffer, sizeof (buffer), MSG_PEEK);
if (r < 0)
errsv = get_socket_errno ();
if (r > 0 ||
(r < 0 && errsv == WSAENOTCONN))
condition |= G_IO_IN;
else if (r == 0 ||
(r < 0 && (errsv == WSAESHUTDOWN || errsv == WSAECONNRESET ||
errsv == WSAECONNABORTED || errsv == WSAENETRESET)))
condition |= G_IO_HUP;
else
condition |= G_IO_ERR;
}
if (socket->priv->closed)
condition |= G_IO_HUP;
/* Never report both G_IO_OUT and HUP, these are
mutually exclusive (can't write to a closed socket) */
if ((condition & G_IO_HUP) == 0 &&
socket->priv->current_events & FD_WRITE)
{
if (socket->priv->current_errors & FD_WRITE)
condition |= G_IO_ERR;
else
condition |= G_IO_OUT;
}
else
{
if (socket->priv->current_events & FD_CONNECT)
{
if (socket->priv->current_errors & FD_CONNECT)
condition |= (G_IO_HUP | G_IO_ERR);
else
condition |= G_IO_OUT;
}
}
return condition;
}
static GIOCondition
update_condition (GSocket *socket)
{
GIOCondition res;
g_mutex_lock (&socket->priv->win32_source_lock);
res = update_condition_unlocked (socket);
g_mutex_unlock (&socket->priv->win32_source_lock);
return res;
}
#endif
typedef struct {
GSource source;
#ifdef G_OS_WIN32
GPollFD pollfd;
#else
gpointer fd_tag;
#endif
GSocket *socket;
GIOCondition condition;
} GSocketSource;
static gboolean
socket_source_prepare (GSource *source,
gint *timeout)
{
GSocketSource *socket_source = (GSocketSource *)source;
#ifdef G_OS_WIN32
if ((socket_source->pollfd.revents & G_IO_NVAL) != 0)
return TRUE;
if (g_socket_is_closed (socket_source->socket))
{
g_source_remove_poll (source, &socket_source->pollfd);
socket_source->pollfd.revents = G_IO_NVAL;
return TRUE;
}
return (update_condition (socket_source->socket) & socket_source->condition) != 0;
#else
return g_socket_is_closed (socket_source->socket) && socket_source->fd_tag != NULL;
#endif
}
#ifdef G_OS_WIN32
static gboolean
socket_source_check_win32 (GSource *source)
{
int timeout;
return socket_source_prepare (source, &timeout);
}
#endif
static gboolean
socket_source_dispatch (GSource *source,
GSourceFunc callback,
gpointer user_data)
{
GSocketSourceFunc func = (GSocketSourceFunc)callback;
GSocketSource *socket_source = (GSocketSource *)source;
GSocket *socket = socket_source->socket;
gint64 timeout;
guint events;
gboolean ret;
#ifdef G_OS_WIN32
if ((socket_source->pollfd.revents & G_IO_NVAL) != 0)
events = G_IO_NVAL;
else
events = update_condition (socket_source->socket);
#else
if (g_socket_is_closed (socket_source->socket))
{
if (socket_source->fd_tag)
g_source_remove_unix_fd (source, socket_source->fd_tag);
socket_source->fd_tag = NULL;
events = G_IO_NVAL;
}
else
{
events = g_source_query_unix_fd (source, socket_source->fd_tag);
}
#endif
timeout = g_source_get_ready_time (source);
if (timeout >= 0 && timeout <= g_source_get_time (source) &&
!g_socket_is_closed (socket_source->socket))
{
socket->priv->timed_out = TRUE;
events |= (G_IO_IN | G_IO_OUT);
}
ret = (*func) (socket, events & socket_source->condition, user_data);
if (socket->priv->timeout && !g_socket_is_closed (socket_source->socket))
g_source_set_ready_time (source, g_get_monotonic_time () + socket->priv->timeout * 1000000);
else
g_source_set_ready_time (source, -1);
return ret;
}
static void
socket_source_finalize (GSource *source)
{
GSocketSource *socket_source = (GSocketSource *)source;
GSocket *socket;
socket = socket_source->socket;
#ifdef G_OS_WIN32
remove_condition_watch (socket, &socket_source->condition);
#endif
g_object_unref (socket);
}
static gboolean
socket_source_closure_callback (GSocket *socket,
GIOCondition condition,
gpointer data)
{
GClosure *closure = data;
GValue params[2] = { G_VALUE_INIT, G_VALUE_INIT };
GValue result_value = G_VALUE_INIT;
gboolean result;
g_value_init (&result_value, G_TYPE_BOOLEAN);
g_value_init (&params[0], G_TYPE_SOCKET);
g_value_set_object (&params[0], socket);
g_value_init (&params[1], G_TYPE_IO_CONDITION);
g_value_set_flags (&params[1], condition);
g_closure_invoke (closure, &result_value, 2, params, NULL);
result = g_value_get_boolean (&result_value);
g_value_unset (&result_value);
g_value_unset (&params[0]);
g_value_unset (&params[1]);
return result;
}
static GSourceFuncs socket_source_funcs =
{
socket_source_prepare,
#ifdef G_OS_WIN32
socket_source_check_win32,
#else
NULL,
#endif
socket_source_dispatch,
socket_source_finalize,
(GSourceFunc)socket_source_closure_callback,
NULL,
};
static GSource *
socket_source_new (GSocket *socket,
GIOCondition condition,
GCancellable *cancellable)
{
GSource *source;
GSocketSource *socket_source;
#ifdef G_OS_WIN32
ensure_event (socket);
if (socket->priv->event == WSA_INVALID_EVENT)
{
g_warning ("Failed to create WSAEvent");
return g_source_new (&broken_funcs, sizeof (GSource));
}
#endif
if (!check_socket (socket, NULL))
{
g_warning ("Socket check failed");
return g_source_new (&broken_funcs, sizeof (GSource));
}
condition |= G_IO_HUP | G_IO_ERR | G_IO_NVAL;
source = g_source_new (&socket_source_funcs, sizeof (GSocketSource));
g_source_set_static_name (source, "GSocket");
socket_source = (GSocketSource *)source;
socket_source->socket = g_object_ref (socket);
socket_source->condition = condition;
if (cancellable)
{
GSource *cancellable_source;
cancellable_source = g_cancellable_source_new (cancellable);
g_source_add_child_source (source, cancellable_source);
g_source_set_dummy_callback (cancellable_source);
g_source_unref (cancellable_source);
}
#ifdef G_OS_WIN32
add_condition_watch (socket, &socket_source->condition);
socket_source->pollfd.fd = (gintptr) socket->priv->event;
socket_source->pollfd.events = condition;
socket_source->pollfd.revents = 0;
g_source_add_poll (source, &socket_source->pollfd);
#else
socket_source->fd_tag = g_source_add_unix_fd (source, socket->priv->fd, condition);
#endif
if (socket->priv->timeout)
g_source_set_ready_time (source, g_get_monotonic_time () + socket->priv->timeout * 1000000);
else
g_source_set_ready_time (source, -1);
return source;
}
/**
* g_socket_create_source: (skip)
* @socket: a #GSocket
* @condition: a #GIOCondition mask to monitor
* @cancellable: (nullable): a %GCancellable or %NULL
*
* Creates a #GSource that can be attached to a %GMainContext to monitor
* for the availability of the specified @condition on the socket. The #GSource
* keeps a reference to the @socket.
*
* The callback on the source is of the #GSocketSourceFunc type.
*
* It is meaningless to specify %G_IO_ERR or %G_IO_HUP in @condition;
* these conditions will always be reported output if they are true.
*
* @cancellable if not %NULL can be used to cancel the source, which will
* cause the source to trigger, reporting the current condition (which
* is likely 0 unless cancellation happened at the same time as a
* condition change). You can check for this in the callback using
* g_cancellable_is_cancelled().
*
* If @socket has a timeout set, and it is reached before @condition
* occurs, the source will then trigger anyway, reporting %G_IO_IN or
* %G_IO_OUT depending on @condition. However, @socket will have been
* marked as having had a timeout, and so the next #GSocket I/O method
* you call will then fail with a %G_IO_ERROR_TIMED_OUT.
*
* Returns: (transfer full): a newly allocated %GSource, free with g_source_unref().
*
* Since: 2.22
*/
GSource *
g_socket_create_source (GSocket *socket,
GIOCondition condition,
GCancellable *cancellable)
{
g_return_val_if_fail (G_IS_SOCKET (socket) && (cancellable == NULL || G_IS_CANCELLABLE (cancellable)), NULL);
return socket_source_new (socket, condition, cancellable);
}
/**
* g_socket_condition_check:
* @socket: a #GSocket
* @condition: a #GIOCondition mask to check
*
* Checks on the readiness of @socket to perform operations.
* The operations specified in @condition are checked for and masked
* against the currently-satisfied conditions on @socket. The result
* is returned.
