mirror of
https://gitlab.gnome.org/GNOME/glib.git
synced 2025-01-19 10:46:14 +01:00
5103c5d643
Make sure this call succeeds, aborting if it doesn't This will prevent people from having to waste time chasing down the problems that would otherwise be caused by this silent failure.
1224 lines
29 KiB
C
1224 lines
29 KiB
C
/* GLIB - Library of useful routines for C programming
|
|
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
|
|
*
|
|
* gthread.c: posix thread system implementation
|
|
* Copyright 1998 Sebastian Wilhelmi; University of Karlsruhe
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
* Modified by the GLib Team and others 1997-2000. See the AUTHORS
|
|
* file for a list of people on the GLib Team. See the ChangeLog
|
|
* files for a list of changes. These files are distributed with
|
|
* GLib at ftp://ftp.gtk.org/pub/gtk/.
|
|
*/
|
|
|
|
/* The GMutex, GCond and GPrivate implementations in this file are some
|
|
* of the lowest-level code in GLib. All other parts of GLib (messages,
|
|
* memory, slices, etc) assume that they can freely use these facilities
|
|
* without risking recursion.
|
|
*
|
|
* As such, these functions are NOT permitted to call any other part of
|
|
* GLib.
|
|
*
|
|
* The thread manipulation functions (create, exit, join, etc.) have
|
|
* more freedom -- they can do as they please.
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include "gthread.h"
|
|
|
|
#include "gthreadprivate.h"
|
|
#include "gslice.h"
|
|
#include "gmessages.h"
|
|
#include "gstrfuncs.h"
|
|
#include "gmain.h"
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <errno.h>
|
|
#include <pthread.h>
|
|
|
|
#include <sys/time.h>
|
|
#include <unistd.h>
|
|
|
|
#ifdef HAVE_SCHED_H
|
|
#include <sched.h>
|
|
#endif
|
|
#ifdef HAVE_SYS_PRCTL_H
|
|
#include <sys/prctl.h>
|
|
#endif
|
|
#ifdef G_OS_WIN32
|
|
#include <windows.h>
|
|
#endif
|
|
|
|
static void
|
|
g_thread_abort (gint status,
|
|
const gchar *function)
|
|
{
|
|
fprintf (stderr, "GLib (gthread-posix.c): Unexpected error from C library during '%s': %s. Aborting.\n",
|
|
function, strerror (status));
|
|
abort ();
|
|
}
|
|
|
|
/* {{{1 GMutex */
|
|
|
|
static pthread_mutex_t *
|
|
g_mutex_impl_new (void)
|
|
{
|
|
pthread_mutexattr_t *pattr = NULL;
|
|
pthread_mutex_t *mutex;
|
|
gint status;
|
|
|
|
mutex = malloc (sizeof (pthread_mutex_t));
|
|
if G_UNLIKELY (mutex == NULL)
|
|
g_thread_abort (errno, "malloc");
|
|
|
|
#ifdef PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
|
|
{
|
|
pthread_mutexattr_t attr;
|
|
pthread_mutexattr_init (&attr);
|
|
pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_ADAPTIVE_NP);
|
|
pattr = &attr;
|
|
}
|
|
#endif
|
|
|
|
if G_UNLIKELY ((status = pthread_mutex_init (mutex, pattr)) != 0)
|
|
g_thread_abort (status, "pthread_mutex_init");
|
|
|
|
#ifdef PTHREAD_ADAPTIVE_MUTEX_NP
|
|
pthread_mutexattr_destroy (&attr);
|
|
#endif
|
|
|
|
return mutex;
|
|
}
|
|
|
|
static void
|
|
g_mutex_impl_free (pthread_mutex_t *mutex)
|
|
{
|
|
pthread_mutex_destroy (mutex);
|
|
free (mutex);
|
|
}
|
|
|
|
static pthread_mutex_t *
|
|
g_mutex_get_impl (GMutex *mutex)
|
|
{
|
|
pthread_mutex_t *impl = g_atomic_pointer_get (&mutex->p);
|
|
|
|
if G_UNLIKELY (impl == NULL)
|
|
{
|
|
impl = g_mutex_impl_new ();
|
|
if (!g_atomic_pointer_compare_and_exchange (&mutex->p, NULL, impl))
|
|
g_mutex_impl_free (impl);
|
|
impl = mutex->p;
|
|
}
|
|
|
|
return impl;
|
|
}
|
|
|
|
|
|
/**
|
|
* g_mutex_init:
|
|
* @mutex: an uninitialized #GMutex
|
|
*
|
|
* Initializes a #GMutex so that it can be used.
|
|
*
|
|
* This function is useful to initialize a mutex that has been
|
|
* allocated on the stack, or as part of a larger structure.
|
|
* It is not necessary to initialize a mutex that has been
|
|
* statically allocated.
|
|
*
|
|
* |[<!-- language="C" -->
|
|
* typedef struct {
|
|
* GMutex m;
|
|
* ...
|
|
* } Blob;
|
|
*
|
|
* Blob *b;
|
|
*
|
|
* b = g_new (Blob, 1);
|
|
* g_mutex_init (&b->m);
|
|
* ]|
|
|
*
|
|
* To undo the effect of g_mutex_init() when a mutex is no longer
|
|
* needed, use g_mutex_clear().
|
|
*
|
|
* Calling g_mutex_init() on an already initialized #GMutex leads
|
|
* to undefined behaviour.
