glib/glib/gvarianttype.c
Philip Withnall c6340430db
gvarianttype: Convert docs to gi-docgen linking syntax
And improve formatting in a few places while I’m there:
 * Add quotes around ‘maybe’ types to make it clearer that ‘maybe’ is
   being used as a proper noun
 * Add linebreaks so that all doc comments start with a single-sentence
   summary of the method
 * Improve formatting of constants
 * Add a few links to external specifications

See https://developer.gnome.org/documentation/guidelines/devel-docs.html

Signed-off-by: Philip Withnall <pwithnall@gnome.org>

Helps: #3250
2024-10-01 19:55:28 +01:00

1275 lines
37 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright © 2007, 2008 Ryan Lortie
* Copyright © 2009, 2010 Codethink Limited
*
* SPDX-License-Identifier: LGPL-2.1-or-later
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*
* Author: Ryan Lortie <desrt@desrt.ca>
*/
#include "config.h"
#include "gvarianttype-private.h"
#include <glib/gtestutils.h>
#include <glib/gstrfuncs.h>
#include <glib/gvariant-internal.h>
#include <string.h>
/**
* GVariantType:
*
* A type in the [type@GLib.Variant] type system.
*
* This section introduces the [type@GLib.Variant] type system. It is based, in
* large part, on the D-Bus type system, with two major changes and
* some minor lifting of restrictions. The
* [D-Bus specification](http://dbus.freedesktop.org/doc/dbus-specification.html),
* therefore, provides a significant amount of
* information that is useful when working with [type@GLib.Variant].
*
* The first major change with respect to the D-Bus type system is the
* introduction of maybe (or nullable) types. Any type in [type@GLib.Variant]
* can be converted to a maybe type, in which case, `nothing` (or `null`)
* becomes a valid value. Maybe types have been added by introducing the
* character `m` to type strings.
*
* The second major change is that the [type@GLib.Variant] type system supports
* the concept of indefinite types — types that are less specific than
* the normal types found in D-Bus. For example, it is possible to speak
* of an array of any type in [type@GLib.Variant], where the D-Bus type system
* would require you to speak of an array of integers or an array of
* strings. Indefinite types have been added by introducing the
* characters `*`, `?` and `r` to type strings.
*
* Finally, all arbitrary restrictions relating to the complexity of
* types are lifted along with the restriction that dictionary entries
* may only appear nested inside of arrays.
*
* Just as in D-Bus, [type@GLib.Variant] types are described with strings (type
* strings). Subject to the differences mentioned above, these strings
* are of the same form as those found in D-Bus. Note, however: D-Bus
* always works in terms of messages and therefore individual type
* strings appear nowhere in its interface. Instead, signatures
* are a concatenation of the strings of the type of each argument in a
* message. [type@GLib.Variant] deals with single values directly so
* [type@GLib.Variant] type strings always describe the type of exactly one
* value. This means that a D-Bus signature string is generally not a valid
* [type@GLib.Variant] type string — except in the case that it is the signature
* of a message containing exactly one argument.
*
* An indefinite type is similar in spirit to what may be called an
* abstract type in other type systems. No value can exist that has an
* indefinite type as its type, but values can exist that have types
* that are subtypes of indefinite types. That is to say,
* [method@GLib.Variant.get_type] will never return an indefinite type, but
* calling [method@GLib.Variant.is_of_type] with an indefinite type may return
* true. For example, you cannot have a value that represents an
* array of no particular type, but you can have an array of integers
* which certainly matches the type of an array of no particular type,
* since array of integers is a subtype of array of no particular
* type.
*
* This is similar to how instances of abstract classes may not
* directly exist in other type systems, but instances of their
* non-abstract subtypes may. For example, in GTK, no object that has
* the type of [`GtkWidget`](https://docs.gtk.org/gtk4/class.Widget.html) can
* exist (since `GtkWidget` is an abstract class), but a [`GtkWindow`](https://docs.gtk.org/gtk4/class.Window.html)
* can certainly be instantiated, and you would say that a `GtkWindow` is a
* `GtkWidget` (since `GtkWindow` is a subclass of `GtkWidget`).
*
* Two types may not be compared by value; use [method@GLib.VariantType.equal]
* or [method@GLib.VariantType.is_subtype_of] May be copied using
* [method@GLib.VariantType.copy] and freed using [method@GLib.VariantType.free].
