mirror of
https://gitlab.gnome.org/GNOME/glib.git
synced 2025-01-26 14:06:15 +01:00
213c31a49d
The previous commit to glib/glibconfig.h.win32.in, though it improves the state of GLib and fixes bugs, cannot be used as a drop-in replacement for code that builds against the previous glib/glibconfig.h(.win32.in) that were build using the Visual Studio projects. Change the DLL names as a result so that the likelihood of problems caused by replacing existing GLib DLLs can be reduced--code that was built against previous GLib MSVC builds should be rebuilt, so that things will work with the newer DLLs, instead of depending on the older DLLs. Note that if Visual Studio builds are done through Meson, existing code that link against GLib should be rebuilt as well, for the same reason. DLLs built with the Visual Studio projects from 2.55.0 onwards should be compatible with the ones that are built with Visual Studio via Meson. |
||
---|---|---|
.. | ||
.gitignore | ||
gdbus.vcproj | ||
gio-querymodules.vcproj | ||
gio-tool.vcprojin | ||
gio.vcprojin | ||
glib-build-defines.vsprops | ||
glib-compile-resources.vcprojin | ||
glib-compile-schemas.vcprojin | ||
glib-gen-srcs.vsprops | ||
glib-install.vcproj | ||
glib-install.vspropsin | ||
glib-version-paths.vsprops.in | ||
glib.sln | ||
glib.vcprojin | ||
gmodule.vcproj | ||
gobject.vcprojin | ||
gresource.vcproj | ||
gsettings.vcproj | ||
gspawn-win32-helper-console.vcproj | ||
gspawn-win32-helper.vcproj | ||
gthread.vcproj | ||
Makefile.am | ||
README.txt |
Please do not compile this package (GLib) in paths that contain spaces in them-as strange problems may occur during compilation or during the use of the library. Please refer to the following GNOME Live! page for more detailed instructions on building GLib and its dependencies with Visual C++: https://wiki.gnome.org/Projects/GTK%2B/Win32/MSVCCompilationOfGTKStack This VS9 solution and the projects it includes are intented to be used in a GLib source tree unpacked from a tarball. In a git checkout you first need to use some Unix-like environment or run build/win32/setup.py, which will do the work for you: $python build/win32/setup.py --perl path_to_your_perl.exe for more usage on this script, run $python build/win32/setup.py -h/--help The required dependencies are zlib and proxy-libintl. Fetch the latest proxy-libintl-dev and zlib-dev zipfiles from http://ftp.gnome.org/pub/GNOME/binaries/win32/dependencies/ for 32-bit builds, and correspondingly http://ftp.gnome.org/pub/GNOME/binaries/win64/dependencies/ for 64-bit builds. A Python 2.7.x or 3.x interpreter is also required, in order to generate the utility scripts, as well as the pkg-config files for the build. Please see the entry "PythonDir" in glib-version-paths.vsprops to verify that it is correct. One may wish to build his/her own ZLib-It is recommended that ZLib is built using the win32/Makefile.msc makefile with VS9 with the ASM routines to avoid linking problems-see win32/Makefile.msc in ZLib for more details. For LibFFI, please use the Centricular fork of it, which can be found at https://github.com/centricular/libffi. Please refer to the build instructions there on how to build it, which involves using the Meson build system, and the Ninja build tool. Please note, although using one's own existing PCRE installation to build GLib is possible, it is still recommended to build PCRE during the process of building GLib (i.e. using the Debug or Release configurations), as GLib's bundled PCRE has been patched to work optimally with GLib. If building against an existing PCRE is desired, use the(BuildType)_ExtPCRE configurations, but one needs to ensure that the existing PCRE is: -Built with VS9 -Unicode support is built in (please see the CMake options for this) -It is built with the Multithreaded DLL (/MD, for release builds) or the Multithreaded DLL Debug (/MDd, for debug builds) If using static builds of PCRE, please add PCRE_STATIC to the "Preprocessor Definitions" of the glib project settings. Please be aware that the GLib's regex test program will only pass with PCRE directly built into GLib. Set up the source tree as follows under some arbitrary top folder <root>: <root>\<this-glib-source-tree> <root>\vs9\<PlatformName> *this* file you are now reading is thus located at <root>\<this-glib-source-tree>\build\win32\vs9\README. <PlatformName> is either Win32 or x64, as in VS9 project files. You should unpack the proxy-libintl-dev zip file into <root>\vs9\<PlatformName>, so that for instance libintl.h end up at <root>\vs9\<PlatformName>\include\libintl.h. For LibFFI, one should also put the generated ffi.h and ffitarget.h into <root>\vs9\<PlatformName>\include\ and the compiled static libffi.lib (or copy libffi-convenience.lib into libffi.lib) into <root>\vs9\<PlatformName>\lib\. The "install" project will copy build results and headers into their appropriate location under <root>\vs9\<PlatformName>. For instance, built DLLs go into <root>\vs9\<PlatformName>\bin, built LIBs into <root>\vs9\<PlatformName>\lib and GLib headers into <root>\vs9\<PlatformName>\include\glib-2.0. This is then from where project files higher in the stack are supposed to look for them, not from a specific GLib source tree. Note: If you see C4819 errors and you are compiling GLib on a DBCS (Chinese/Korean/Japanese) version of Windows, you may need to switch to an English locale in Control Panel->Region and Languages->System-> Change System Locale, reboot and rebuild to ensure GLib, Pango, GDK-Pixbuf, ATK and GTK+ is built correctly. This is due to a bug in Visual C++ running on DBCS locales, and also affects many other opensource projects which are built with Visual C++, including but not limited to QT and the Mozilla apps. --Tor Lillqvist <tml@iki.fi> --Updated by Chun-wei Fan <fanc999@gmail.com>