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
void
|
|
g_mutex_init (GMutex *mutex)
|
|
{
|
|
mutex->p = g_mutex_impl_new ();
|
|
}
|
|
|
|
/**
|
|
* g_mutex_clear:
|
|
* @mutex: an initialized #GMutex
|
|
*
|
|
* Frees the resources allocated to a mutex with g_mutex_init().
|
|
*
|
|
* This function should not be used with a #GMutex that has been
|
|
* statically allocated.
|
|
*
|
|
* Calling g_mutex_clear() on a locked mutex leads to undefined
|
|
* behaviour.
|
|
*
|
|
* Sine: 2.32
|
|
*/
|
|
void
|
|
g_mutex_clear (GMutex *mutex)
|
|
{
|
|
g_mutex_impl_free (mutex->p);
|
|
}
|
|
|
|
/**
|
|
* g_mutex_lock:
|
|
* @mutex: a #GMutex
|
|
*
|
|
* Locks @mutex. If @mutex is already locked by another thread, the
|
|
* current thread will block until @mutex is unlocked by the other
|
|
* thread.
|
|
*
|
|
* #GMutex is neither guaranteed to be recursive nor to be
|
|
* non-recursive. As such, calling g_mutex_lock() on a #GMutex that has
|
|
* already been locked by the same thread results in undefined behaviour
|
|
* (including but not limited to deadlocks).
|
|
*/
|
|
void
|
|
g_mutex_lock (GMutex *mutex)
|
|
{
|
|
gint status;
|
|
|
|
if G_UNLIKELY ((status = pthread_mutex_lock (g_mutex_get_impl (mutex))) != 0)
|
|
g_thread_abort (status, "pthread_mutex_lock");
|
|
}
|
|
|
|
/**
|
|
* g_mutex_unlock:
|
|
* @mutex: a #GMutex
|
|
*
|
|
* Unlocks @mutex. If another thread is blocked in a g_mutex_lock()
|
|
* call for @mutex, it will become unblocked and can lock @mutex itself.
|
|
*
|
|
* Calling g_mutex_unlock() on a mutex that is not locked by the
|
|
* current thread leads to undefined behaviour.
|
|
*/
|
|
void
|
|
g_mutex_unlock (GMutex *mutex)
|
|
{
|
|
gint status;
|
|
|
|
if G_UNLIKELY ((status = pthread_mutex_unlock (g_mutex_get_impl (mutex))) != 0)
|
|
g_thread_abort (status, "pthread_mutex_unlock");
|
|
}
|
|
|
|
/**
|
|
* g_mutex_trylock:
|
|
* @mutex: a #GMutex
|
|
*
|
|
* Tries to lock @mutex. If @mutex is already locked by another thread,
|
|
* it immediately returns %FALSE. Otherwise it locks @mutex and returns
|
|
* %TRUE.
|
|
*
|
|
* #GMutex is neither guaranteed to be recursive nor to be
|
|
* non-recursive. As such, calling g_mutex_lock() on a #GMutex that has
|
|
* already been locked by the same thread results in undefined behaviour
|
|
* (including but not limited to deadlocks or arbitrary return values).
|
|
|
|
* Returns: %TRUE if @mutex could be locked
|
|
*/
|
|
gboolean
|
|
g_mutex_trylock (GMutex *mutex)
|
|
{
|
|
gint status;
|
|
|
|
if G_LIKELY ((status = pthread_mutex_trylock (g_mutex_get_impl (mutex))) == 0)
|
|
return TRUE;
|
|
|
|
if G_UNLIKELY (status != EBUSY)
|
|
g_thread_abort (status, "pthread_mutex_trylock");
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
/* {{{1 GRecMutex */
|
|
|
|
static pthread_mutex_t *
|
|
g_rec_mutex_impl_new (void)
|
|
{
|
|
pthread_mutexattr_t attr;
|
|
pthread_mutex_t *mutex;
|
|
|
|
mutex = malloc (sizeof (pthread_mutex_t));
|
|
if G_UNLIKELY (mutex == NULL)
|
|
g_thread_abort (errno, "malloc");
|
|
|
|
pthread_mutexattr_init (&attr);
|
|
pthread_mutexattr_settype (&attr, PTHREAD_MUTEX_RECURSIVE);
|
|
pthread_mutex_init (mutex, &attr);
|
|
pthread_mutexattr_destroy (&attr);
|
|
|
|
return mutex;
|
|
}
|
|
|
|
static void
|
|
g_rec_mutex_impl_free (pthread_mutex_t *mutex)
|
|
{
|
|
pthread_mutex_destroy (mutex);
|
|
free (mutex);
|
|
}
|
|
|
|
static pthread_mutex_t *
|
|
g_rec_mutex_get_impl (GRecMutex *rec_mutex)
|
|
{
|
|
pthread_mutex_t *impl = g_atomic_pointer_get (&rec_mutex->p);
|
|
|
|
if G_UNLIKELY (impl == NULL)
|
|
{
|
|
impl = g_rec_mutex_impl_new ();
|
|
if (!g_atomic_pointer_compare_and_exchange (&rec_mutex->p, NULL, impl))
|
|
g_rec_mutex_impl_free (impl);
|
|
impl = rec_mutex->p;
|
|
}
|
|
|
|
return impl;
|
|
}
|
|
|
|
/**
|
|
* g_rec_mutex_init:
|
|
* @rec_mutex: an uninitialized #GRecMutex
|
|
*
|
|
* Initializes a #GRecMutex so that it can be used.