*
* Note that on Windows, it is possible for an operation to return
* %G_IO_ERROR_WOULD_BLOCK even immediately after
* g_socket_condition_check() has claimed that the socket is ready for
* writing. Rather than calling g_socket_condition_check() and then
* writing to the socket if it succeeds, it is generally better to
* simply try writing to the socket right away, and try again later if
* the initial attempt returns %G_IO_ERROR_WOULD_BLOCK.
*
* It is meaningless to specify %G_IO_ERR or %G_IO_HUP in condition;
* these conditions will always be set in the output if they are true.
*
* This call never blocks.
*
* Returns: the @GIOCondition mask of the current state
*
* Since: 2.22
*/
GIOCondition
g_socket_condition_check (GSocket *socket,
GIOCondition condition)
{
g_return_val_if_fail (G_IS_SOCKET (socket), 0);
if (!check_socket (socket, NULL))
return 0;
#ifdef G_OS_WIN32
{
GIOCondition current_condition;
condition |= G_IO_ERR | G_IO_HUP;
add_condition_watch (socket, &condition);
current_condition = update_condition (socket);
remove_condition_watch (socket, &condition);
return condition & current_condition;
}
#else
{
GPollFD poll_fd;
gint result;
poll_fd.fd = socket->priv->fd;
poll_fd.events = condition;
poll_fd.revents = 0;
do
result = g_poll (&poll_fd, 1, 0);
while (result == -1 && get_socket_errno () == EINTR);
return poll_fd.revents;
}
#endif
}
/**
* g_socket_condition_wait:
* @socket: a #GSocket
* @condition: a #GIOCondition mask to wait for
* @cancellable: (nullable): a #GCancellable, or %NULL
* @error: a #GError pointer, or %NULL
*
* Waits for @condition to become true on @socket. When the condition
* is met, %TRUE is returned.
*
* If @cancellable is cancelled before the condition is met, or if the
* socket has a timeout set and it is reached before the condition is
* met, then %FALSE is returned and @error, if non-%NULL, is set to
* the appropriate value (%G_IO_ERROR_CANCELLED or
* %G_IO_ERROR_TIMED_OUT).
*
* See also g_socket_condition_timed_wait().
*
* Returns: %TRUE if the condition was met, %FALSE otherwise
*
* Since: 2.22
*/
gboolean
g_socket_condition_wait (GSocket *socket,
GIOCondition condition,
GCancellable *cancellable,
GError **error)
{
g_return_val_if_fail (G_IS_SOCKET (socket), FALSE);
return g_socket_condition_timed_wait (socket, condition, -1,
cancellable, error);
}
/**
* g_socket_condition_timed_wait:
* @socket: a #GSocket
* @condition: a #GIOCondition mask to wait for
* @timeout_us: the maximum time (in microseconds) to wait, or -1
* @cancellable: (nullable): a #GCancellable, or %NULL
* @error: a #GError pointer, or %NULL
*
* Waits for up to @timeout_us microseconds for @condition to become true
* on @socket. If the condition is met, %TRUE is returned.
*
* If @cancellable is cancelled before the condition is met, or if
* @timeout_us (or the socket's #GSocket:timeout) is reached before the
* condition is met, then %FALSE is returned and @error, if non-%NULL,
* is set to the appropriate value (%G_IO_ERROR_CANCELLED or
* %G_IO_ERROR_TIMED_OUT).
*
* If you don't want a timeout, use g_socket_condition_wait().
* (Alternatively, you can pass -1 for @timeout_us.)
*
* Note that although @timeout_us is in microseconds for consistency with
* other GLib APIs, this function actually only has millisecond
* resolution, and the behavior is undefined if @timeout_us is not an
* exact number of milliseconds.
*
* Returns: %TRUE if the condition was met, %FALSE otherwise
*
* Since: 2.32
*/
gboolean
g_socket_condition_timed_wait (GSocket *socket,
GIOCondition condition,
gint64 timeout_us,
GCancellable *cancellable,
GError **error)
{
gint64 start_time;
gint64 timeout_ms;
g_return_val_if_fail (G_IS_SOCKET (socket), FALSE);
if (!check_socket (socket, error))
return FALSE;
if (g_cancellable_set_error_if_cancelled (cancellable, error))
return FALSE;
if (socket->priv->timeout &&
(timeout_us < 0 || socket->priv->timeout < timeout_us / G_USEC_PER_SEC))
timeout_ms = (gint64) socket->priv->timeout * 1000;
else if (timeout_us != -1)
timeout_ms = timeout_us / 1000;
else
timeout_ms = -1;
start_time = g_get_monotonic_time ();
#ifdef G_OS_WIN32
{
GIOCondition current_condition;
WSAEVENT events[2];
DWORD res;
GPollFD cancel_fd;
int num_events;
/* Always check these */
condition |= G_IO_ERR | G_IO_HUP;
add_condition_watch (socket, &condition);
num_events = 0;
events[num_events++] = socket->priv->event;
if (g_cancellable_make_pollfd (cancellable, &cancel_fd))
events[num_events++] = (WSAEVENT)cancel_fd.fd;
if (timeout_ms == -1)
timeout_ms = WSA_INFINITE;
g_mutex_lock (&socket->priv->win32_source_lock);
current_condition = update_condition_unlocked (socket);
while ((condition & current_condition) == 0)
{
if (!socket->priv->waiting)
{
socket->priv->waiting = TRUE;
socket->priv->waiting_result = 0;
g_mutex_unlock (&socket->priv->win32_source_lock);
res = WSAWaitForMultipleEvents (num_events, events, FALSE, timeout_ms, FALSE);
g_mutex_lock (&socket->priv->win32_source_lock);
socket->priv->waiting = FALSE;
socket->priv->waiting_result = res;
g_cond_broadcast (&socket->priv->win32_source_cond);
}
else
{
if (timeout_ms != WSA_INFINITE)
{
if (!g_cond_wait_until (&socket->priv->win32_source_cond, &socket->priv->win32_source_lock, timeout_ms))
{
res = WSA_WAIT_TIMEOUT;
break;
}
else
{
res = socket->priv->waiting_result;
}
}
else
{
g_cond_wait (&socket->priv->win32_source_cond, &socket->priv->win32_source_lock);
res = socket->priv->waiting_result;
}
}
if (res == WSA_WAIT_FAILED)
{
int errsv = get_socket_errno ();
g_set_error (error, G_IO_ERROR,
socket_io_error_from_errno (errsv),
_("Waiting for socket condition: %s"),
socket_strerror (errsv));
break;
}
else if (res == WSA_WAIT_TIMEOUT)
{
g_set_error_literal (error, G_IO_ERROR, G_IO_ERROR_TIMED_OUT,
_("Socket I/O timed out"));
break;
}
if (g_cancellable_set_error_if_cancelled (cancellable, error))
break;
current_condition = update_condition_unlocked (socket);
if (timeout_ms != WSA_INFINITE)
{
timeout_ms -= (g_get_monotonic_time () - start_time) * 1000;
if (timeout_ms < 0)
timeout_ms = 0;
}
}
g_mutex_unlock (&socket->priv->win32_source_lock);
remove_condition_watch (socket, &condition);
if (num_events > 1)
g_cancellable_release_fd (cancellable);
return (condition & current_condition) != 0;
}
#else
{
GPollFD poll_fd[2];
gint result;
gint num;
poll_fd[0].fd = socket->priv->fd;
poll_fd[0].events = condition;
num = 1;
if (g_cancellable_make_pollfd (cancellable, &poll_fd[1]))
num++;
while (TRUE)
{
int errsv;
result = g_poll (poll_fd, num, timeout_ms);
errsv = errno;
if (result != -1 || errsv != EINTR)
break;
if (timeout_ms != -1)
{
timeout_ms -= (g_get_monotonic_time () - start_time) / 1000;
if (timeout_ms < 0)
timeout_ms = 0;
}
}
if (num > 1)
g_cancellable_release_fd (cancellable);
if (result == 0)
{
g_set_error_literal (error, G_IO_ERROR, G_IO_ERROR_TIMED_OUT,
_("Socket I/O timed out"));
return FALSE;
}
return !g_cancellable_set_error_if_cancelled (cancellable, error);
}
#endif
}
#ifndef G_OS_WIN32
#ifdef HAVE_QNX
/* QNX has this weird upper limit, or at least used to back in the 6.x days.
