mirror of
https://gitlab.gnome.org/GNOME/glib.git
synced 2025-01-01 02:16:14 +01:00
e67e4cb849
Use the newly added API for reference counting instead of rolling our own.
529 lines
14 KiB
C
529 lines
14 KiB
C
/*
|
|
* Copyright © 2009, 2010 Codethink Limited
|
|
* Copyright © 2011 Collabora Ltd.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Author: Ryan Lortie <desrt@desrt.ca>
|
|
* Stef Walter <stefw@collabora.co.uk>
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include "gbytes.h"
|
|
|
|
#include <glib/garray.h>
|
|
#include <glib/gstrfuncs.h>
|
|
#include <glib/gatomic.h>
|
|
#include <glib/gslice.h>
|
|
#include <glib/gtestutils.h>
|
|
#include <glib/gmem.h>
|
|
#include <glib/gmessages.h>
|
|
#include <glib/grefcount.h>
|
|
|
|
#include <string.h>
|
|
|
|
/**
|
|
* GBytes:
|
|
*
|
|
* A simple refcounted data type representing an immutable sequence of zero or
|
|
* more bytes from an unspecified origin.
|
|
*
|
|
* The purpose of a #GBytes is to keep the memory region that it holds
|
|
* alive for as long as anyone holds a reference to the bytes. When
|
|
* the last reference count is dropped, the memory is released. Multiple
|
|
* unrelated callers can use byte data in the #GBytes without coordinating
|
|
* their activities, resting assured that the byte data will not change or
|
|
* move while they hold a reference.
|
|
*
|
|
* A #GBytes can come from many different origins that may have
|
|
* different procedures for freeing the memory region. Examples are
|
|
* memory from g_malloc(), from memory slices, from a #GMappedFile or
|
|
* memory from other allocators.
|
|
*
|
|
* #GBytes work well as keys in #GHashTable. Use g_bytes_equal() and
|
|
* g_bytes_hash() as parameters to g_hash_table_new() or g_hash_table_new_full().
|
|
* #GBytes can also be used as keys in a #GTree by passing the g_bytes_compare()
|
|
* function to g_tree_new().
|
|
*
|
|
* The data pointed to by this bytes must not be modified. For a mutable
|
|
* array of bytes see #GByteArray. Use g_bytes_unref_to_array() to create a
|
|
* mutable array for a #GBytes sequence. To create an immutable #GBytes from
|
|
* a mutable #GByteArray, use the g_byte_array_free_to_bytes() function.
|
|
*
|
|
* Since: 2.32
|
|
**/
|
|
|
|
/* Keep in sync with glib/tests/bytes.c */
|
|
struct _GBytes
|
|
{
|
|
gconstpointer data; /* may be NULL iff (size == 0) */
|
|
gsize size; /* may be 0 */
|
|
gatomicrefcount ref_count;
|
|
GDestroyNotify free_func;
|
|
gpointer user_data;
|
|
};
|
|
|
|
/**
|
|
* g_bytes_new:
|
|
* @data: (transfer none) (array length=size) (element-type guint8) (nullable):
|
|
* the data to be used for the bytes
|
|
* @size: the size of @data
|
|
*
|
|
* Creates a new #GBytes from @data.
|
|
*
|
|
* @data is copied. If @size is 0, @data may be %NULL.
|
|
*
|
|
* Returns: (transfer full): a new #GBytes
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
GBytes *
|
|
g_bytes_new (gconstpointer data,
|
|
gsize size)
|
|
{
|
|
g_return_val_if_fail (data != NULL || size == 0, NULL);
|
|
|
|
return g_bytes_new_take (g_memdup (data, size), size);
|
|
}
|
|
|
|
/**
|
|
* g_bytes_new_take:
|
|
* @data: (transfer full) (array length=size) (element-type guint8) (nullable):
|
|
* the data to be used for the bytes
|
|
* @size: the size of @data
|
|
*
|
|
* Creates a new #GBytes from @data.
|
|
*
|
|
* After this call, @data belongs to the bytes and may no longer be
|
|
* modified by the caller. g_free() will be called on @data when the
|
|
* bytes is no longer in use. Because of this @data must have been created by
|
|
* a call to g_malloc(), g_malloc0() or g_realloc() or by one of the many
|
|
* functions that wrap these calls (such as g_new(), g_strdup(), etc).
|
|
*
|
|
* For creating #GBytes with memory from other allocators, see
|
|
* g_bytes_new_with_free_func().
|
|
*
|
|
* @data may be %NULL if @size is 0.