|
|
*
|
|
* This function is useful to initialize a recursive mutex
|
|
* that has been allocated on the stack, or as part of a larger
|
|
* structure.
|
|
*
|
|
* It is not necessary to initialise a recursive mutex that has been
|
|
* statically allocated.
|
|
*
|
|
* |[<!-- language="C" -->
|
|
* typedef struct {
|
|
* GRecMutex m;
|
|
* ...
|
|
* } Blob;
|
|
*
|
|
* Blob *b;
|
|
*
|
|
* b = g_new (Blob, 1);
|
|
* g_rec_mutex_init (&b->m);
|
|
* ]|
|
|
*
|
|
* Calling g_rec_mutex_init() on an already initialized #GRecMutex
|
|
* leads to undefined behaviour.
|
|
*
|
|
* To undo the effect of g_rec_mutex_init() when a recursive mutex
|
|
* is no longer needed, use g_rec_mutex_clear().
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
void
|
|
g_rec_mutex_init (GRecMutex *rec_mutex)
|
|
{
|
|
rec_mutex->p = g_rec_mutex_impl_new ();
|
|
}
|
|
|
|
/**
|
|
* g_rec_mutex_clear:
|
|
* @rec_mutex: an initialized #GRecMutex
|
|
*
|
|
* Frees the resources allocated to a recursive mutex with
|
|
* g_rec_mutex_init().
|
|
*
|
|
* This function should not be used with a #GRecMutex that has been
|
|
* statically allocated.
|
|
*
|
|
* Calling g_rec_mutex_clear() on a locked recursive mutex leads
|
|
* to undefined behaviour.
|
|
*
|
|
* Sine: 2.32
|
|
*/
|
|
void
|
|
g_rec_mutex_clear (GRecMutex *rec_mutex)
|
|
{
|
|
g_rec_mutex_impl_free (rec_mutex->p);
|
|
}
|
|
|
|
/**
|
|
* g_rec_mutex_lock:
|
|
* @rec_mutex: a #GRecMutex
|
|
*
|
|
* Locks @rec_mutex. If @rec_mutex is already locked by another
|
|
* thread, the current thread will block until @rec_mutex is
|
|
* unlocked by the other thread. If @rec_mutex is already locked
|
|
* by the current thread, the 'lock count' of @rec_mutex is increased.
|
|
* The mutex will only become available again when it is unlocked
|
|
* as many times as it has been locked.
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
void
|
|
g_rec_mutex_lock (GRecMutex *mutex)
|
|
{
|
|
pthread_mutex_lock (g_rec_mutex_get_impl (mutex));
|
|
}
|
|
|
|
/**
|
|
* g_rec_mutex_unlock:
|
|
* @rec_mutex: a #GRecMutex
|
|
*
|
|
* Unlocks @rec_mutex. If another thread is blocked in a
|
|
* g_rec_mutex_lock() call for @rec_mutex, it will become unblocked
|
|
* and can lock @rec_mutex itself.
|
|
*
|
|
* Calling g_rec_mutex_unlock() on a recursive mutex that is not
|
|
* locked by the current thread leads to undefined behaviour.
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
void
|
|
g_rec_mutex_unlock (GRecMutex *rec_mutex)
|
|
{
|
|
pthread_mutex_unlock (rec_mutex->p);
|
|
}
|
|
|
|
/**
|
|
* g_rec_mutex_trylock:
|
|
* @rec_mutex: a #GRecMutex
|
|
*
|
|
* Tries to lock @rec_mutex. If @rec_mutex is already locked
|
|
* by another thread, it immediately returns %FALSE. Otherwise
|
|
* it locks @rec_mutex and returns %TRUE.
|
|
*
|
|
* Returns: %TRUE if @rec_mutex could be locked
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
gboolean
|
|
g_rec_mutex_trylock (GRecMutex *rec_mutex)
|
|
{
|
|
if (pthread_mutex_trylock (g_rec_mutex_get_impl (rec_mutex)) != 0)
|
|
return FALSE;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/* {{{1 GRWLock */
|
|
|
|
static pthread_rwlock_t *
|
|
g_rw_lock_impl_new (void)
|
|
{
|
|
pthread_rwlock_t *rwlock;
|
|
gint status;
|
|
|
|
rwlock = malloc (sizeof (pthread_rwlock_t));
|
|
if G_UNLIKELY (rwlock == NULL)
|
|
g_thread_abort (errno, "malloc");
|
|
|
|
if G_UNLIKELY ((status = pthread_rwlock_init (rwlock, NULL)) != 0)
|
|
g_thread_abort (status, "pthread_rwlock_init");
|
|
|
|
return rwlock;
|
|
}
|
|
|
|
static void
|
|
g_rw_lock_impl_free (pthread_rwlock_t *rwlock)
|
|
{
|
|
pthread_rwlock_destroy (rwlock);
|
|
free (rwlock);
|
|
}
|
|
|
|
static pthread_rwlock_t *
|
|
g_rw_lock_get_impl (GRWLock *lock)
|
|
{
|
|
pthread_rwlock_t *impl = g_atomic_pointer_get (&lock->p);
|
|
|
|
if G_UNLIKELY (impl == NULL)
|
|
{
|
|
impl = g_rw_lock_impl_new ();
|
|
if (!g_atomic_pointer_compare_and_exchange (&lock->p, NULL, impl))
|
|
g_rw_lock_impl_free (impl);
|
|
impl = lock->p;
|
|
}
|
|
|
|
return impl;
|
|
}
|
|
|
|
/**
|
|
* g_rw_lock_init:
|
|
* @rw_lock: an uninitialized #GRWLock
|
|
*
|
|
* Initializes a #GRWLock so that it can be used.