*
* ## GVariant Type Strings
*
* A [type@GLib.Variant] type string can be any of the following:
*
* - any basic type string (listed below)
* - `v`, `r` or `*`
* - one of the characters `a` or `m`, followed by another type string
* - the character `(`, followed by a concatenation of zero or more other
* type strings, followed by the character `)`
* - the character `{`, followed by a basic type string (see below),
* followed by another type string, followed by the character `}`
*
* A basic type string describes a basic type (as per
* [method@GLib.VariantType.is_basic]) and is always a single character in
* length. The valid basic type strings are `b`, `y`, `n`, `q`, `i`, `u`, `x`,
* `t`, `h`, `d`, `s`, `o`, `g` and `?`.
*
* The above definition is recursive to arbitrary depth. `aaaaai` and
* `(ui(nq((y)))s)` are both valid type strings, as is
* `a(aa(ui)(qna{ya(yd)}))`. In order to not hit memory limits,
* [type@GLib.Variant] imposes a limit on recursion depth of 65 nested
* containers. This is the limit in the D-Bus specification (64) plus one to
* allow a [`GDBusMessage`](../gio/class.DBusMessage.html) to be nested in
* a top-level tuple.
*
* The meaning of each of the characters is as follows:
*
* - `b`: the type string of `G_VARIANT_TYPE_BOOLEAN`; a boolean value.
* - `y`: the type string of `G_VARIANT_TYPE_BYTE`; a byte.
* - `n`: the type string of `G_VARIANT_TYPE_INT16`; a signed 16 bit integer.
* - `q`: the type string of `G_VARIANT_TYPE_UINT16`; an unsigned 16 bit integer.
* - `i`: the type string of `G_VARIANT_TYPE_INT32`; a signed 32 bit integer.
* - `u`: the type string of `G_VARIANT_TYPE_UINT32`; an unsigned 32 bit integer.
* - `x`: the type string of `G_VARIANT_TYPE_INT64`; a signed 64 bit integer.
* - `t`: the type string of `G_VARIANT_TYPE_UINT64`; an unsigned 64 bit integer.
* - `h`: the type string of `G_VARIANT_TYPE_HANDLE`; a signed 32 bit value
* that, by convention, is used as an index into an array of file
* descriptors that are sent alongside a D-Bus message.
* - `d`: the type string of `G_VARIANT_TYPE_DOUBLE`; a double precision
* floating point value.
* - `s`: the type string of `G_VARIANT_TYPE_STRING`; a string.
* - `o`: the type string of `G_VARIANT_TYPE_OBJECT_PATH`; a string in the form
* of a D-Bus object path.
* - `g`: the type string of `G_VARIANT_TYPE_SIGNATURE`; a string in the form of
* a D-Bus type signature.
* - `?`: the type string of `G_VARIANT_TYPE_BASIC`; an indefinite type that
* is a supertype of any of the basic types.
* - `v`: the type string of `G_VARIANT_TYPE_VARIANT`; a container type that
* contain any other type of value.
* - `a`: used as a prefix on another type string to mean an array of that
* type; the type string `ai`, for example, is the type of an array of
* signed 32-bit integers.
* - `m`: used as a prefix on another type string to mean a maybe, or
* nullable, version of that type; the type string `ms`, for example,
* is the type of a value that maybe contains a string, or maybe contains
* nothing.
* - `()`: used to enclose zero or more other concatenated type strings to
* create a tuple type; the type string `(is)`, for example, is the type of
* a pair of an integer and a string.
* - `r`: the type string of `G_VARIANT_TYPE_TUPLE`; an indefinite type that is
* a supertype of any tuple type, regardless of the number of items.
* - `{}`: used to enclose a basic type string concatenated with another type
* string to create a dictionary entry type, which usually appears inside of
* an array to form a dictionary; the type string `a{sd}`, for example, is
* the type of a dictionary that maps strings to double precision floating
* point values.
*
* The first type (the basic type) is the key type and the second type is
* the value type. The reason that the first type is restricted to being a
* basic type is so that it can easily be hashed.
* - `*`: the type string of `G_VARIANT_TYPE_ANY`; the indefinite type that is
* a supertype of all types. Note that, as with all type strings, this
* character represents exactly one type. It cannot be used inside of tuples
* to mean any number of items.
*
* Any type string of a container that contains an indefinite type is,
* itself, an indefinite type. For example, the type string `a*`
* (corresponding to `G_VARIANT_TYPE_ARRAY`) is an indefinite type
* that is a supertype of every array type. `(*s)` is a supertype
* of all tuples that contain exactly two items where the second
* item is a string.