* This was discovered empirically and doesn't appear to be mentioned in any
* of the official documentation. */
# define G_SOCKET_CONTROL_BUFFER_SIZE_BYTES 2016
#else
# define G_SOCKET_CONTROL_BUFFER_SIZE_BYTES 2048
#endif
/* Unfortunately these have to be macros rather than inline functions due to
* using alloca(). */
#define output_message_to_msghdr(message, prev_message, msg, prev_msg, error) \
G_STMT_START { \
const GOutputMessage *_message = (message); \
const GOutputMessage *_prev_message = (prev_message); \
struct msghdr *_msg = (msg); \
const struct msghdr *_prev_msg = (prev_msg); \
GError **_error = (error); \
\
_msg->msg_flags = 0; \
\
/* name */ \
if (_prev_message != NULL && _prev_message->address == _message->address) \
{ \
_msg->msg_name = _prev_msg->msg_name; \
_msg->msg_namelen = _prev_msg->msg_namelen; \
} \
else if (_message->address != NULL) \
{ \
_msg->msg_namelen = g_socket_address_get_native_size (_message->address); \
_msg->msg_name = g_alloca (_msg->msg_namelen); \
if (!g_socket_address_to_native (_message->address, _msg->msg_name, \
_msg->msg_namelen, _error)) \
break; \
} \
else \
{ \
_msg->msg_name = NULL; \
_msg->msg_namelen = 0; \
} \
\
/* iov */ \
{ \
/* this entire expression will be evaluated at compile time */ \
if (sizeof *_msg->msg_iov == sizeof *_message->vectors && \
sizeof _msg->msg_iov->iov_base == sizeof _message->vectors->buffer && \
G_STRUCT_OFFSET (struct iovec, iov_base) == \
G_STRUCT_OFFSET (GOutputVector, buffer) && \
sizeof _msg->msg_iov->iov_len == sizeof _message->vectors->size && \
G_STRUCT_OFFSET (struct iovec, iov_len) == \
G_STRUCT_OFFSET (GOutputVector, size)) \
/* ABI is compatible */ \
{ \
_msg->msg_iov = (struct iovec *) _message->vectors; \
_msg->msg_iovlen = _message->num_vectors; \
} \
else \
/* ABI is incompatible */ \
{ \
guint i; \
\
_msg->msg_iov = g_newa (struct iovec, _message->num_vectors); \
for (i = 0; i < _message->num_vectors; i++) \
{ \
_msg->msg_iov[i].iov_base = (void *) _message->vectors[i].buffer; \
_msg->msg_iov[i].iov_len = _message->vectors[i].size; \
} \
_msg->msg_iovlen = _message->num_vectors; \
} \
} \
\
/* control */ \
{ \
struct cmsghdr *cmsg; \
guint i; \
\
_msg->msg_controllen = 0; \
for (i = 0; i < _message->num_control_messages; i++) \
_msg->msg_controllen += CMSG_SPACE (g_socket_control_message_get_size (_message->control_messages[i])); \
\
if (_msg->msg_controllen == 0) \
_msg->msg_control = NULL; \
else \
{ \
_msg->msg_control = g_alloca0 (_msg->msg_controllen); \
} \
\
cmsg = CMSG_FIRSTHDR (_msg); \
for (i = 0; i < _message->num_control_messages; i++) \
{ \
cmsg->cmsg_level = g_socket_control_message_get_level (_message->control_messages[i]); \
cmsg->cmsg_type = g_socket_control_message_get_msg_type (_message->control_messages[i]); \
cmsg->cmsg_len = CMSG_LEN (g_socket_control_message_get_size (_message->control_messages[i])); \
g_socket_control_message_serialize (_message->control_messages[i], \
CMSG_DATA (cmsg)); \
cmsg = CMSG_NXTHDR (_msg, cmsg); \
} \
g_assert (cmsg == NULL); \
} \
} G_STMT_END
#define input_message_to_msghdr(message, msg) \
G_STMT_START { \
const GInputMessage *_message = (message); \
struct msghdr *_msg = (msg); \
\
/* name */ \
if (_message->address) \
{ \
_msg->msg_namelen = sizeof (struct sockaddr_storage); \
_msg->msg_name = g_alloca (_msg->msg_namelen); \
} \
else \
{ \
_msg->msg_name = NULL; \
_msg->msg_namelen = 0; \
} \
\
/* iov */ \
/* this entire expression will be evaluated at compile time */ \
if (sizeof *_msg->msg_iov == sizeof *_message->vectors && \
sizeof _msg->msg_iov->iov_base == sizeof _message->vectors->buffer && \
G_STRUCT_OFFSET (struct iovec, iov_base) == \
G_STRUCT_OFFSET (GInputVector, buffer) && \
sizeof _msg->msg_iov->iov_len == sizeof _message->vectors->size && \
G_STRUCT_OFFSET (struct iovec, iov_len) == \
G_STRUCT_OFFSET (GInputVector, size)) \
/* ABI is compatible */ \
{ \
_msg->msg_iov = (struct iovec *) _message->vectors; \
_msg->msg_iovlen = _message->num_vectors; \
} \
else \
/* ABI is incompatible */ \
{ \
guint i; \
\
_msg->msg_iov = g_newa (struct iovec, _message->num_vectors); \
for (i = 0; i < _message->num_vectors; i++) \
{ \
_msg->msg_iov[i].iov_base = _message->vectors[i].buffer; \
_msg->msg_iov[i].iov_len = _message->vectors[i].size; \
} \
_msg->msg_iovlen = _message->num_vectors; \
} \
\
/* control */ \
if (_message->control_messages == NULL) \
{ \
_msg->msg_controllen = 0; \
_msg->msg_control = NULL; \
} \
else \
{ \
_msg->msg_controllen = G_SOCKET_CONTROL_BUFFER_SIZE_BYTES; \
_msg->msg_control = g_alloca (_msg->msg_controllen); \
} \
\
/* flags */ \
_msg->msg_flags = _message->flags; \
} G_STMT_END
static void
input_message_from_msghdr (const struct msghdr *msg,
GInputMessage *message,
GSocket *socket)
{
/* decode address */
if (message->address != NULL)
{
*message->address = cache_recv_address (socket, msg->msg_name,
msg->msg_namelen);
}
/* decode control messages */
{
GPtrArray *my_messages = NULL;
struct cmsghdr *cmsg;
if (msg->msg_controllen >= (socklen_t) sizeof (struct cmsghdr))
{
g_assert (message->control_messages != NULL);
for (cmsg = CMSG_FIRSTHDR (msg);
cmsg != NULL;
cmsg = CMSG_NXTHDR ((struct msghdr *) msg, cmsg))
{
GSocketControlMessage *control_message;
control_message = g_socket_control_message_deserialize (cmsg->cmsg_level,
cmsg->cmsg_type,
cmsg->cmsg_len - ((char *)CMSG_DATA (cmsg) - (char *)cmsg),
CMSG_DATA (cmsg));
if (control_message == NULL)
/* We've already spewed about the problem in the
deserialization code, so just continue */
continue;
if (my_messages == NULL)
my_messages = g_ptr_array_new ();
g_ptr_array_add (my_messages, control_message);
}
}
if (message->num_control_messages)
*message->num_control_messages = my_messages != NULL ? my_messages->len : 0;
if (message->control_messages)
{
if (my_messages == NULL)
{
*message->control_messages = NULL;
}
else
{
g_ptr_array_add (my_messages, NULL);
*message->control_messages = (GSocketControlMessage **) g_ptr_array_free (my_messages, FALSE);
}
}
else
{
g_assert (my_messages == NULL);
}
}
/* capture the flags */
message->flags = msg->msg_flags;
}
#endif
/**
* g_socket_send_message:
* @socket: a #GSocket
* @address: (nullable): a #GSocketAddress, or %NULL
* @vectors: (array length=num_vectors): an array of #GOutputVector structs
* @num_vectors: the number of elements in @vectors, or -1
* @messages: (array length=num_messages) (nullable): a pointer to an
* array of #GSocketControlMessages, or %NULL.
* @num_messages: number of elements in @messages, or -1.
* @flags: an int containing #GSocketMsgFlags flags, which may additionally
* contain [other platform specific flags](http://man7.org/linux/man-pages/man2/recv.2.html)
* @cancellable: (nullable): a %GCancellable or %NULL
* @error: #GError for error reporting, or %NULL to ignore.
*
* Send data to @address on @socket. For sending multiple messages see
* g_socket_send_messages(); for easier use, see
* g_socket_send() and g_socket_send_to().
*
* If @address is %NULL then the message is sent to the default receiver
* (set by g_socket_connect()).
*
* @vectors must point to an array of #GOutputVector structs and
* @num_vectors must be the length of this array. (If @num_vectors is -1,
* then @vectors is assumed to be terminated by a #GOutputVector with a
* %NULL buffer pointer.) The #GOutputVector structs describe the buffers
* that the sent data will be gathered from. Using multiple
* #GOutputVectors is more memory-efficient than manually copying
* data from multiple sources into a single buffer, and more
* network-efficient than making multiple calls to g_socket_send().
*
* @messages, if non-%NULL, is taken to point to an array of @num_messages
* #GSocketControlMessage instances. These correspond to the control
* messages to be sent on the socket.
* If @num_messages is -1 then @messages is treated as a %NULL-terminated
* array.
*
* @flags modify how the message is sent. The commonly available arguments
* for this are available in the #GSocketMsgFlags enum, but the
* values there are the same as the system values, and the flags
* are passed in as-is, so you can pass in system-specific flags too.
*
* If the socket is in blocking mode the call will block until there is
* space for the data in the socket queue. If there is no space available
* and the socket is in non-blocking mode a %G_IO_ERROR_WOULD_BLOCK error
* will be returned. To be notified when space is available, wait for the
* %G_IO_OUT condition. Note though that you may still receive
* %G_IO_ERROR_WOULD_BLOCK from g_socket_send() even if you were previously
* notified of a %G_IO_OUT condition. (On Windows in particular, this is
* very common due to the way the underlying APIs work.)