|
|
*
|
|
* This function is useful to initialize a lock that has been
|
|
* allocated on the stack, or as part of a larger structure. It is not
|
|
* necessary to initialise a reader-writer lock that has been statically
|
|
* allocated.
|
|
*
|
|
* |[<!-- language="C" -->
|
|
* typedef struct {
|
|
* GRWLock l;
|
|
* ...
|
|
* } Blob;
|
|
*
|
|
* Blob *b;
|
|
*
|
|
* b = g_new (Blob, 1);
|
|
* g_rw_lock_init (&b->l);
|
|
* ]|
|
|
*
|
|
* To undo the effect of g_rw_lock_init() when a lock is no longer
|
|
* needed, use g_rw_lock_clear().
|
|
*
|
|
* Calling g_rw_lock_init() on an already initialized #GRWLock leads
|
|
* to undefined behaviour.
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
void
|
|
g_rw_lock_init (GRWLock *rw_lock)
|
|
{
|
|
rw_lock->p = g_rw_lock_impl_new ();
|
|
}
|
|
|
|
/**
|
|
* g_rw_lock_clear:
|
|
* @rw_lock: an initialized #GRWLock
|
|
*
|
|
* Frees the resources allocated to a lock with g_rw_lock_init().
|
|
*
|
|
* This function should not be used with a #GRWLock that has been
|
|
* statically allocated.
|
|
*
|
|
* Calling g_rw_lock_clear() when any thread holds the lock
|
|
* leads to undefined behaviour.
|
|
*
|
|
* Sine: 2.32
|
|
*/
|
|
void
|
|
g_rw_lock_clear (GRWLock *rw_lock)
|
|
{
|
|
g_rw_lock_impl_free (rw_lock->p);
|
|
}
|
|
|
|
/**
|
|
* g_rw_lock_writer_lock:
|
|
* @rw_lock: a #GRWLock
|
|
*
|
|
* Obtain a write lock on @rw_lock. If any thread already holds
|
|
* a read or write lock on @rw_lock, the current thread will block
|
|
* until all other threads have dropped their locks on @rw_lock.
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
void
|
|
g_rw_lock_writer_lock (GRWLock *rw_lock)
|
|
{
|
|
pthread_rwlock_wrlock (g_rw_lock_get_impl (rw_lock));
|
|
}
|
|
|
|
/**
|
|
* g_rw_lock_writer_trylock:
|
|
* @rw_lock: a #GRWLock
|
|
*
|
|
* Tries to obtain a write lock on @rw_lock. If any other thread holds
|
|
* a read or write lock on @rw_lock, it immediately returns %FALSE.
|
|
* Otherwise it locks @rw_lock and returns %TRUE.
|
|
*
|
|
* Returns: %TRUE if @rw_lock could be locked
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
gboolean
|
|
g_rw_lock_writer_trylock (GRWLock *rw_lock)
|
|
{
|
|
if (pthread_rwlock_trywrlock (g_rw_lock_get_impl (rw_lock)) != 0)
|
|
return FALSE;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/**
|
|
* g_rw_lock_writer_unlock:
|
|
* @rw_lock: a #GRWLock
|
|
*
|
|
* Release a write lock on @rw_lock.
|
|
*
|
|
* Calling g_rw_lock_writer_unlock() on a lock that is not held
|
|
* by the current thread leads to undefined behaviour.
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
void
|
|
g_rw_lock_writer_unlock (GRWLock *rw_lock)
|
|
{
|
|
pthread_rwlock_unlock (g_rw_lock_get_impl (rw_lock));
|
|
}
|
|
|
|
/**
|
|
* g_rw_lock_reader_lock:
|
|
* @rw_lock: a #GRWLock
|
|
*
|
|
* Obtain a read lock on @rw_lock. If another thread currently holds
|
|
* the write lock on @rw_lock or blocks waiting for it, the current
|
|
* thread will block. Read locks can be taken recursively.
|
|
*
|
|
* It is implementation-defined how many threads are allowed to
|
|
* hold read locks on the same lock simultaneously.
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
void
|
|
g_rw_lock_reader_lock (GRWLock *rw_lock)
|
|
{
|
|
pthread_rwlock_rdlock (g_rw_lock_get_impl (rw_lock));
|
|
}
|
|
|
|
/**
|
|
* g_rw_lock_reader_trylock:
|
|
* @rw_lock: a #GRWLock
|
|
*
|
|
* Tries to obtain a read lock on @rw_lock and returns %TRUE if
|
|
* the read lock was successfully obtained. Otherwise it
|
|
* returns %FALSE.
|
|
*
|
|
* Returns: %TRUE if @rw_lock could be locked
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
gboolean
|
|
g_rw_lock_reader_trylock (GRWLock *rw_lock)
|
|
{
|
|
if (pthread_rwlock_tryrdlock (g_rw_lock_get_impl (rw_lock)) != 0)
|
|
return FALSE;
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
/**
|
|
* g_rw_lock_reader_unlock:
|
|
* @rw_lock: a #GRWLock
|
|
*
|
|
* Release a read lock on @rw_lock.
|
|
*
|
|
* Calling g_rw_lock_reader_unlock() on a lock that is not held
|
|
* by the current thread leads to undefined behaviour.