|
|
*
|
|
* Returns: (transfer full): a new #GBytes
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
GBytes *
|
|
g_bytes_new_take (gpointer data,
|
|
gsize size)
|
|
{
|
|
return g_bytes_new_with_free_func (data, size, g_free, data);
|
|
}
|
|
|
|
|
|
/**
|
|
* g_bytes_new_static: (skip)
|
|
* @data: (transfer full) (array length=size) (element-type guint8) (nullable):
|
|
* the data to be used for the bytes
|
|
* @size: the size of @data
|
|
*
|
|
* Creates a new #GBytes from static data.
|
|
*
|
|
* @data must be static (ie: never modified or freed). It may be %NULL if @size
|
|
* is 0.
|
|
*
|
|
* Returns: (transfer full): a new #GBytes
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
GBytes *
|
|
g_bytes_new_static (gconstpointer data,
|
|
gsize size)
|
|
{
|
|
return g_bytes_new_with_free_func (data, size, NULL, NULL);
|
|
}
|
|
|
|
/**
|
|
* g_bytes_new_with_free_func: (skip)
|
|
* @data: (array length=size) (element-type guint8) (nullable):
|
|
* the data to be used for the bytes
|
|
* @size: the size of @data
|
|
* @free_func: the function to call to release the data
|
|
* @user_data: data to pass to @free_func
|
|
*
|
|
* Creates a #GBytes from @data.
|
|
*
|
|
* When the last reference is dropped, @free_func will be called with the
|
|
* @user_data argument.
|
|
*
|
|
* @data must not be modified after this call is made until @free_func has
|
|
* been called to indicate that the bytes is no longer in use.
|
|
*
|
|
* @data may be %NULL if @size is 0.
|
|
*
|
|
* Returns: (transfer full): a new #GBytes
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
GBytes *
|
|
g_bytes_new_with_free_func (gconstpointer data,
|
|
gsize size,
|
|
GDestroyNotify free_func,
|
|
gpointer user_data)
|
|
{
|
|
GBytes *bytes;
|
|
|
|
g_return_val_if_fail (data != NULL || size == 0, NULL);
|
|
|
|
bytes = g_slice_new (GBytes);
|
|
bytes->data = data;
|
|
bytes->size = size;
|
|
bytes->free_func = free_func;
|
|
bytes->user_data = user_data;
|
|
g_atomic_ref_count_init (&bytes->ref_count);
|
|
|
|
return (GBytes *)bytes;
|
|
}
|
|
|
|
/**
|
|
* g_bytes_new_from_bytes:
|
|
* @bytes: a #GBytes
|
|
* @offset: offset which subsection starts at
|
|
* @length: length of subsection
|
|
*
|
|
* Creates a #GBytes which is a subsection of another #GBytes. The @offset +
|
|
* @length may not be longer than the size of @bytes.
|
|
*
|
|
* A reference to @bytes will be held by the newly created #GBytes until
|
|
* the byte data is no longer needed.
|
|
*
|
|
* Since 2.56, if @offset is 0 and @length matches the size of @bytes, then
|
|
* @bytes will be returned with the reference count incremented by 1. If @bytes
|
|
* is a slice of another #GBytes, then the resulting #GBytes will reference
|
|
* the same #GBytes instead of @bytes. This allows consumers to simplify the
|
|
* usage of #GBytes when asynchronously writing to streams.
|
|
*
|
|
* Returns: (transfer full): a new #GBytes
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
GBytes *
|
|
g_bytes_new_from_bytes (GBytes *bytes,
|
|
gsize offset,
|
|
gsize length)
|
|
{
|
|
gchar *base;
|
|
|
|
/* Note that length may be 0. */
|
|
g_return_val_if_fail (bytes != NULL, NULL);
|
|
g_return_val_if_fail (offset <= bytes->size, NULL);
|
|
g_return_val_if_fail (offset + length <= bytes->size, NULL);
|
|
|
|
/* Avoid an extra GBytes if all bytes were requested */
|
|
if (offset == 0 && length == bytes->size)
|
|
return g_bytes_ref (bytes);
|
|
|
|
base = (gchar *)bytes->data + offset;
|
|
|
|
/* Avoid referencing intermediate GBytes. In practice, this should
|
|
* only loop once.
|
|
*/
|
|
while (bytes->free_func == (gpointer)g_bytes_unref)
|
|
bytes = bytes->user_data;
|
|
|
|
g_return_val_if_fail (bytes != NULL, NULL);
|
|
g_return_val_if_fail (base >= (gchar *)bytes->data, NULL);
|
|
g_return_val_if_fail (base <= (gchar *)bytes->data + bytes->size, NULL);
|
|
g_return_val_if_fail (base + length <= (gchar *)bytes->data + bytes->size, NULL);
|
|
|
|
return g_bytes_new_with_free_func (base, length,
|
|
(GDestroyNotify)g_bytes_unref, g_bytes_ref (bytes));
|
|
}
|
|
|
|
/**
|
|
* g_bytes_get_data:
|
|
* @bytes: a #GBytes
|
|
* @size: (out) (optional): location to return size of byte data
|
|
*
|
|
* Get the byte data in the #GBytes. This data should not be modified.