*
* `a{?*}` is an indefinite type that is a supertype of all arrays
* containing dictionary entries where the key is any basic type and
* the value is any type at all. This is, by definition, a dictionary,
* so this type string corresponds to `G_VARIANT_TYPE_DICTIONARY`. Note
* that, due to the restriction that the key of a dictionary entry must
* be a basic type, `{**}` is not a valid type string.
*
* Since: 2.24
*/
static gboolean
g_variant_type_check (const GVariantType *type)
{
if (type == NULL)
return FALSE;
#if 0
return g_variant_type_string_scan ((const gchar *) type, NULL, NULL);
#else
return TRUE;
#endif
}
static gboolean
variant_type_string_scan_internal (const gchar *string,
const gchar *limit,
const gchar **endptr,
gsize *depth,
gsize depth_limit)
{
gsize max_depth = 0, child_depth;
g_return_val_if_fail (string != NULL, FALSE);
if (string == limit || *string == '\0')
return FALSE;
switch (*string++)
{
case '(':
while (string == limit || *string != ')')
{
if (depth_limit == 0 ||
!variant_type_string_scan_internal (string, limit, &string,
&child_depth,
depth_limit - 1))
return FALSE;
max_depth = MAX (max_depth, child_depth + 1);
}
string++;
break;
case '{':
if (depth_limit == 0 ||
string == limit || *string == '\0' || /* { */
!strchr ("bynqihuxtdsog?", *string++) || /* key */
!variant_type_string_scan_internal (string, limit, &string,
&child_depth, depth_limit - 1) || /* value */
string == limit || *string++ != '}') /* } */
return FALSE;
max_depth = MAX (max_depth, child_depth + 1);
break;
case 'm': case 'a':
if (depth_limit == 0 ||
!variant_type_string_scan_internal (string, limit, &string,
&child_depth, depth_limit - 1))
return FALSE;
max_depth = MAX (max_depth, child_depth + 1);
break;
case 'b': case 'y': case 'n': case 'q': case 'i': case 'u':
case 'x': case 't': case 'd': case 's': case 'o': case 'g':
case 'v': case 'r': case '*': case '?': case 'h':
max_depth = MAX (max_depth, 1);
break;
default:
return FALSE;
}
if (endptr != NULL)
*endptr = string;
if (depth != NULL)
*depth = max_depth;
return TRUE;
}
/**
* g_variant_type_string_scan:
* @string: a pointer to any string
* @limit: (nullable): the end of @string
* @endptr: (out) (optional): location to store the end pointer
*
* Scan for a single complete and valid GVariant type string in @string.
*
* The memory pointed to by @limit (or bytes beyond it) is never
* accessed.
*
* If a valid type string is found, @endptr is updated to point to the
* first character past the end of the string that was found and %TRUE
* is returned.
*
* If there is no valid type string starting at @string, or if the type
* string does not end before @limit then %FALSE is returned.
*
* For the simple case of checking if a string is a valid type string,
* see [func@GLib.VariantType.string_is_valid].
*
* Returns: true if a valid type string was found
* Since: 2.24
**/
gboolean
g_variant_type_string_scan (const gchar *string,
const gchar *limit,
const gchar **endptr)
{
return variant_type_string_scan_internal (string, limit, endptr, NULL,
G_VARIANT_MAX_RECURSION_DEPTH);
}
/* < private >
* g_variant_type_string_get_depth_:
* @type_string: a pointer to any string
*
* Get the maximum depth of the nested types in @type_string. A basic type will
* return depth 1, and a container type will return a greater value. The depth
* of a tuple is 1 plus the depth of its deepest child type.
*
* If @type_string is not a valid [type@GLib.Variant] type string, `0` will be returned.
*
* Returns: depth of @type_string, or `0` on error
* Since: 2.60
*/
gsize
g_variant_type_string_get_depth_ (const gchar *type_string)
{
const gchar *endptr;
gsize depth = 0;
g_return_val_if_fail (type_string != NULL, 0);
if (!variant_type_string_scan_internal (type_string, NULL, &endptr, &depth,
G_VARIANT_MAX_RECURSION_DEPTH) ||
*endptr != '\0')
return 0;
return depth;
}
/**
* g_variant_type_string_is_valid:
* @type_string: a pointer to any string
*
* Checks if @type_string is a valid
* [GVariant type string](./struct.VariantType.html#gvariant-type-strings).
*
* This call is equivalent to calling [func@GLib.VariantType.string_scan] and
* confirming that the following character is a nul terminator.