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
void
|
|
g_rw_lock_reader_unlock (GRWLock *rw_lock)
|
|
{
|
|
pthread_rwlock_unlock (g_rw_lock_get_impl (rw_lock));
|
|
}
|
|
|
|
/* {{{1 GCond */
|
|
|
|
static pthread_cond_t *
|
|
g_cond_impl_new (void)
|
|
{
|
|
pthread_condattr_t attr;
|
|
pthread_cond_t *cond;
|
|
gint status;
|
|
|
|
pthread_condattr_init (&attr);
|
|
|
|
#ifdef HAVE_PTHREAD_COND_TIMEDWAIT_RELATIVE_NP
|
|
#elif defined (HAVE_PTHREAD_CONDATTR_SETCLOCK) && defined (CLOCK_MONOTONIC)
|
|
if G_UNLIKELY ((status = pthread_condattr_setclock (&attr, CLOCK_MONOTONIC)) != 0)
|
|
g_thread_abort (status, "pthread_condattr_setclock");
|
|
#else
|
|
#error Cannot support GCond on your platform.
|
|
#endif
|
|
|
|
cond = malloc (sizeof (pthread_cond_t));
|
|
if G_UNLIKELY (cond == NULL)
|
|
g_thread_abort (errno, "malloc");
|
|
|
|
if G_UNLIKELY ((status = pthread_cond_init (cond, &attr)) != 0)
|
|
g_thread_abort (status, "pthread_cond_init");
|
|
|
|
pthread_condattr_destroy (&attr);
|
|
|
|
return cond;
|
|
}
|
|
|
|
static void
|
|
g_cond_impl_free (pthread_cond_t *cond)
|
|
{
|
|
pthread_cond_destroy (cond);
|
|
free (cond);
|
|
}
|
|
|
|
static pthread_cond_t *
|
|
g_cond_get_impl (GCond *cond)
|
|
{
|
|
pthread_cond_t *impl = g_atomic_pointer_get (&cond->p);
|
|
|
|
if G_UNLIKELY (impl == NULL)
|
|
{
|
|
impl = g_cond_impl_new ();
|
|
if (!g_atomic_pointer_compare_and_exchange (&cond->p, NULL, impl))
|
|
g_cond_impl_free (impl);
|
|
impl = cond->p;
|
|
}
|
|
|
|
return impl;
|
|
}
|
|
|
|
/**
|
|
* g_cond_init:
|
|
* @cond: an uninitialized #GCond
|
|
*
|
|
* Initialises a #GCond so that it can be used.
|
|
*
|
|
* This function is useful to initialise a #GCond that has been
|
|
* allocated as part of a larger structure. It is not necessary to
|
|
* initialise a #GCond that has been statically allocated.
|
|
*
|
|
* To undo the effect of g_cond_init() when a #GCond is no longer
|
|
* needed, use g_cond_clear().
|
|
*
|
|
* Calling g_cond_init() on an already-initialised #GCond leads
|
|
* to undefined behaviour.
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
void
|
|
g_cond_init (GCond *cond)
|
|
{
|
|
cond->p = g_cond_impl_new ();
|
|
}
|
|
|
|
/**
|
|
* g_cond_clear:
|
|
* @cond: an initialised #GCond
|
|
*
|
|
* Frees the resources allocated to a #GCond with g_cond_init().
|
|
*
|
|
* This function should not be used with a #GCond that has been
|
|
* statically allocated.
|
|
*
|
|
* Calling g_cond_clear() for a #GCond on which threads are
|
|
* blocking leads to undefined behaviour.
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
void
|
|
g_cond_clear (GCond *cond)
|
|
{
|
|
g_cond_impl_free (cond->p);
|
|
}
|
|
|
|
/**
|
|
* g_cond_wait:
|
|
* @cond: a #GCond
|
|
* @mutex: a #GMutex that is currently locked
|
|
*
|
|
* Atomically releases @mutex and waits until @cond is signalled.
|
|
* When this function returns, @mutex is locked again and owned by the
|
|
* calling thread.
|
|
*
|
|
* When using condition variables, it is possible that a spurious wakeup
|
|
* may occur (ie: g_cond_wait() returns even though g_cond_signal() was
|
|
* not called). It's also possible that a stolen wakeup may occur.
|
|
* This is when g_cond_signal() is called, but another thread acquires
|
|
* @mutex before this thread and modifies the state of the program in
|
|
* such a way that when g_cond_wait() is able to return, the expected
|
|
* condition is no longer met.
|
|
*
|
|
* For this reason, g_cond_wait() must always be used in a loop. See
|
|
* the documentation for #GCond for a complete example.
|
|
**/
|
|
void
|
|
g_cond_wait (GCond *cond,
|
|
GMutex *mutex)
|
|
{
|
|
gint status;
|
|
|
|
if G_UNLIKELY ((status = pthread_cond_wait (g_cond_get_impl (cond), g_mutex_get_impl (mutex))) != 0)
|
|
g_thread_abort (status, "pthread_cond_wait");
|
|
}
|
|
|
|
/**
|
|
* g_cond_signal:
|
|
* @cond: a #GCond
|
|
*
|
|
* If threads are waiting for @cond, at least one of them is unblocked.
|
|
* If no threads are waiting for @cond, this function has no effect.
|
|
* It is good practice to hold the same lock as the waiting thread
|
|
* while calling this function, though not required.