|
|
*
|
|
* This function will always return the same pointer for a given #GBytes.
|
|
*
|
|
* %NULL may be returned if @size is 0. This is not guaranteed, as the #GBytes
|
|
* may represent an empty string with @data non-%NULL and @size as 0. %NULL will
|
|
* not be returned if @size is non-zero.
|
|
*
|
|
* Returns: (transfer none) (array length=size) (element-type guint8) (nullable):
|
|
* a pointer to the byte data, or %NULL
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
gconstpointer
|
|
g_bytes_get_data (GBytes *bytes,
|
|
gsize *size)
|
|
{
|
|
g_return_val_if_fail (bytes != NULL, NULL);
|
|
if (size)
|
|
*size = bytes->size;
|
|
return bytes->data;
|
|
}
|
|
|
|
/**
|
|
* g_bytes_get_size:
|
|
* @bytes: a #GBytes
|
|
*
|
|
* Get the size of the byte data in the #GBytes.
|
|
*
|
|
* This function will always return the same value for a given #GBytes.
|
|
*
|
|
* Returns: the size
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
gsize
|
|
g_bytes_get_size (GBytes *bytes)
|
|
{
|
|
g_return_val_if_fail (bytes != NULL, 0);
|
|
return bytes->size;
|
|
}
|
|
|
|
|
|
/**
|
|
* g_bytes_ref:
|
|
* @bytes: a #GBytes
|
|
*
|
|
* Increase the reference count on @bytes.
|
|
*
|
|
* Returns: the #GBytes
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
GBytes *
|
|
g_bytes_ref (GBytes *bytes)
|
|
{
|
|
g_return_val_if_fail (bytes != NULL, NULL);
|
|
|
|
g_atomic_ref_count_inc (&bytes->ref_count);
|
|
|
|
return bytes;
|
|
}
|
|
|
|
/**
|
|
* g_bytes_unref:
|
|
* @bytes: (nullable): a #GBytes
|
|
*
|
|
* Releases a reference on @bytes. This may result in the bytes being
|
|
* freed. If @bytes is %NULL, it will return immediately.
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
void
|
|
g_bytes_unref (GBytes *bytes)
|
|
{
|
|
if (bytes == NULL)
|
|
return;
|
|
|
|
if (g_atomic_ref_count_dec (&bytes->ref_count))
|
|
{
|
|
if (bytes->free_func != NULL)
|
|
bytes->free_func (bytes->user_data);
|
|
g_slice_free (GBytes, bytes);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* g_bytes_equal:
|
|
* @bytes1: (type GLib.Bytes): a pointer to a #GBytes
|
|
* @bytes2: (type GLib.Bytes): a pointer to a #GBytes to compare with @bytes1
|
|
*
|
|
* Compares the two #GBytes values being pointed to and returns
|
|
* %TRUE if they are equal.
|
|
*
|
|
* This function can be passed to g_hash_table_new() as the @key_equal_func
|
|
* parameter, when using non-%NULL #GBytes pointers as keys in a #GHashTable.
|
|
*
|
|
* Returns: %TRUE if the two keys match.
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
gboolean
|
|
g_bytes_equal (gconstpointer bytes1,
|
|
gconstpointer bytes2)
|
|
{
|
|
const GBytes *b1 = bytes1;
|
|
const GBytes *b2 = bytes2;
|
|
|
|
g_return_val_if_fail (bytes1 != NULL, FALSE);
|
|
g_return_val_if_fail (bytes2 != NULL, FALSE);
|
|
|
|
return b1->size == b2->size &&
|
|
memcmp (b1->data, b2->data, b1->size) == 0;
|
|
}
|
|
|
|
/**
|
|
* g_bytes_hash:
|
|
* @bytes: (type GLib.Bytes): a pointer to a #GBytes key
|
|
*
|
|
* Creates an integer hash code for the byte data in the #GBytes.
|
|
*
|
|
* This function can be passed to g_hash_table_new() as the @key_hash_func
|
|
* parameter, when using non-%NULL #GBytes pointers as keys in a #GHashTable.
|
|
*
|
|
* Returns: a hash value corresponding to the key.