*
* The sum of the sizes of each #GOutputVector in vectors must not be
* greater than %G_MAXSSIZE. If the message can be larger than this,
* then it is mandatory to use the g_socket_send_message_with_timeout()
* function.
*
* On error -1 is returned and @error is set accordingly.
*
* Returns: Number of bytes written (which may be less than @size), or -1
* on error
*
* Since: 2.22
*/
gssize
g_socket_send_message (GSocket *socket,
GSocketAddress *address,
GOutputVector *vectors,
gint num_vectors,
GSocketControlMessage **messages,
gint num_messages,
gint flags,
GCancellable *cancellable,
GError **error)
{
GPollableReturn res;
gsize bytes_written = 0;
gsize vectors_size = 0;
if (num_vectors != -1)
{
for (gint i = 0; i < num_vectors; i++)
{
/* No wrap-around for vectors_size */
if (vectors_size > vectors_size + vectors[i].size)
{
g_set_error (error, G_IO_ERROR, G_IO_ERROR_INVALID_ARGUMENT,
_("Unable to send message: %s"),
_("Message vectors too large"));
return -1;
}
vectors_size += vectors[i].size;
}
}
else
{
for (gsize i = 0; vectors[i].buffer != NULL; i++)
{
/* No wrap-around for vectors_size */
if (vectors_size > vectors_size + vectors[i].size)
{
g_set_error (error, G_IO_ERROR, G_IO_ERROR_INVALID_ARGUMENT,
_("Unable to send message: %s"),
_("Message vectors too large"));
return -1;
}
vectors_size += vectors[i].size;
}
}
/* Check if vector's buffers are too big for gssize */
if (vectors_size > G_MAXSSIZE)
{
g_set_error (error, G_IO_ERROR, G_IO_ERROR_INVALID_ARGUMENT,
_("Unable to send message: %s"),
_("Message vectors too large"));
return -1;
}
res = g_socket_send_message_with_timeout (socket, address,
vectors, num_vectors,
messages, num_messages, flags,
socket->priv->blocking ? -1 : 0,
&bytes_written,
cancellable, error);
g_assert (res != G_POLLABLE_RETURN_OK || bytes_written <= G_MAXSSIZE);
if (res == G_POLLABLE_RETURN_WOULD_BLOCK)
{
#ifndef G_OS_WIN32
socket_set_error_lazy (error, EWOULDBLOCK, _("Error sending message: %s"));
#else
socket_set_error_lazy (error, WSAEWOULDBLOCK, _("Error sending message: %s"));
#endif
}
return res == G_POLLABLE_RETURN_OK ? (gssize) bytes_written : -1;
}
/**
* g_socket_send_message_with_timeout:
* @socket: a #GSocket
* @address: (nullable): a #GSocketAddress, or %NULL
* @vectors: (array length=num_vectors): an array of #GOutputVector structs
* @num_vectors: the number of elements in @vectors, or -1
* @messages: (array length=num_messages) (nullable): a pointer to an
* array of #GSocketControlMessages, or %NULL.
* @num_messages: number of elements in @messages, or -1.
* @flags: an int containing #GSocketMsgFlags flags, which may additionally
* contain [other platform specific flags](http://man7.org/linux/man-pages/man2/recv.2.html)
* @timeout_us: the maximum time (in microseconds) to wait, or -1
* @bytes_written: (out) (optional): location to store the number of bytes that were written to the socket
* @cancellable: (nullable): a %GCancellable or %NULL
* @error: #GError for error reporting, or %NULL to ignore.
*
* This behaves exactly the same as g_socket_send_message(), except that
* the choice of timeout behavior is determined by the @timeout_us argument
* rather than by @socket's properties.
*
* On error %G_POLLABLE_RETURN_FAILED is returned and @error is set accordingly, or
* if the socket is currently not writable %G_POLLABLE_RETURN_WOULD_BLOCK is
* returned. @bytes_written will contain 0 in both cases.
*
* Returns: %G_POLLABLE_RETURN_OK if all data was successfully written,
* %G_POLLABLE_RETURN_WOULD_BLOCK if the socket is currently not writable, or
* %G_POLLABLE_RETURN_FAILED if an error happened and @error is set.
*
* Since: 2.60
*/
GPollableReturn
g_socket_send_message_with_timeout (GSocket *socket,
GSocketAddress *address,
const GOutputVector *vectors,
gint num_vectors,
GSocketControlMessage **messages,
gint num_messages,
gint flags,
gint64 timeout_us,
gsize *bytes_written,
GCancellable *cancellable,
GError **error)
{
GOutputVector one_vector;
char zero;
gint64 start_time;
if (bytes_written)
*bytes_written = 0;
g_return_val_if_fail (G_IS_SOCKET (socket), G_POLLABLE_RETURN_FAILED);
g_return_val_if_fail (address == NULL || G_IS_SOCKET_ADDRESS (address), G_POLLABLE_RETURN_FAILED);
g_return_val_if_fail (num_vectors == 0 || vectors != NULL, G_POLLABLE_RETURN_FAILED);
g_return_val_if_fail (num_messages == 0 || messages != NULL, G_POLLABLE_RETURN_FAILED);
g_return_val_if_fail (cancellable == NULL || G_IS_CANCELLABLE (cancellable), G_POLLABLE_RETURN_FAILED);
g_return_val_if_fail (error == NULL || *error == NULL, G_POLLABLE_RETURN_FAILED);
start_time = g_get_monotonic_time ();
if (!check_socket (socket, error))
return G_POLLABLE_RETURN_FAILED;
if (!check_timeout (socket, error))
return G_POLLABLE_RETURN_FAILED;
if (g_cancellable_set_error_if_cancelled (cancellable, error))
return G_POLLABLE_RETURN_FAILED;
if (num_vectors == -1)
{
for (num_vectors = 0;
vectors[num_vectors].buffer != NULL;
num_vectors++)
;
}
if (num_messages == -1)
{
for (num_messages = 0;
messages != NULL && messages[num_messages] != NULL;
num_messages++)
;
}
if (num_vectors == 0)
{
zero = '\0';
one_vector.buffer = &zero;
one_vector.size = 1;
num_vectors = 1;
vectors = &one_vector;
}
#ifndef G_OS_WIN32
{
GOutputMessage output_message;
struct msghdr msg;
gssize result;
GError *child_error = NULL;
output_message.address = address;
output_message.vectors = (GOutputVector *) vectors;
output_message.num_vectors = num_vectors;
output_message.bytes_sent = 0;
output_message.control_messages = messages;
output_message.num_control_messages = num_messages;
output_message_to_msghdr (&output_message, NULL, &msg, NULL, &child_error);
if (child_error != NULL)
{
g_propagate_error (error, child_error);
return G_POLLABLE_RETURN_FAILED;
}
while (1)
{
result = sendmsg (socket->priv->fd, &msg, flags | G_SOCKET_DEFAULT_SEND_FLAGS);
if (result < 0)
{
int errsv = get_socket_errno ();
if (errsv == EINTR)
continue;
if (errsv == EWOULDBLOCK || errsv == EAGAIN)
{
if (timeout_us != 0)
{
if (!block_on_timeout (socket, G_IO_OUT, timeout_us, start_time,
cancellable, error))
return G_POLLABLE_RETURN_FAILED;
continue;
}
return G_POLLABLE_RETURN_WOULD_BLOCK;
}
socket_set_error_lazy (error, errsv, _("Error sending message: %s"));
return G_POLLABLE_RETURN_FAILED;
}
break;
}
if (bytes_written)
*bytes_written = result;
return G_POLLABLE_RETURN_OK;
}
#else
{
struct sockaddr_storage addr;
guint addrlen;
DWORD bytes_sent;
int result;
WSABUF *bufs;
gint i;
/* Win32 doesn't support control messages.
Actually this is possible for raw and datagram sockets
via WSASendMessage on Vista or later, but that doesn't
seem very useful */
if (num_messages != 0)
{
g_set_error_literal (error, G_IO_ERROR, G_IO_ERROR_NOT_SUPPORTED,
_("GSocketControlMessage not supported on Windows"));
return G_POLLABLE_RETURN_FAILED;
}
/* iov */
bufs = g_newa (WSABUF, num_vectors);
for (i = 0; i < num_vectors; i++)
{
bufs[i].buf = (char *)vectors[i].buffer;
bufs[i].len = (gulong)vectors[i].size;
}
/* name */
addrlen = 0; /* Avoid warning */
if (address)
{
addrlen = g_socket_address_get_native_size (address);
if (!g_socket_address_to_native (address, &addr, sizeof addr, error))
return G_POLLABLE_RETURN_FAILED;
}
while (1)
{
if (address)
result = WSASendTo (socket->priv->fd,
bufs, num_vectors,
&bytes_sent, flags,
(const struct sockaddr *)&addr, addrlen,
NULL, NULL);
else
result = WSASend (socket->priv->fd,
bufs, num_vectors,
&bytes_sent, flags,
NULL, NULL);
if (result != 0)
{
int errsv = get_socket_errno ();
if (errsv == WSAEINTR)
continue;
if (errsv == WSAEWOULDBLOCK)
{
win32_unset_event_mask (socket, FD_WRITE);
if (timeout_us != 0)
{
if (!block_on_timeout (socket, G_IO_OUT, timeout_us,
start_time, cancellable, error))
return G_POLLABLE_RETURN_FAILED;
continue;
}
return G_POLLABLE_RETURN_WOULD_BLOCK;
}
socket_set_error_lazy (error, errsv, _("Error sending message: %s"));
return G_POLLABLE_RETURN_FAILED;
}
break;
}
if (bytes_written)
*bytes_written = bytes_sent;
return G_POLLABLE_RETURN_OK;
}
#endif
}
/**
* g_socket_send_messages:
* @socket: a #GSocket
* @messages: (array length=num_messages): an array of #GOutputMessage structs
* @num_messages: the number of elements in @messages
* @flags: an int containing #GSocketMsgFlags flags, which may additionally
* contain [other platform specific flags](http://man7.org/linux/man-pages/man2/recv.2.html)
* @cancellable: (nullable): a %GCancellable or %NULL
* @error: #GError for error reporting, or %NULL to ignore.