*
* Returns: true if @type_string is exactly one valid type string
* Since 2.24
**/
gboolean
g_variant_type_string_is_valid (const gchar *type_string)
{
const gchar *endptr;
g_return_val_if_fail (type_string != NULL, FALSE);
if (!g_variant_type_string_scan (type_string, NULL, &endptr))
return FALSE;
return *endptr == '\0';
}
/**
* g_variant_type_free:
* @type: (nullable): type to free
*
* Frees a [type@GLib.VariantType] that was allocated with
* [method@GLib.VariantType.copy], [ctor@GLib.VariantType.new] or one of the
* container type constructor functions.
*
* In the case that @type is `NULL`, this function does nothing.
*
* Since 2.24
**/
void
g_variant_type_free (GVariantType *type)
{
g_return_if_fail (type == NULL || g_variant_type_check (type));
g_free (type);
}
/**
* g_variant_type_copy:
* @type: (not nullable): type to copy
*
* Makes a copy of a [type@GLib.VariantType].
*
* It is appropriate to call [method@GLib.VariantType.free] on the return value.
* @type may not be `NULL`.
*
* Returns: (transfer full): a new [type@GLib.VariantType]
* Since 2.24
**/
GVariantType *
g_variant_type_copy (const GVariantType *type)
{
gsize length;
gchar *new;
g_return_val_if_fail (g_variant_type_check (type), NULL);
length = g_variant_type_get_string_length (type);
new = g_malloc (length + 1);
memcpy (new, type, length);
new[length] = '\0';
return (GVariantType *) new;
}
/**
* g_variant_type_new:
* @type_string: a valid [GVariant type string](./struct.VariantType.html#gvariant-type-strings)
*
* Creates a new [type@GLib.VariantType] corresponding to the type string given
* by @type_string.
*
* It is appropriate to call [method@GLib.VariantType.free] on the return value.
*
* It is a programmer error to call this function with an invalid type
* string. Use [func@GLib.VariantType.string_is_valid] if you are unsure.
*
* Returns: (transfer full): a new [type@GLib.VariantType]
* Since: 2.24
*/
GVariantType *
g_variant_type_new (const gchar *type_string)
{
g_return_val_if_fail (type_string != NULL, NULL);
return g_variant_type_copy (G_VARIANT_TYPE (type_string));
}
/**
* g_variant_type_get_string_length:
* @type: type to measure
*
* Returns the length of the type string corresponding to the given @type.
*
* This function must be used to determine the valid extent of
* the memory region returned by [method@GLib.VariantType.peek_string].
*
* Returns: the length of the corresponding type string
* Since 2.24
**/
gsize
g_variant_type_get_string_length (const GVariantType *type)
{
const gchar *type_string = (const gchar *) type;
gint brackets = 0;
gsize index = 0;
g_return_val_if_fail (g_variant_type_check (type), 0);
do
{
while (type_string[index] == 'a' || type_string[index] == 'm')
index++;
if (type_string[index] == '(' || type_string[index] == '{')
brackets++;
else if (type_string[index] == ')' || type_string[index] == '}')
brackets--;
index++;
}
while (brackets);
return index;
}
/*
This function is not introspectable, it returns something that
is not an array and neither a string
*/
/**
* g_variant_type_peek_string: (skip)
* @type: type to peek at
*
* Returns the type string corresponding to the given @type.
*
* The result is not nul-terminated; in order to determine its length you
* must call [method@GLib.VariantType.get_string_length].
*
* To get a nul-terminated string, see [method@GLib.VariantType.dup_string].
*
* Returns: the corresponding type string (not nul-terminated)
* Since 2.24
**/
const gchar *
g_variant_type_peek_string (const GVariantType *type)
{
g_return_val_if_fail (g_variant_type_check (type), NULL);
return (const gchar *) type;
}
/**
* g_variant_type_dup_string:
* @type: type to copy
*
* Returns a newly-allocated copy of the type string corresponding to @type.
*
* The returned string is nul-terminated. It is appropriate to call
* [func@GLib.free] on the return value.
*
* Returns: (transfer full): the corresponding type string
* Since 2.24
**/
gchar *
g_variant_type_dup_string (const GVariantType *type)
{
g_return_val_if_fail (g_variant_type_check (type), NULL);
return g_strndup (g_variant_type_peek_string (type),
g_variant_type_get_string_length (type));
}
/**
* g_variant_type_is_definite:
* @type: type to check
*
* Determines if the given @type is definite (ie: not indefinite).
*
* A type is definite if its type string does not contain any indefinite
* type characters (`*`, `?`, or `r`).
*
* A [type@GLib.Variant] instance may not have an indefinite type, so calling
* this function on the result of [method@GLib.Variant.get_type] will always
* result in true being returned. Calling this function on an
* indefinite type like `G_VARIANT_TYPE_ARRAY`, however, will result in
* `FALSE` being returned.