|
|
*/
|
|
void
|
|
g_cond_signal (GCond *cond)
|
|
{
|
|
gint status;
|
|
|
|
if G_UNLIKELY ((status = pthread_cond_signal (g_cond_get_impl (cond))) != 0)
|
|
g_thread_abort (status, "pthread_cond_signal");
|
|
}
|
|
|
|
/**
|
|
* g_cond_broadcast:
|
|
* @cond: a #GCond
|
|
*
|
|
* If threads are waiting for @cond, all of them are unblocked.
|
|
* If no threads are waiting for @cond, this function has no effect.
|
|
* It is good practice to lock the same mutex as the waiting threads
|
|
* while calling this function, though not required.
|
|
*/
|
|
void
|
|
g_cond_broadcast (GCond *cond)
|
|
{
|
|
gint status;
|
|
|
|
if G_UNLIKELY ((status = pthread_cond_broadcast (g_cond_get_impl (cond))) != 0)
|
|
g_thread_abort (status, "pthread_cond_broadcast");
|
|
}
|
|
|
|
/**
|
|
* g_cond_wait_until:
|
|
* @cond: a #GCond
|
|
* @mutex: a #GMutex that is currently locked
|
|
* @end_time: the monotonic time to wait until
|
|
*
|
|
* Waits until either @cond is signalled or @end_time has passed.
|
|
*
|
|
* As with g_cond_wait() it is possible that a spurious or stolen wakeup
|
|
* could occur. For that reason, waiting on a condition variable should
|
|
* always be in a loop, based on an explicitly-checked predicate.
|
|
*
|
|
* %TRUE is returned if the condition variable was signalled (or in the
|
|
* case of a spurious wakeup). %FALSE is returned if @end_time has
|
|
* passed.
|
|
*
|
|
* The following code shows how to correctly perform a timed wait on a
|
|
* condition variable (extending the example presented in the
|
|
* documentation for #GCond):
|
|
*
|
|
* |[<!-- language="C" -->
|
|
* gpointer
|
|
* pop_data_timed (void)
|
|
* {
|
|
* gint64 end_time;
|
|
* gpointer data;
|
|
*
|
|
* g_mutex_lock (&data_mutex);
|
|
*
|
|
* end_time = g_get_monotonic_time () + 5 * G_TIME_SPAN_SECOND;
|
|
* while (!current_data)
|
|
* if (!g_cond_wait_until (&data_cond, &data_mutex, end_time))
|
|
* {
|
|
* // timeout has passed.
|
|
* g_mutex_unlock (&data_mutex);
|
|
* return NULL;
|
|
* }
|
|
*
|
|
* // there is data for us
|
|
* data = current_data;
|
|
* current_data = NULL;
|
|
*
|
|
* g_mutex_unlock (&data_mutex);
|
|
*
|
|
* return data;
|
|
* }
|
|
* ]|
|
|
*
|
|
* Notice that the end time is calculated once, before entering the
|
|
* loop and reused. This is the motivation behind the use of absolute
|
|
* time on this API -- if a relative time of 5 seconds were passed
|
|
* directly to the call and a spurious wakeup occurred, the program would
|
|
* have to start over waiting again (which would lead to a total wait
|
|
* time of more than 5 seconds).
|
|
*
|
|
* Returns: %TRUE on a signal, %FALSE on a timeout
|
|
* Since: 2.32
|
|
**/
|
|
gboolean
|
|
g_cond_wait_until (GCond *cond,
|
|
GMutex *mutex,
|
|
gint64 end_time)
|
|
{
|
|
struct timespec ts;
|
|
gint status;
|
|
|
|
#ifdef HAVE_PTHREAD_COND_TIMEDWAIT_RELATIVE_NP
|
|
/* end_time is given relative to the monotonic clock as returned by
|
|
* g_get_monotonic_time().
|
|
*
|
|
* Since this pthreads wants the relative time, convert it back again.
|
|
*/
|
|
{
|
|
gint64 now = g_get_monotonic_time ();
|
|
gint64 relative;
|
|
|
|
if (end_time <= now)
|
|
return FALSE;
|
|
|
|
relative = end_time - now;
|
|
|
|
ts.tv_sec = relative / 1000000;
|
|
ts.tv_nsec = (relative % 1000000) * 1000;
|
|
|
|
if ((status = pthread_cond_timedwait_relative_np (g_cond_get_impl (cond), g_mutex_get_impl (mutex), &ts)) == 0)
|
|
return TRUE;
|
|
}
|
|
#elif defined (HAVE_PTHREAD_CONDATTR_SETCLOCK) && defined (CLOCK_MONOTONIC)
|
|
/* This is the exact check we used during init to set the clock to
|
|
* monotonic, so if we're in this branch, timedwait() will already be
|
|
* expecting a monotonic clock.
|
|
*/
|
|
{
|
|
ts.tv_sec = end_time / 1000000;
|
|
ts.tv_nsec = (end_time % 1000000) * 1000;
|
|
|
|
if ((status = pthread_cond_timedwait (g_cond_get_impl (cond), g_mutex_get_impl (mutex), &ts)) == 0)
|
|
return TRUE;
|
|
}
|
|
#else
|
|
#error Cannot support GCond on your platform.
|
|
#endif
|
|
|
|
if G_UNLIKELY (status != ETIMEDOUT)
|
|
g_thread_abort (status, "pthread_cond_timedwait");
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
/* {{{1 GPrivate */
|
|
|
|
/**
|
|
* GPrivate:
|
|
*
|
|
* The #GPrivate struct is an opaque data structure to represent a
|
|
* thread-local data key. It is approximately equivalent to the
|
|
* pthread_setspecific()/pthread_getspecific() APIs on POSIX and to
|
|
* TlsSetValue()/TlsGetValue() on Windows.