*
* Send multiple data messages from @socket in one go. This is the most
* complicated and fully-featured version of this call. For easier use, see
* g_socket_send(), g_socket_send_to(), and g_socket_send_message().
*
* @messages must point to an array of #GOutputMessage structs and
* @num_messages must be the length of this array. Each #GOutputMessage
* contains an address to send the data to, and a pointer to an array of
* #GOutputVector structs to describe the buffers that the data to be sent
* for each message will be gathered from. Using multiple #GOutputVectors is
* more memory-efficient than manually copying data from multiple sources
* into a single buffer, and more network-efficient than making multiple
* calls to g_socket_send(). Sending multiple messages in one go avoids the
* overhead of making a lot of syscalls in scenarios where a lot of data
* packets need to be sent (e.g. high-bandwidth video streaming over RTP/UDP),
* or where the same data needs to be sent to multiple recipients.
*
* @flags modify how the message is sent. The commonly available arguments
* for this are available in the #GSocketMsgFlags enum, but the
* values there are the same as the system values, and the flags
* are passed in as-is, so you can pass in system-specific flags too.
*
* If the socket is in blocking mode the call will block until there is
* space for all the data in the socket queue. If there is no space available
* and the socket is in non-blocking mode a %G_IO_ERROR_WOULD_BLOCK error
* will be returned if no data was written at all, otherwise the number of
* messages sent will be returned. To be notified when space is available,
* wait for the %G_IO_OUT condition. Note though that you may still receive
* %G_IO_ERROR_WOULD_BLOCK from g_socket_send() even if you were previously
* notified of a %G_IO_OUT condition. (On Windows in particular, this is
* very common due to the way the underlying APIs work.)
*
* On error -1 is returned and @error is set accordingly. An error will only
* be returned if zero messages could be sent; otherwise the number of messages
* successfully sent before the error will be returned.
*
* Returns: number of messages sent, or -1 on error. Note that the number of
* messages sent may be smaller than @num_messages if the socket is
* non-blocking or if @num_messages was larger than UIO_MAXIOV (1024),
* in which case the caller may re-try to send the remaining messages.
*
* Since: 2.44
*/
gint
g_socket_send_messages (GSocket *socket,
GOutputMessage *messages,
guint num_messages,
gint flags,
GCancellable *cancellable,
GError **error)
{
return g_socket_send_messages_with_timeout (socket, messages, num_messages,
flags,
socket->priv->blocking ? -1 : 0,
cancellable, error);
}
static gint
g_socket_send_messages_with_timeout (GSocket *socket,
GOutputMessage *messages,
guint num_messages,
gint flags,
gint64 timeout_us,
GCancellable *cancellable,
GError **error)
{
gint64 start_time;
g_return_val_if_fail (G_IS_SOCKET (socket), -1);
g_return_val_if_fail (num_messages == 0 || messages != NULL, -1);
g_return_val_if_fail (cancellable == NULL || G_IS_CANCELLABLE (cancellable), -1);
g_return_val_if_fail (error == NULL || *error == NULL, -1);
start_time = g_get_monotonic_time ();
if (!check_socket (socket, error))
return -1;
if (!check_timeout (socket, error))
return -1;
if (g_cancellable_set_error_if_cancelled (cancellable, error))
return -1;
if (num_messages == 0)
return 0;
#if !defined (G_OS_WIN32) && defined (HAVE_SENDMMSG)
{
struct mmsghdr *msgvec;
guint i, num_sent;
/* Clamp the number of vectors if more given than we can write in one go.
* The caller has to handle short writes anyway.
*/
if (num_messages > G_IOV_MAX)
num_messages = G_IOV_MAX;
msgvec = g_newa (struct mmsghdr, num_messages);
for (i = 0; i < num_messages; ++i)
{
GOutputMessage *msg = &messages[i];
struct msghdr *msg_hdr = &msgvec[i].msg_hdr;
GError *child_error = NULL;
msgvec[i].msg_len = 0;
output_message_to_msghdr (msg, (i > 0) ? &messages[i - 1] : NULL,
msg_hdr, (i > 0) ? &msgvec[i - 1].msg_hdr : NULL,
&child_error);
if (child_error != NULL)
{
g_propagate_error (error, child_error);
return -1;
}
}
for (num_sent = 0; num_sent < num_messages;)
{
gint ret;
ret = sendmmsg (socket->priv->fd, msgvec + num_sent, num_messages - num_sent,
flags | G_SOCKET_DEFAULT_SEND_FLAGS);
if (ret < 0)
{
int errsv = get_socket_errno ();
if (errsv == EINTR)
continue;
if (timeout_us != 0 &&
(errsv == EWOULDBLOCK ||
errsv == EAGAIN))
{
if (!block_on_timeout (socket, G_IO_OUT, timeout_us, start_time,
cancellable, error))
{
if (num_sent > 0)
{
g_clear_error (error);
break;
}
return -1;
}
continue;
}
/* If any messages were successfully sent, do not error. */
if (num_sent > 0)
break;
socket_set_error_lazy (error, errsv, _("Error sending message: %s"));
return -1;
}
num_sent += ret;
}
for (i = 0; i < num_sent; ++i)
messages[i].bytes_sent = msgvec[i].msg_len;
return num_sent;
}
#else
{
gssize result;
guint i;
gint64 wait_timeout;
wait_timeout = timeout_us;
for (i = 0; i < num_messages; ++i)
{
GOutputMessage *msg = &messages[i];
GError *msg_error = NULL;
GPollableReturn pollable_result;
gsize bytes_written = 0;
pollable_result = g_socket_send_message_with_timeout (socket, msg->address,
msg->vectors,
msg->num_vectors,
msg->control_messages,
msg->num_control_messages,
flags, wait_timeout,
&bytes_written,
cancellable, &msg_error);
if (pollable_result == G_POLLABLE_RETURN_WOULD_BLOCK)
{
#ifndef G_OS_WIN32
socket_set_error_lazy (&msg_error, EWOULDBLOCK, _("Error sending message: %s"));
#else
socket_set_error_lazy (&msg_error, WSAEWOULDBLOCK, _("Error sending message: %s"));
#endif
}
if (G_MAXSSIZE > bytes_written &&
pollable_result == G_POLLABLE_RETURN_OK)
result = (gssize) bytes_written;
else
result = -1;
/* check if we've timed out or how much time to wait at most */
if (timeout_us > 0)
{
gint64 elapsed = g_get_monotonic_time () - start_time;
wait_timeout = MAX (timeout_us - elapsed, 1);
}
if (result < 0)
{
/* if we couldn't send all messages, just return how many we did
* manage to send, provided we managed to send at least one */
if (i > 0)
{
g_error_free (msg_error);
return i;
}
else
{
g_propagate_error (error, msg_error);
return -1;
}
}
msg->bytes_sent = result;
}
return i;
}
#endif
}
static GSocketAddress *
cache_recv_address (GSocket *socket, struct sockaddr *native, size_t native_len)
{
GSocketAddress *saddr;
gint i;
guint64 oldest_time = G_MAXUINT64;
gint oldest_index = 0;
if (native_len == 0)
return NULL;
saddr = NULL;
for (i = 0; i < RECV_ADDR_CACHE_SIZE; i++)
{
GSocketAddress *tmp = socket->priv->recv_addr_cache[i].addr;
gpointer tmp_native = socket->priv->recv_addr_cache[i].native;
gsize tmp_native_len = socket->priv->recv_addr_cache[i].native_len;
if (!tmp)
continue;
if (tmp_native_len != native_len)
continue;
if (memcmp (tmp_native, native, native_len) == 0)
{
saddr = g_object_ref (tmp);
socket->priv->recv_addr_cache[i].last_used = g_get_monotonic_time ();
return saddr;
}
if (socket->priv->recv_addr_cache[i].last_used < oldest_time)
{
oldest_time = socket->priv->recv_addr_cache[i].last_used;
oldest_index = i;
}
}
saddr = g_socket_address_new_from_native (native, native_len);
if (socket->priv->recv_addr_cache[oldest_index].addr)
{
g_object_unref (socket->priv->recv_addr_cache[oldest_index].addr);
g_free (socket->priv->recv_addr_cache[oldest_index].native);
}
socket->priv->recv_addr_cache[oldest_index].native = g_memdup2 (native, native_len);
socket->priv->recv_addr_cache[oldest_index].native_len = native_len;
socket->priv->recv_addr_cache[oldest_index].addr = g_object_ref (saddr);
socket->priv->recv_addr_cache[oldest_index].last_used = g_get_monotonic_time ();
return saddr;
}
static gssize
g_socket_receive_message_with_timeout (GSocket *socket,
GSocketAddress **address,
GInputVector *vectors,
gint num_vectors,
GSocketControlMessage ***messages,
gint *num_messages,
gint *flags,
gint64 timeout_us,
GCancellable *cancellable,
GError **error)
{
GInputVector one_vector;
char one_byte;
gint64 start_time;
g_return_val_if_fail (G_IS_SOCKET (socket), -1);
start_time = g_get_monotonic_time ();
if (!check_socket (socket, error))
return -1;
if (!check_timeout (socket, error))
return -1;
if (g_cancellable_set_error_if_cancelled (cancellable, error))
return -1;
if (num_vectors == -1)
{
for (num_vectors = 0;
vectors[num_vectors].buffer != NULL;
num_vectors++)
;
}
if (num_vectors == 0)
{
one_vector.buffer = &one_byte;
one_vector.size = 1;
num_vectors = 1;
vectors = &one_vector;
}
#ifndef G_OS_WIN32
{
GInputMessage input_message;
struct msghdr msg;
gssize result;
input_message.address = address;
input_message.vectors = vectors;
input_message.num_vectors = num_vectors;
input_message.bytes_received = 0;
input_message.flags = (flags != NULL) ? *flags : 0;
input_message.control_messages = messages;
input_message.num_control_messages = (guint *) num_messages;
/* We always set the close-on-exec flag so we don't leak file
* descriptors into child processes. Note that gunixfdmessage.c
* will later call fcntl (fd, FD_CLOEXEC), but that isn't atomic.