*
* Returns: true if @type is definite
* Since 2.24
**/
gboolean
g_variant_type_is_definite (const GVariantType *type)
{
const gchar *type_string;
gsize type_length;
gsize i;
g_return_val_if_fail (g_variant_type_check (type), FALSE);
type_length = g_variant_type_get_string_length (type);
type_string = g_variant_type_peek_string (type);
for (i = 0; i < type_length; i++)
if (type_string[i] == '*' ||
type_string[i] == '?' ||
type_string[i] == 'r')
return FALSE;
return TRUE;
}
/**
* g_variant_type_is_container:
* @type: type to check
*
* Determines if the given @type is a container type.
*
* Container types are any array, maybe, tuple, or dictionary
* entry types plus the variant type.
*
* This function returns true for any indefinite type for which every
* definite subtype is a container — `G_VARIANT_TYPE_ARRAY`, for
* example.
*
* Returns: true if @type is a container type
* Since 2.24
**/
gboolean
g_variant_type_is_container (const GVariantType *type)
{
gchar first_char;
g_return_val_if_fail (g_variant_type_check (type), FALSE);
first_char = g_variant_type_peek_string (type)[0];
switch (first_char)
{
case 'a':
case 'm':
case 'r':
case '(':
case '{':
case 'v':
return TRUE;
default:
return FALSE;
}
}
/**
* g_variant_type_is_basic:
* @type: type to check
*
* Determines if the given @type is a basic type.
*
* Basic types are booleans, bytes, integers, doubles, strings, object
* paths and signatures.
*
* Only a basic type may be used as the key of a dictionary entry.
*
* This function returns `FALSE` for all indefinite types except
* `G_VARIANT_TYPE_BASIC`.
*
* Returns: true if @type is a basic type
* Since 2.24
**/
gboolean
g_variant_type_is_basic (const GVariantType *type)
{
gchar first_char;
g_return_val_if_fail (g_variant_type_check (type), FALSE);
first_char = g_variant_type_peek_string (type)[0];
switch (first_char)
{
case 'b':
case 'y':
case 'n':
case 'q':
case 'i':
case 'h':
case 'u':
case 't':
case 'x':
case 'd':
case 's':
case 'o':
case 'g':
case '?':
return TRUE;
default:
return FALSE;
}
}
/**
* g_variant_type_is_maybe:
* @type: type to check
*
* Determines if the given @type is a maybe type.
*
* This is true if the type string for @type starts with an `m`.
*
* This function returns true for any indefinite type for which every
* definite subtype is a maybe type — `G_VARIANT_TYPE_MAYBE`, for
* example.
*
* Returns: true if @type is a maybe type
* Since 2.24
**/
gboolean
g_variant_type_is_maybe (const GVariantType *type)
{
g_return_val_if_fail (g_variant_type_check (type), FALSE);
return g_variant_type_peek_string (type)[0] == 'm';
}
/**
* g_variant_type_is_array:
* @type: type to check
*
* Determines if the given @type is an array type.
*
* This is true if the type string for @type starts with an `a`.
*
* This function returns true for any indefinite type for which every
* definite subtype is an array type — `G_VARIANT_TYPE_ARRAY`, for
* example.
*
* Returns: true if @type is an array type
* Since 2.24
**/
gboolean
g_variant_type_is_array (const GVariantType *type)
{
g_return_val_if_fail (g_variant_type_check (type), FALSE);
return g_variant_type_peek_string (type)[0] == 'a';
}
/**
* g_variant_type_is_tuple:
* @type: type to check
*
* Determines if the given @type is a tuple type.
*
* This is true if the type string for @type starts with a `(` or if @type is
* `G_VARIANT_TYPE_TUPLE`.
*
* This function returns true for any indefinite type for which every
* definite subtype is a tuple type — `G_VARIANT_TYPE_TUPLE`, for
* example.
*
* Returns: true if @type is a tuple type
* Since 2.24
**/
gboolean
g_variant_type_is_tuple (const GVariantType *type)
{
gchar type_char;
g_return_val_if_fail (g_variant_type_check (type), FALSE);
type_char = g_variant_type_peek_string (type)[0];
return type_char == 'r' || type_char == '(';
}
/**
* g_variant_type_is_dict_entry:
* @type: type to check
*
* Determines if the given @type is a dictionary entry type.
*
* This is true if the type string for @type starts with a `{`.
*
* This function returns true for any indefinite type for which every
* definite subtype is a dictionary entry type —
* `G_VARIANT_TYPE_DICT_ENTRY`, for example.