|
|
*
|
|
* If you don't already know why you might want this functionality,
|
|
* then you probably don't need it.
|
|
*
|
|
* #GPrivate is a very limited resource (as far as 128 per program,
|
|
* shared between all libraries). It is also not possible to destroy a
|
|
* #GPrivate after it has been used. As such, it is only ever acceptable
|
|
* to use #GPrivate in static scope, and even then sparingly so.
|
|
*
|
|
* See G_PRIVATE_INIT() for a couple of examples.
|
|
*
|
|
* The #GPrivate structure should be considered opaque. It should only
|
|
* be accessed via the g_private_ functions.
|
|
*/
|
|
|
|
/**
|
|
* G_PRIVATE_INIT:
|
|
* @notify: a #GDestroyNotify
|
|
*
|
|
* A macro to assist with the static initialisation of a #GPrivate.
|
|
*
|
|
* This macro is useful for the case that a #GDestroyNotify function
|
|
* should be associated the key. This is needed when the key will be
|
|
* used to point at memory that should be deallocated when the thread
|
|
* exits.
|
|
*
|
|
* Additionally, the #GDestroyNotify will also be called on the previous
|
|
* value stored in the key when g_private_replace() is used.
|
|
*
|
|
* If no #GDestroyNotify is needed, then use of this macro is not
|
|
* required -- if the #GPrivate is declared in static scope then it will
|
|
* be properly initialised by default (ie: to all zeros). See the
|
|
* examples below.
|
|
*
|
|
* |[<!-- language="C" -->
|
|
* static GPrivate name_key = G_PRIVATE_INIT (g_free);
|
|
*
|
|
* // return value should not be freed
|
|
* const gchar *
|
|
* get_local_name (void)
|
|
* {
|
|
* return g_private_get (&name_key);
|
|
* }
|
|
*
|
|
* void
|
|
* set_local_name (const gchar *name)
|
|
* {
|
|
* g_private_replace (&name_key, g_strdup (name));
|
|
* }
|
|
*
|
|
*
|
|
* static GPrivate count_key; // no free function
|
|
*
|
|
* gint
|
|
* get_local_count (void)
|
|
* {
|
|
* return GPOINTER_TO_INT (g_private_get (&count_key));
|
|
* }
|
|
*
|
|
* void
|
|
* set_local_count (gint count)
|
|
* {
|
|
* g_private_set (&count_key, GINT_TO_POINTER (count));
|
|
* }
|
|
* ]|
|
|
*
|
|
* Since: 2.32
|
|
**/
|
|
|
|
static pthread_key_t *
|
|
g_private_impl_new (GDestroyNotify notify)
|
|
{
|
|
pthread_key_t *key;
|
|
gint status;
|
|
|
|
key = malloc (sizeof (pthread_key_t));
|
|
if G_UNLIKELY (key == NULL)
|
|
g_thread_abort (errno, "malloc");
|
|
status = pthread_key_create (key, notify);
|
|
if G_UNLIKELY (status != 0)
|
|
g_thread_abort (status, "pthread_key_create");
|
|
|
|
return key;
|
|
}
|
|
|
|
static void
|
|
g_private_impl_free (pthread_key_t *key)
|
|
{
|
|
gint status;
|
|
|
|
status = pthread_key_delete (*key);
|
|
if G_UNLIKELY (status != 0)
|
|
g_thread_abort (status, "pthread_key_delete");
|
|
free (key);
|
|
}
|
|
|
|
static pthread_key_t *
|
|
g_private_get_impl (GPrivate *key)
|
|
{
|
|
pthread_key_t *impl = g_atomic_pointer_get (&key->p);
|
|
|
|
if G_UNLIKELY (impl == NULL)
|
|
{
|
|
impl = g_private_impl_new (key->notify);
|
|
if (!g_atomic_pointer_compare_and_exchange (&key->p, NULL, impl))
|
|
{
|
|
g_private_impl_free (impl);
|
|
impl = key->p;
|
|
}
|
|
}
|
|
|
|
return impl;
|
|
}
|
|
|
|
/**
|
|
* g_private_get:
|
|
* @key: a #GPrivate
|
|
*
|
|
* Returns the current value of the thread local variable @key.
|
|
*
|
|
* If the value has not yet been set in this thread, %NULL is returned.
|
|
* Values are never copied between threads (when a new thread is
|
|
* created, for example).
|
|
*
|
|
* Returns: the thread-local value
|
|
*/
|
|
gpointer
|
|
g_private_get (GPrivate *key)
|
|
{
|
|
/* quote POSIX: No errors are returned from pthread_getspecific(). */
|
|
return pthread_getspecific (*g_private_get_impl (key));
|
|
}
|
|
|
|
/**
|
|
* g_private_set:
|
|
* @key: a #GPrivate
|
|
* @value: the new value
|
|
*
|
|
* Sets the thread local variable @key to have the value @value in the
|
|
* current thread.
|
|
*
|
|
* This function differs from g_private_replace() in the following way:
|
|
* the #GDestroyNotify for @key is not called on the old value.
|
|
*/
|
|
void
|
|
g_private_set (GPrivate *key,
|
|
gpointer value)
|
|
{
|
|
gint status;
|
|
|
|
if G_UNLIKELY ((status = pthread_setspecific (*g_private_get_impl (key), value)) != 0)
|
|
g_thread_abort (status, "pthread_setspecific");
|
|
}
|
|
|
|
/**
|
|
* g_private_replace:
|
|
* @key: a #GPrivate
|
|
* @value: the new value
|
|
*
|
|
* Sets the thread local variable @key to have the value @value in the
|
|
* current thread.