*/
#ifdef MSG_CMSG_CLOEXEC
input_message.flags |= MSG_CMSG_CLOEXEC;
#endif
input_message_to_msghdr (&input_message, &msg);
/* do it */
while (1)
{
result = recvmsg (socket->priv->fd, &msg, msg.msg_flags);
#ifdef MSG_CMSG_CLOEXEC
if (result < 0 && get_socket_errno () == EINVAL)
{
/* We must be running on an old kernel. Call without the flag. */
msg.msg_flags &= ~(MSG_CMSG_CLOEXEC);
result = recvmsg (socket->priv->fd, &msg, msg.msg_flags);
}
#endif
if (result < 0)
{
int errsv = get_socket_errno ();
if (errsv == EINTR)
continue;
if (timeout_us != 0 &&
(errsv == EWOULDBLOCK ||
errsv == EAGAIN))
{
if (!block_on_timeout (socket, G_IO_IN, timeout_us, start_time,
cancellable, error))
return -1;
continue;
}
socket_set_error_lazy (error, errsv, _("Error receiving message: %s"));
return -1;
}
break;
}
input_message_from_msghdr (&msg, &input_message, socket);
if (flags != NULL)
*flags = input_message.flags;
return result;
}
#else
{
struct sockaddr_storage addr;
int addrlen;
DWORD bytes_received;
DWORD win_flags;
int result;
WSABUF *bufs;
gint i;
/* iov */
bufs = g_newa (WSABUF, num_vectors);
for (i = 0; i < num_vectors; i++)
{
bufs[i].buf = (char *)vectors[i].buffer;
bufs[i].len = (gulong)vectors[i].size;
}
/* flags */
if (flags != NULL)
win_flags = *flags;
else
win_flags = 0;
/* do it */
while (1)
{
/* addrlen has to be of type int because thats how WSARecvFrom() is defined */
G_STATIC_ASSERT (sizeof addr <= G_MAXINT);
addrlen = sizeof addr;
if (address)
result = WSARecvFrom (socket->priv->fd,
bufs, num_vectors,
&bytes_received, &win_flags,
(struct sockaddr *)&addr, &addrlen,
NULL, NULL);
else
result = WSARecv (socket->priv->fd,
bufs, num_vectors,
&bytes_received, &win_flags,
NULL, NULL);
if (result != 0)
{
int errsv = get_socket_errno ();
if (errsv == WSAEINTR)
continue;
win32_unset_event_mask (socket, FD_READ);
if (errsv == WSAEWOULDBLOCK)
{
if (timeout_us != 0)
{
if (!block_on_timeout (socket, G_IO_IN, timeout_us,
start_time, cancellable, error))
return -1;
continue;
}
}
socket_set_error_lazy (error, errsv, _("Error receiving message: %s"));
return -1;
}
win32_unset_event_mask (socket, FD_READ);
break;
}
/* decode address */
if (address != NULL)
{
*address = cache_recv_address (socket, (struct sockaddr *)&addr, addrlen);
}
/* capture the flags */
if (flags != NULL)
*flags = win_flags;
if (messages != NULL)
*messages = NULL;
if (num_messages != NULL)
*num_messages = 0;
return bytes_received;
}
#endif
}
/**
* g_socket_receive_messages:
* @socket: a #GSocket
* @messages: (array length=num_messages): an array of #GInputMessage structs
* @num_messages: the number of elements in @messages
* @flags: an int containing #GSocketMsgFlags flags for the overall operation,
* which may additionally contain
* [other platform specific flags](http://man7.org/linux/man-pages/man2/recv.2.html)
* @cancellable: (nullable): a %GCancellable or %NULL
* @error: #GError for error reporting, or %NULL to ignore
*
* Receive multiple data messages from @socket in one go. This is the most
* complicated and fully-featured version of this call. For easier use, see
* g_socket_receive(), g_socket_receive_from(), and g_socket_receive_message().
*
* @messages must point to an array of #GInputMessage structs and
* @num_messages must be the length of this array. Each #GInputMessage
* contains a pointer to an array of #GInputVector structs describing the
* buffers that the data received in each message will be written to. Using
* multiple #GInputVectors is more memory-efficient than manually copying data
* out of a single buffer to multiple sources, and more system-call-efficient
* than making multiple calls to g_socket_receive(), such as in scenarios where
* a lot of data packets need to be received (e.g. high-bandwidth video
* streaming over RTP/UDP).
*
* @flags modify how all messages are received. The commonly available
* arguments for this are available in the #GSocketMsgFlags enum, but the
* values there are the same as the system values, and the flags
* are passed in as-is, so you can pass in system-specific flags too. These
* flags affect the overall receive operation. Flags affecting individual
* messages are returned in #GInputMessage.flags.
*
* The other members of #GInputMessage are treated as described in its
* documentation.
*
* If #GSocket:blocking is %TRUE the call will block until @num_messages have
* been received, or the end of the stream is reached.
*
* If #GSocket:blocking is %FALSE the call will return up to @num_messages
* without blocking, or %G_IO_ERROR_WOULD_BLOCK if no messages are queued in the
* operating system to be received.
*
* In blocking mode, if #GSocket:timeout is positive and is reached before any
* messages are received, %G_IO_ERROR_TIMED_OUT is returned, otherwise up to
* @num_messages are returned. (Note: This is effectively the
* behaviour of `MSG_WAITFORONE` with recvmmsg().)
*
* To be notified when messages are available, wait for the
* %G_IO_IN condition. Note though that you may still receive
* %G_IO_ERROR_WOULD_BLOCK from g_socket_receive_messages() even if you were
* previously notified of a %G_IO_IN condition.
*
* If the remote peer closes the connection, any messages queued in the
* operating system will be returned, and subsequent calls to
* g_socket_receive_messages() will return 0 (with no error set).
*
* On error -1 is returned and @error is set accordingly. An error will only
* be returned if zero messages could be received; otherwise the number of
* messages successfully received before the error will be returned.
*
* Returns: number of messages received, or -1 on error. Note that the number
* of messages received may be smaller than @num_messages if in non-blocking
* mode, if the peer closed the connection, or if @num_messages
* was larger than `UIO_MAXIOV` (1024), in which case the caller may re-try
* to receive the remaining messages.