*
* Returns: true if @type is a dictionary entry type
* Since 2.24
**/
gboolean
g_variant_type_is_dict_entry (const GVariantType *type)
{
g_return_val_if_fail (g_variant_type_check (type), FALSE);
return g_variant_type_peek_string (type)[0] == '{';
}
/**
* g_variant_type_is_variant:
* @type: type to check
*
* Determines if the given @type is the variant type.
*
* Returns: true if @type is the variant type
* Since 2.24
**/
gboolean
g_variant_type_is_variant (const GVariantType *type)
{
g_return_val_if_fail (g_variant_type_check (type), FALSE);
return g_variant_type_peek_string (type)[0] == 'v';
}
/**
* g_variant_type_hash:
* @type: (type GVariantType): type to hash
*
* Hashes @type.
*
* The argument type of @type is only `gconstpointer` to allow use with
* [type@GLib.HashTable] without function pointer casting. A valid
* [type@GLib.VariantType] must be provided.
*
* Returns: the hash value
* Since 2.24
**/
guint
g_variant_type_hash (gconstpointer type)
{
g_return_val_if_fail (g_variant_type_check (type), 0);
return _g_variant_type_hash (type);
}
/**
* g_variant_type_equal:
* @type1: (type GVariantType): type to compare
* @type2: (type GVariantType): another type to compare
*
* Compares @type1 and @type2 for equality.
*
* Only returns true if the types are exactly equal. Even if one type
* is an indefinite type and the other is a subtype of it, false will
* be returned if they are not exactly equal. If you want to check for
* subtypes, use [method@GLib.VariantType.is_subtype_of].
*
* The argument types of @type1 and @type2 are only `gconstpointer` to
* allow use with [type@GLib.HashTable] without function pointer casting. For
* both arguments, a valid [type@GLib.VariantType] must be provided.
*
* Returns: true if @type1 and @type2 are exactly equal
* Since 2.24
**/
gboolean
g_variant_type_equal (gconstpointer type1,
gconstpointer type2)
{
g_return_val_if_fail (g_variant_type_check (type1), FALSE);
g_return_val_if_fail (g_variant_type_check (type2), FALSE);
return _g_variant_type_equal (type1, type2);
}
/**
* g_variant_type_is_subtype_of:
* @type: type to check
* @supertype: type of potential supertype
*
* Checks if @type is a subtype of @supertype.
*
* This function returns true if @type is a subtype of @supertype. All
* types are considered to be subtypes of themselves. Aside from that,
* only indefinite types can have subtypes.
*
* Returns: true if @type is a subtype of @supertype
* Since 2.24
**/
gboolean
g_variant_type_is_subtype_of (const GVariantType *type,
const GVariantType *supertype)
{
const gchar *supertype_string;
const gchar *supertype_end;
const gchar *type_string;
g_return_val_if_fail (g_variant_type_check (type), FALSE);
g_return_val_if_fail (g_variant_type_check (supertype), FALSE);
supertype_string = g_variant_type_peek_string (supertype);
type_string = g_variant_type_peek_string (type);
/* fast path for the basic determinate types */
if (type_string[0] == supertype_string[0])
{
switch (type_string[0])
{
case 'b': case 'y':
case 'n': case 'q':
case 'i': case 'h': case 'u':
case 't': case 'x':
case 's': case 'o': case 'g':
case 'd':
return TRUE;
default:
break;
}
}
supertype_end = supertype_string +
g_variant_type_get_string_length (supertype);
/* we know that type and supertype are both well-formed, so it's
* safe to treat this merely as a text processing problem.
*/
while (supertype_string < supertype_end)
{
char supertype_char = *supertype_string++;
if (supertype_char == *type_string)
type_string++;
else if (*type_string == ')')
return FALSE;
else
{
const GVariantType *target_type = (GVariantType *) type_string;
switch (supertype_char)
{
case 'r':
if (!g_variant_type_is_tuple (target_type))
return FALSE;
break;
case '*':
break;
case '?':
if (!g_variant_type_is_basic (target_type))
return FALSE;
break;
default:
return FALSE;
}
type_string += g_variant_type_get_string_length (target_type);
}
}
return TRUE;
}
/**
* g_variant_type_element:
* @type: an array or maybe type
*
* Determines the element type of an array or maybe type.
*
* This function may only be used with array or maybe types.