|
|
*
|
|
* This function differs from g_private_set() in the following way: if
|
|
* the previous value was non-%NULL then the #GDestroyNotify handler for
|
|
* @key is run on it.
|
|
*
|
|
* Since: 2.32
|
|
**/
|
|
void
|
|
g_private_replace (GPrivate *key,
|
|
gpointer value)
|
|
{
|
|
pthread_key_t *impl = g_private_get_impl (key);
|
|
gpointer old;
|
|
gint status;
|
|
|
|
old = pthread_getspecific (*impl);
|
|
if (old && key->notify)
|
|
key->notify (old);
|
|
|
|
if G_UNLIKELY ((status = pthread_setspecific (*impl, value)) != 0)
|
|
g_thread_abort (status, "pthread_setspecific");
|
|
}
|
|
|
|
/* {{{1 GThread */
|
|
|
|
#define posix_check_err(err, name) G_STMT_START{ \
|
|
int error = (err); \
|
|
if (error) \
|
|
g_error ("file %s: line %d (%s): error '%s' during '%s'", \
|
|
__FILE__, __LINE__, G_STRFUNC, \
|
|
g_strerror (error), name); \
|
|
}G_STMT_END
|
|
|
|
#define posix_check_cmd(cmd) posix_check_err (cmd, #cmd)
|
|
|
|
typedef struct
|
|
{
|
|
GRealThread thread;
|
|
|
|
pthread_t system_thread;
|
|
gboolean joined;
|
|
GMutex lock;
|
|
} GThreadPosix;
|
|
|
|
void
|
|
g_system_thread_free (GRealThread *thread)
|
|
{
|
|
GThreadPosix *pt = (GThreadPosix *) thread;
|
|
|
|
if (!pt->joined)
|
|
pthread_detach (pt->system_thread);
|
|
|
|
g_mutex_clear (&pt->lock);
|
|
|
|
g_slice_free (GThreadPosix, pt);
|
|
}
|
|
|
|
GRealThread *
|
|
g_system_thread_new (GThreadFunc thread_func,
|
|
gulong stack_size,
|
|
GError **error)
|
|
{
|
|
GThreadPosix *thread;
|
|
pthread_attr_t attr;
|
|
gint ret;
|
|
|
|
thread = g_slice_new0 (GThreadPosix);
|
|
|
|
posix_check_cmd (pthread_attr_init (&attr));
|
|
|
|
#ifdef HAVE_PTHREAD_ATTR_SETSTACKSIZE
|
|
if (stack_size)
|
|
{
|
|
#ifdef _SC_THREAD_STACK_MIN
|
|
stack_size = MAX (sysconf (_SC_THREAD_STACK_MIN), stack_size);
|
|
#endif /* _SC_THREAD_STACK_MIN */
|
|
/* No error check here, because some systems can't do it and
|
|
* we simply don't want threads to fail because of that. */
|
|
pthread_attr_setstacksize (&attr, stack_size);
|
|
}
|
|
#endif /* HAVE_PTHREAD_ATTR_SETSTACKSIZE */
|
|
|
|
ret = pthread_create (&thread->system_thread, &attr, (void* (*)(void*))thread_func, thread);
|
|
|
|
posix_check_cmd (pthread_attr_destroy (&attr));
|
|
|
|
if (ret == EAGAIN)
|
|
{
|
|
g_set_error (error, G_THREAD_ERROR, G_THREAD_ERROR_AGAIN,
|
|
"Error creating thread: %s", g_strerror (ret));
|
|
g_slice_free (GThreadPosix, thread);
|
|
return NULL;
|
|
}
|
|
|
|
posix_check_err (ret, "pthread_create");
|
|
|
|
g_mutex_init (&thread->lock);
|
|
|
|
return (GRealThread *) thread;
|
|
}
|
|
|
|
/**
|
|
* g_thread_yield:
|
|
*
|
|
* Causes the calling thread to voluntarily relinquish the CPU, so
|
|
* that other threads can run.
|
|
*
|
|
* This function is often used as a method to make busy wait less evil.
|
|
*/
|
|
void
|
|
g_thread_yield (void)
|
|
{
|
|
sched_yield ();
|
|
}
|
|
|
|
void
|
|
g_system_thread_wait (GRealThread *thread)
|
|
{
|
|
GThreadPosix *pt = (GThreadPosix *) thread;
|
|
|
|
g_mutex_lock (&pt->lock);
|
|
|
|
if (!pt->joined)
|
|
{
|
|
posix_check_cmd (pthread_join (pt->system_thread, NULL));
|
|
pt->joined = TRUE;
|
|
}
|
|
|
|
g_mutex_unlock (&pt->lock);
|
|
}
|
|
|
|
void
|
|
g_system_thread_exit (void)
|
|
{
|
|
pthread_exit (NULL);
|
|
}
|
|
|
|
void
|
|
g_system_thread_set_name (const gchar *name)
|
|
{
|
|
#ifdef HAVE_SYS_PRCTL_H
|
|
#ifdef PR_SET_NAME
|
|
prctl (PR_SET_NAME, name, 0, 0, 0, 0);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
/* {{{1 Epilogue */
|
|
/* vim:set foldmethod=marker: */
|