*
* Since: 2.48
*/
gint
g_socket_receive_messages (GSocket *socket,
GInputMessage *messages,
guint num_messages,
gint flags,
GCancellable *cancellable,
GError **error)
{
if (!check_socket (socket, error) ||
!check_timeout (socket, error))
return -1;
return g_socket_receive_messages_with_timeout (socket, messages, num_messages,
flags,
socket->priv->blocking ? -1 : 0,
cancellable, error);
}
static gint
g_socket_receive_messages_with_timeout (GSocket *socket,
GInputMessage *messages,
guint num_messages,
gint flags,
gint64 timeout_us,
GCancellable *cancellable,
GError **error)
{
gint64 start_time;
g_return_val_if_fail (G_IS_SOCKET (socket), -1);
g_return_val_if_fail (num_messages == 0 || messages != NULL, -1);
g_return_val_if_fail (cancellable == NULL ||
G_IS_CANCELLABLE (cancellable), -1);
g_return_val_if_fail (error == NULL || *error == NULL, -1);
start_time = g_get_monotonic_time ();
if (!check_socket (socket, error))
return -1;
if (!check_timeout (socket, error))
return -1;
if (g_cancellable_set_error_if_cancelled (cancellable, error))
return -1;
if (num_messages == 0)
return 0;
#if !defined (G_OS_WIN32) && defined (HAVE_RECVMMSG)
{
struct mmsghdr *msgvec;
guint i, num_received;
/* Clamp the number of vectors if more given than we can write in one go.
* The caller has to handle short writes anyway.
*/
if (num_messages > G_IOV_MAX)
num_messages = G_IOV_MAX;
msgvec = g_newa (struct mmsghdr, num_messages);
for (i = 0; i < num_messages; ++i)
{
GInputMessage *msg = &messages[i];
struct msghdr *msg_hdr = &msgvec[i].msg_hdr;
input_message_to_msghdr (msg, msg_hdr);
msgvec[i].msg_len = 0;
}
/* We always set the close-on-exec flag so we don't leak file
* descriptors into child processes. Note that gunixfdmessage.c
* will later call fcntl (fd, FD_CLOEXEC), but that isn't atomic.
*/
#ifdef MSG_CMSG_CLOEXEC
flags |= MSG_CMSG_CLOEXEC;
#endif
for (num_received = 0; num_received < num_messages;)
{
gint ret;
/* We operate in non-blocking mode and handle the timeout ourselves. */
ret = recvmmsg (socket->priv->fd,
msgvec + num_received,
num_messages - num_received,
flags | G_SOCKET_DEFAULT_SEND_FLAGS, NULL);
#ifdef MSG_CMSG_CLOEXEC
if (ret < 0 && get_socket_errno () == EINVAL)
{
/* We must be running on an old kernel. Call without the flag. */
flags &= ~(MSG_CMSG_CLOEXEC);
ret = recvmmsg (socket->priv->fd,
msgvec + num_received,
num_messages - num_received,
flags | G_SOCKET_DEFAULT_SEND_FLAGS, NULL);
}
#endif
if (ret < 0)
{
int errsv = get_socket_errno ();
if (errsv == EINTR)
continue;
if (timeout_us != 0 &&
(errsv == EWOULDBLOCK ||
errsv == EAGAIN))
{
if (!block_on_timeout (socket, G_IO_IN, timeout_us, start_time,
cancellable, error))
{
if (num_received > 0)
{
g_clear_error (error);
break;
}
return -1;
}
continue;
}
/* If any messages were successfully received, do not error. */
if (num_received > 0)
break;
socket_set_error_lazy (error, errsv,
_("Error receiving message: %s"));
return -1;
}
else if (ret == 0)
{
/* EOS. */
break;
}
num_received += ret;
}
for (i = 0; i < num_received; ++i)
{
input_message_from_msghdr (&msgvec[i].msg_hdr, &messages[i], socket);
messages[i].bytes_received = msgvec[i].msg_len;
}
return num_received;
}
#else
{
guint i;
gint64 wait_timeout;
wait_timeout = timeout_us;
for (i = 0; i < num_messages; i++)
{
GInputMessage *msg = &messages[i];
gssize len;
GError *msg_error = NULL;
msg->flags = flags; /* in-out parameter */
len = g_socket_receive_message_with_timeout (socket,
msg->address,
msg->vectors,
msg->num_vectors,
msg->control_messages,
(gint *) msg->num_control_messages,
&msg->flags,
wait_timeout,
cancellable,
&msg_error);
/* check if we've timed out or how much time to wait at most */
if (timeout_us > 0)
{
gint64 elapsed = g_get_monotonic_time () - start_time;
wait_timeout = MAX (timeout_us - elapsed, 1);
}
if (len >= 0)
msg->bytes_received = len;
if (i != 0 &&
(g_error_matches (msg_error, G_IO_ERROR, G_IO_ERROR_WOULD_BLOCK) ||
g_error_matches (msg_error, G_IO_ERROR, G_IO_ERROR_TIMED_OUT)))
{
g_clear_error (&msg_error);
break;
}
if (msg_error != NULL)
{
g_propagate_error (error, msg_error);
return -1;
}
if (len == 0)
break;
}
return i;
}
#endif
}
/**
* g_socket_receive_message:
* @socket: a #GSocket
* @address: (out) (optional): a pointer to a #GSocketAddress
* pointer, or %NULL
* @vectors: (array length=num_vectors): an array of #GInputVector structs
* @num_vectors: the number of elements in @vectors, or -1
* @messages: (array length=num_messages) (out) (optional) (nullable): a pointer
* which may be filled with an array of #GSocketControlMessages, or %NULL
* @num_messages: (out): a pointer which will be filled with the number of
* elements in @messages, or %NULL
* @flags: (inout): a pointer to an int containing #GSocketMsgFlags flags,
* which may additionally contain
* [other platform specific flags](http://man7.org/linux/man-pages/man2/recv.2.html)
* @cancellable: a %GCancellable or %NULL
* @error: a #GError pointer, or %NULL
*
* Receive data from a socket. For receiving multiple messages, see
* g_socket_receive_messages(); for easier use, see
* g_socket_receive() and g_socket_receive_from().
*
* If @address is non-%NULL then @address will be set equal to the
* source address of the received packet.
* @address is owned by the caller.
*
* @vector must point to an array of #GInputVector structs and
* @num_vectors must be the length of this array. These structs
* describe the buffers that received data will be scattered into.
* If @num_vectors is -1, then @vectors is assumed to be terminated
* by a #GInputVector with a %NULL buffer pointer.
*
* As a special case, if @num_vectors is 0 (in which case, @vectors
* may of course be %NULL), then a single byte is received and
* discarded. This is to facilitate the common practice of sending a
* single '\0' byte for the purposes of transferring ancillary data.
*
* @messages, if non-%NULL, will be set to point to a newly-allocated
* array of #GSocketControlMessage instances or %NULL if no such
* messages was received. These correspond to the control messages
* received from the kernel, one #GSocketControlMessage per message
* from the kernel. This array is %NULL-terminated and must be freed
* by the caller using g_free() after calling g_object_unref() on each
* element. If @messages is %NULL, any control messages received will
* be discarded.
*
* @num_messages, if non-%NULL, will be set to the number of control
* messages received.
*
* If both @messages and @num_messages are non-%NULL, then
* @num_messages gives the number of #GSocketControlMessage instances
* in @messages (ie: not including the %NULL terminator).
*
* @flags is an in/out parameter. The commonly available arguments
* for this are available in the #GSocketMsgFlags enum, but the
* values there are the same as the system values, and the flags
* are passed in as-is, so you can pass in system-specific flags too
* (and g_socket_receive_message() may pass system-specific flags out).
* Flags passed in to the parameter affect the receive operation; flags returned
* out of it are relevant to the specific returned message.
*
* As with g_socket_receive(), data may be discarded if @socket is
* %G_SOCKET_TYPE_DATAGRAM or %G_SOCKET_TYPE_SEQPACKET and you do not
* provide enough buffer space to read a complete message. You can pass
* %G_SOCKET_MSG_PEEK in @flags to peek at the current message without
* removing it from the receive queue, but there is no portable way to find
* out the length of the message other than by reading it into a
* sufficiently-large buffer.
*
* If the socket is in blocking mode the call will block until there
* is some data to receive, the connection is closed, or there is an
* error. If there is no data available and the socket is in
* non-blocking mode, a %G_IO_ERROR_WOULD_BLOCK error will be
* returned. To be notified when data is available, wait for the
* %G_IO_IN condition.
*
* On error -1 is returned and @error is set accordingly.
*
* Returns: Number of bytes read, or 0 if the connection was closed by
* the peer, or -1 on error
*
* Since: 2.22
*/
gssize
g_socket_receive_message (GSocket *socket,
GSocketAddress **address,
GInputVector *vectors,
gint num_vectors,
GSocketControlMessage ***messages,
gint *num_messages,
gint *flags,
GCancellable *cancellable,
GError **error)
{
return g_socket_receive_message_with_timeout (socket, address, vectors,
num_vectors, messages,
num_messages, flags,
socket->priv->blocking ? -1 : 0,
cancellable, error);
}
/**
* g_socket_get_credentials:
* @socket: a #GSocket.
* @error: #GError for error reporting, or %NULL to ignore.
*
* Returns the credentials of the foreign process connected to this
* socket, if any (e.g. it is only supported for %G_SOCKET_FAMILY_UNIX
* sockets).
*
* If this operation isn't supported on the OS, the method fails with
* the %G_IO_ERROR_NOT_SUPPORTED error. On Linux this is implemented
* by reading the %SO_PEERCRED option on the underlying socket.