*
* Returns: (transfer none): the element type of @type
* Since 2.24
**/
const GVariantType *
g_variant_type_element (const GVariantType *type)
{
const gchar *type_string;
g_return_val_if_fail (g_variant_type_check (type), NULL);
type_string = g_variant_type_peek_string (type);
g_assert (type_string[0] == 'a' || type_string[0] == 'm');
return (const GVariantType *) &type_string[1];
}
/**
* g_variant_type_first:
* @type: a tuple or dictionary entry type
*
* Determines the first item type of a tuple or dictionary entry
* type.
*
* This function may only be used with tuple or dictionary entry types,
* but must not be used with the generic tuple type
* `G_VARIANT_TYPE_TUPLE`.
*
* In the case of a dictionary entry type, this returns the type of
* the key.
*
* `NULL` is returned in case of @type being `G_VARIANT_TYPE_UNIT`.
*
* This call, together with [method@GLib.VariantType.next] provides an iterator
* interface over tuple and dictionary entry types.
*
* Returns: (transfer none) (nullable): the first item type of @type, or `NULL`
* if the type has no item types
* Since 2.24
**/
const GVariantType *
g_variant_type_first (const GVariantType *type)
{
const gchar *type_string;
g_return_val_if_fail (g_variant_type_check (type), NULL);
type_string = g_variant_type_peek_string (type);
g_assert (type_string[0] == '(' || type_string[0] == '{');
if (type_string[1] == ')')
return NULL;
return (const GVariantType *) &type_string[1];
}
/**
* g_variant_type_next:
* @type: a type from a previous call
*
* Determines the next item type of a tuple or dictionary entry
* type.
*
* @type must be the result of a previous call to
* [method@GLib.VariantType.first] or [method@GLib.VariantType.next].
*
* If called on the key type of a dictionary entry then this call
* returns the value type. If called on the value type of a dictionary
* entry then this call returns `NULL`.
*
* For tuples, `NULL` is returned when @type is the last item in the tuple.
*
* Returns: (transfer none) (nullable): the next type after @type, or `NULL` if
* there are no further types
* Since 2.24
**/
const GVariantType *
g_variant_type_next (const GVariantType *type)
{
const gchar *type_string;
g_return_val_if_fail (g_variant_type_check (type), NULL);
type_string = g_variant_type_peek_string (type);
type_string += g_variant_type_get_string_length (type);
if (*type_string == ')' || *type_string == '}')
return NULL;
return (const GVariantType *) type_string;
}
/**
* g_variant_type_n_items:
* @type: a tuple or dictionary entry type
*
* Determines the number of items contained in a tuple or
* dictionary entry type.
*
* This function may only be used with tuple or dictionary entry types,
* but must not be used with the generic tuple type
* `G_VARIANT_TYPE_TUPLE`.
*
* In the case of a dictionary entry type, this function will always
* return `2`.
*
* Returns: the number of items in @type
* Since 2.24
**/
gsize
g_variant_type_n_items (const GVariantType *type)
{
gsize count = 0;
g_return_val_if_fail (g_variant_type_check (type), 0);
for (type = g_variant_type_first (type);
type;
type = g_variant_type_next (type))
count++;
return count;
}
/**
* g_variant_type_key:
* @type: a dictionary entry type
*
* Determines the key type of a dictionary entry type.
*
* This function may only be used with a dictionary entry type. Other
* than the additional restriction, this call is equivalent to
* [method@GLib.VariantType.first].
*
* Returns: (transfer none): the key type of the dictionary entry
* Since 2.24
**/
const GVariantType *
g_variant_type_key (const GVariantType *type)
{
const gchar *type_string;
g_return_val_if_fail (g_variant_type_check (type), NULL);
type_string = g_variant_type_peek_string (type);
g_assert (type_string[0] == '{');
return (const GVariantType *) &type_string[1];
}
/**
* g_variant_type_value:
* @type: a dictionary entry type
*
* Determines the value type of a dictionary entry type.
*
* This function may only be used with a dictionary entry type.
*
* Returns: (transfer none): the value type of the dictionary entry
* Since 2.24
**/
const GVariantType *
g_variant_type_value (const GVariantType *type)
{
#ifndef G_DISABLE_ASSERT
const gchar *type_string;
#endif
g_return_val_if_fail (g_variant_type_check (type), NULL);
#ifndef G_DISABLE_ASSERT
type_string = g_variant_type_peek_string (type);
g_assert (type_string[0] == '{');
#endif
return g_variant_type_next (g_variant_type_key (type));
}
/**
* g_variant_type_new_tuple:
* @items: (array length=length): an array of types, one for each item
* @length: the length of @items, or `-1`
*
* Constructs a new tuple type, from @items.