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
guint
|
|
g_bytes_hash (gconstpointer bytes)
|
|
{
|
|
const GBytes *a = bytes;
|
|
const signed char *p, *e;
|
|
guint32 h = 5381;
|
|
|
|
g_return_val_if_fail (bytes != NULL, 0);
|
|
|
|
for (p = (signed char *)a->data, e = (signed char *)a->data + a->size; p != e; p++)
|
|
h = (h << 5) + h + *p;
|
|
|
|
return h;
|
|
}
|
|
|
|
/**
|
|
* g_bytes_compare:
|
|
* @bytes1: (type GLib.Bytes): a pointer to a #GBytes
|
|
* @bytes2: (type GLib.Bytes): a pointer to a #GBytes to compare with @bytes1
|
|
*
|
|
* Compares the two #GBytes values.
|
|
*
|
|
* This function can be used to sort GBytes instances in lexographical order.
|
|
*
|
|
* Returns: a negative value if bytes2 is lesser, a positive value if bytes2 is
|
|
* greater, and zero if bytes2 is equal to bytes1
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
gint
|
|
g_bytes_compare (gconstpointer bytes1,
|
|
gconstpointer bytes2)
|
|
{
|
|
const GBytes *b1 = bytes1;
|
|
const GBytes *b2 = bytes2;
|
|
gint ret;
|
|
|
|
g_return_val_if_fail (bytes1 != NULL, 0);
|
|
g_return_val_if_fail (bytes2 != NULL, 0);
|
|
|
|
ret = memcmp (b1->data, b2->data, MIN (b1->size, b2->size));
|
|
if (ret == 0 && b1->size != b2->size)
|
|
ret = b1->size < b2->size ? -1 : 1;
|
|
return ret;
|
|
}
|
|
|
|
static gpointer
|
|
try_steal_and_unref (GBytes *bytes,
|
|
GDestroyNotify free_func,
|
|
gsize *size)
|
|
{
|
|
gpointer result;
|
|
|
|
if (bytes->free_func != free_func || bytes->data == NULL ||
|
|
bytes->user_data != bytes->data)
|
|
return NULL;
|
|
|
|
/* Are we the only reference? */
|
|
if (g_atomic_ref_count_compare (&bytes->ref_count, 1))
|
|
{
|
|
*size = bytes->size;
|
|
result = (gpointer)bytes->data;
|
|
g_slice_free (GBytes, bytes);
|
|
return result;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/**
|
|
* g_bytes_unref_to_data:
|
|
* @bytes: (transfer full): a #GBytes
|
|
* @size: (out): location to place the length of the returned data
|
|
*
|
|
* Unreferences the bytes, and returns a pointer the same byte data
|
|
* contents.
|
|
*
|
|
* As an optimization, the byte data is returned without copying if this was
|
|
* the last reference to bytes and bytes was created with g_bytes_new(),
|
|
* g_bytes_new_take() or g_byte_array_free_to_bytes(). In all other cases the
|
|
* data is copied.
|
|
*
|
|
* Returns: (transfer full) (array length=size) (element-type guint8)
|
|
* (not nullable): a pointer to the same byte data, which should be
|
|
* freed with g_free()
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
gpointer
|
|
g_bytes_unref_to_data (GBytes *bytes,
|
|
gsize *size)
|
|
{
|
|
gpointer result;
|
|
|
|
g_return_val_if_fail (bytes != NULL, NULL);
|
|
g_return_val_if_fail (size != NULL, NULL);
|
|
|
|
/*
|
|
* Optimal path: if this is was the last reference, then we can return
|
|
* the data from this GBytes without copying.
|
|
*/
|
|
|
|
result = try_steal_and_unref (bytes, g_free, size);
|
|
if (result == NULL)
|
|
{
|
|
/*
|
|
* Copy: Non g_malloc (or compatible) allocator, or static memory,
|
|
* so we have to copy, and then unref.
|
|
*/
|
|
result = g_memdup (bytes->data, bytes->size);
|
|
*size = bytes->size;
|
|
g_bytes_unref (bytes);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* g_bytes_unref_to_array:
|
|
* @bytes: (transfer full): a #GBytes
|
|
*
|
|
* Unreferences the bytes, and returns a new mutable #GByteArray containing
|
|
* the same byte data.
|
|
*
|
|
* As an optimization, the byte data is transferred to the array without copying
|
|
* if this was the last reference to bytes and bytes was created with
|
|
* g_bytes_new(), g_bytes_new_take() or g_byte_array_free_to_bytes(). In all
|
|
* other cases the data is copied.
|
|
*
|
|
* Returns: (transfer full): a new mutable #GByteArray containing the same byte data
|
|
*
|
|
* Since: 2.32
|
|
*/
|
|
GByteArray *
|
|
g_bytes_unref_to_array (GBytes *bytes)
|
|
{
|
|
gpointer data;
|
|
gsize size;
|
|
|
|
g_return_val_if_fail (bytes != NULL, NULL);
|
|
|
|
data = g_bytes_unref_to_data (bytes, &size);
|
|
return g_byte_array_new_take (data, size);
|
|
}
|