*
* This method can be expected to be available on the following platforms:
*
* - Linux since GLib 2.26
* - OpenBSD since GLib 2.30
* - Solaris, Illumos and OpenSolaris since GLib 2.40
* - NetBSD since GLib 2.42
* - macOS, tvOS, iOS since GLib 2.66
*
* Other ways to obtain credentials from a foreign peer includes the
* #GUnixCredentialsMessage type and
* g_unix_connection_send_credentials() /
* g_unix_connection_receive_credentials() functions.
*
* Returns: (transfer full): %NULL if @error is set, otherwise a #GCredentials object
* that must be freed with g_object_unref().
*
* Since: 2.26
*/
GCredentials *
g_socket_get_credentials (GSocket *socket,
GError **error)
{
GCredentials *ret;
g_return_val_if_fail (G_IS_SOCKET (socket), NULL);
g_return_val_if_fail (error == NULL || *error == NULL, NULL);
if (!check_socket (socket, error))
return NULL;
ret = NULL;
#if G_CREDENTIALS_SOCKET_GET_CREDENTIALS_SUPPORTED
#ifdef SO_PEERCRED
{
guint8 native_creds_buf[G_CREDENTIALS_NATIVE_SIZE];
socklen_t optlen = sizeof (native_creds_buf);
if (getsockopt (socket->priv->fd,
SOL_SOCKET,
SO_PEERCRED,
native_creds_buf,
&optlen) == 0)
{
ret = g_credentials_new ();
g_credentials_set_native (ret,
G_CREDENTIALS_NATIVE_TYPE,
native_creds_buf);
}
}
#elif G_CREDENTIALS_USE_APPLE_XUCRED
{
struct xucred cred;
socklen_t optlen = sizeof (cred);
if (getsockopt (socket->priv->fd,
SOL_LOCAL,
LOCAL_PEERCRED,
&cred,
&optlen) == 0
&& optlen != 0)
{
if (cred.cr_version == XUCRED_VERSION)
{
pid_t pid;
socklen_t optlen = sizeof (pid);
ret = g_credentials_new ();
g_credentials_set_native (ret,
G_CREDENTIALS_NATIVE_TYPE,
&cred);
#ifdef LOCAL_PEERPID
if (getsockopt (socket->priv->fd,
SOL_LOCAL,
LOCAL_PEERPID,
&pid,
&optlen) == 0)
_g_credentials_set_local_peerid (ret, pid);
#endif
}
else
{
g_set_error (error,
G_IO_ERROR,
G_IO_ERROR_NOT_SUPPORTED,
/* No point in translating this! */
"struct xucred cr_version %u != %u",
cred.cr_version, XUCRED_VERSION);
/* Reuse a translatable string we already have */
g_prefix_error (error,
_("Unable to read socket credentials: %s"),
"");
return NULL;
}
}
else if (optlen == 0 || errno == EINVAL)
{
g_set_error (error,
G_IO_ERROR,
G_IO_ERROR_NOT_SUPPORTED,
_("Unable to read socket credentials: %s"),
"unsupported socket type");
return NULL;
}
}
#elif G_CREDENTIALS_USE_NETBSD_UNPCBID
{
struct unpcbid cred;
socklen_t optlen = sizeof (cred);
if (getsockopt (socket->priv->fd,
0,
LOCAL_PEEREID,
&cred,
&optlen) == 0)
{
ret = g_credentials_new ();
g_credentials_set_native (ret,
G_CREDENTIALS_NATIVE_TYPE,
&cred);
}
}
#elif G_CREDENTIALS_USE_SOLARIS_UCRED
{
ucred_t *ucred = NULL;
if (getpeerucred (socket->priv->fd, &ucred) == 0)
{
ret = g_credentials_new ();
g_credentials_set_native (ret,
G_CREDENTIALS_TYPE_SOLARIS_UCRED,
ucred);
ucred_free (ucred);
}
}
#elif G_CREDENTIALS_USE_WIN32_PID
{
DWORD peerid, drc;
if (WSAIoctl (socket->priv->fd, SIO_AF_UNIX_GETPEERPID,
NULL, 0U,
&peerid, sizeof(peerid),
/* Windows bug: always 0 https://github.com/microsoft/WSL/issues/4676 */
&drc,
NULL, NULL) == 0)
{
ret = g_credentials_new ();
g_credentials_set_native (ret,
G_CREDENTIALS_TYPE_WIN32_PID,
&peerid);
}
}
#else
#error "G_CREDENTIALS_SOCKET_GET_CREDENTIALS_SUPPORTED is set but this is no code for this platform"
#endif
if (!ret)
{
int errsv = get_socket_errno ();
g_set_error (error,
G_IO_ERROR,
socket_io_error_from_errno (errsv),
_("Unable to read socket credentials: %s"),
socket_strerror (errsv));
}
#else
g_set_error_literal (error,
G_IO_ERROR,
G_IO_ERROR_NOT_SUPPORTED,
_("g_socket_get_credentials not implemented for this OS"));
#endif
return ret;
}
/**
* g_socket_get_option:
* @socket: a #GSocket
* @level: the "API level" of the option (eg, `SOL_SOCKET`)
* @optname: the "name" of the option (eg, `SO_BROADCAST`)
* @value: (out): return location for the option value
* @error: #GError for error reporting, or %NULL to ignore.
*
* Gets the value of an integer-valued option on @socket, as with
* getsockopt(). (If you need to fetch a non-integer-valued option,
* you will need to call getsockopt() directly.)
*
* The [<gio/gnetworking.h>][gio-gnetworking.h]
* header pulls in system headers that will define most of the
* standard/portable socket options. For unusual socket protocols or
* platform-dependent options, you may need to include additional
* headers.
*
* Note that even for socket options that are a single byte in size,
* @value is still a pointer to a #gint variable, not a #guchar;
* g_socket_get_option() will handle the conversion internally.
*
* Returns: success or failure. On failure, @error will be set, and
* the system error value (`errno` or WSAGetLastError()) will still
* be set to the result of the getsockopt() call.
*
* Since: 2.36
*/
gboolean
g_socket_get_option (GSocket *socket,
gint level,
gint optname,
gint *value,
GError **error)
{
socklen_t size;
g_return_val_if_fail (G_IS_SOCKET (socket), FALSE);
/* g_socket_get_option() is called during socket init, so skip the init checks
* in check_socket() */
if (socket->priv->inited && !check_socket (socket, error))
return FALSE;
*value = 0;
size = sizeof (gint);
if (getsockopt (socket->priv->fd, level, optname, value, &size) != 0)
{
int errsv = get_socket_errno ();
g_set_error_literal (error,
G_IO_ERROR,
socket_io_error_from_errno (errsv),
socket_strerror (errsv));
#ifndef G_OS_WIN32
/* Reset errno in case the caller wants to look at it */
errno = errsv;
#endif
return FALSE;
}
#if G_BYTE_ORDER == G_BIG_ENDIAN
/* If the returned value is smaller than an int then we need to
* slide it over into the low-order bytes of *value.
*/
if (size != sizeof (gint))
*value = *value >> (8 * (sizeof (gint) - size));
#endif
return TRUE;
}
/**
* g_socket_set_option:
* @socket: a #GSocket
* @level: the "API level" of the option (eg, `SOL_SOCKET`)
* @optname: the "name" of the option (eg, `SO_BROADCAST`)
* @value: the value to set the option to
* @error: #GError for error reporting, or %NULL to ignore.
*
* Sets the value of an integer-valued option on @socket, as with
* setsockopt(). (If you need to set a non-integer-valued option,
* you will need to call setsockopt() directly.)
*
* The [<gio/gnetworking.h>][gio-gnetworking.h]
* header pulls in system headers that will define most of the
* standard/portable socket options. For unusual socket protocols or
* platform-dependent options, you may need to include additional
* headers.
*
* Returns: success or failure. On failure, @error will be set, and
* the system error value (`errno` or WSAGetLastError()) will still
* be set to the result of the setsockopt() call.
*
* Since: 2.36
*/
gboolean
g_socket_set_option (GSocket *socket,
gint level,
gint optname,
gint value,
GError **error)
{
gint errsv;
g_return_val_if_fail (G_IS_SOCKET (socket), FALSE);
/* g_socket_set_option() is called during socket init, so skip the init checks
* in check_socket() */
if (socket->priv->inited && !check_socket (socket, error))
return FALSE;
if (setsockopt (socket->priv->fd, level, optname, &value, sizeof (gint)) == 0)
return TRUE;
#if !defined (__linux__) && !defined (G_OS_WIN32)
/* Linux and Windows let you set a single-byte value from an int,
* but most other platforms don't.
*/
if (errno == EINVAL && value >= SCHAR_MIN && value <= CHAR_MAX)
{
#if G_BYTE_ORDER == G_BIG_ENDIAN
value = value << (8 * (sizeof (gint) - 1));
#endif
if (setsockopt (socket->priv->fd, level, optname, &value, 1) == 0)
return TRUE;
}
#endif
errsv = get_socket_errno ();
g_set_error_literal (error,
G_IO_ERROR,
socket_io_error_from_errno (errsv),
socket_strerror (errsv));
#ifndef G_OS_WIN32
errno = errsv;
#endif
return FALSE;
}