*
* @length is the number of items in @items, or `-1` to indicate that
* @items is `NULL`-terminated.
*
* It is appropriate to call [method@GLib.VariantType.free] on the return value.
*
* Returns: (transfer full): a new tuple type
* Since 2.24
**/
static GVariantType *
g_variant_type_new_tuple_slow (const GVariantType * const *items,
gint length)
{
/* the "slow" version is needed in case the static buffer of 1024
* bytes is exceeded when running the normal version. this will
* happen only with very unusually large types, so it can be slow.
*/
GString *string;
gint i;
string = g_string_new ("(");
for (i = 0; i < length; i++)
{
const GVariantType *type;
gsize size;
g_return_val_if_fail (g_variant_type_check (items[i]), NULL);
type = items[i];
size = g_variant_type_get_string_length (type);
g_string_append_len (string, (const gchar *) type, size);
}
g_string_append_c (string, ')');
return (GVariantType *) g_string_free (string, FALSE);
}
GVariantType *
g_variant_type_new_tuple (const GVariantType * const *items,
gint length)
{
char buffer[1024];
gsize offset;
gsize i;
gsize length_unsigned;
g_return_val_if_fail (length == 0 || items != NULL, NULL);
if (length < 0)
for (length_unsigned = 0; items[length_unsigned] != NULL; length_unsigned++);
else
length_unsigned = (gsize) length;
offset = 0;
buffer[offset++] = '(';
for (i = 0; i < length_unsigned; i++)
{
const GVariantType *type;
gsize size;
g_return_val_if_fail (g_variant_type_check (items[i]), NULL);
type = items[i];
size = g_variant_type_get_string_length (type);
if (offset + size >= sizeof buffer) /* leave room for ')' */
return g_variant_type_new_tuple_slow (items, length_unsigned);
memcpy (&buffer[offset], type, size);
offset += size;
}
g_assert (offset < sizeof buffer);
buffer[offset++] = ')';
return (GVariantType *) g_memdup2 (buffer, offset);
}
/**
* g_variant_type_new_array: (constructor)
* @element: an element type
*
* Constructs the type corresponding to an array of elements of the
* type @type.
*
* It is appropriate to call [method@GLib.VariantType.first] on the return value.
*
* Returns: (transfer full): a new array type
* Since 2.24
**/
GVariantType *
g_variant_type_new_array (const GVariantType *element)
{
gsize size;
gchar *new;
g_return_val_if_fail (g_variant_type_check (element), NULL);
size = g_variant_type_get_string_length (element);
new = g_malloc (size + 1);
new[0] = 'a';
memcpy (new + 1, element, size);
return (GVariantType *) new;
}
/**
* g_variant_type_new_maybe: (constructor)
* @element: an element type
*
* Constructs the type corresponding to a maybe instance containing
* type @type or `Nothing`.
*
* It is appropriate to call [method@GLib.VariantType.free] on the return value.
*
* Returns: (transfer full): a new maybe type
* Since 2.24
**/
GVariantType *
g_variant_type_new_maybe (const GVariantType *element)
{
gsize size;
gchar *new;
g_return_val_if_fail (g_variant_type_check (element), NULL);
size = g_variant_type_get_string_length (element);
new = g_malloc (size + 1);
new[0] = 'm';
memcpy (new + 1, element, size);
return (GVariantType *) new;
}
/**
* g_variant_type_new_dict_entry: (constructor)
* @key: a basic type to use for the key
* @value: a type to use for the value
*
* Constructs the type corresponding to a dictionary entry with a key
* of type @key and a value of type @value.
*
* It is appropriate to call [method@GLib.VariantType.free] on the return value.
*
* Returns: (transfer full): a new dictionary entry type
* Since 2.24
**/
GVariantType *
g_variant_type_new_dict_entry (const GVariantType *key,
const GVariantType *value)
{
gsize keysize, valsize;
gchar *new;
g_return_val_if_fail (g_variant_type_check (key), NULL);
g_return_val_if_fail (g_variant_type_check (value), NULL);
keysize = g_variant_type_get_string_length (key);
valsize = g_variant_type_get_string_length (value);
new = g_malloc (1 + keysize + valsize + 1);
new[0] = '{';
memcpy (new + 1, key, keysize);
memcpy (new + 1 + keysize, value, valsize);
new[1 + keysize + valsize] = '}';
return (GVariantType *) new;
}
/* private */
const GVariantType *
g_variant_type_checked_ (const gchar *type_string)
{
g_return_val_if_fail (g_variant_type_string_is_valid (type_string), NULL);
return (const GVariantType *) type_string;
}