glib/glib/gmain.c
Dan Winship 0513c855cb gmain: fix double-unlock in g_main_context_unref()
When unreffing a context with sources still attached, it would end up
unlocking an already-unlocked context, causing crashes on platforms
that (unlike Linux) actually check for that.

https://bugzilla.gnome.org/show_bug.cgi?id=697595
2013-04-10 11:39:12 -04:00

5467 lines
144 KiB
C

/* GLIB - Library of useful routines for C programming
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
*
* gmain.c: Main loop abstraction, timeouts, and idle functions
* Copyright 1998 Owen Taylor
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
/*
* Modified by the GLib Team and others 1997-2000. See the AUTHORS
* file for a list of people on the GLib Team. See the ChangeLog
* files for a list of changes. These files are distributed with
* GLib at ftp://ftp.gtk.org/pub/gtk/.
*/
/*
* MT safe
*/
#include "config.h"
#include "glibconfig.h"
/* Uncomment the next line (and the corresponding line in gpoll.c) to
* enable debugging printouts if the environment variable
* G_MAIN_POLL_DEBUG is set to some value.
*/
/* #define G_MAIN_POLL_DEBUG */
#ifdef _WIN32
/* Always enable debugging printout on Windows, as it is more often
* needed there...
*/
#define G_MAIN_POLL_DEBUG
#endif
#ifdef G_OS_UNIX
#include "glib-unix.h"
#include <pthread.h>
#ifdef HAVE_EVENTFD
#include <sys/eventfd.h>
#endif
#endif
#include <signal.h>
#include <sys/types.h>
#include <time.h>
#include <stdlib.h>
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif /* HAVE_SYS_TIME_H */
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif /* HAVE_UNISTD_H */
#include <errno.h>
#include <string.h>
#ifdef G_OS_WIN32
#define STRICT
#include <windows.h>
#endif /* G_OS_WIN32 */
#ifdef G_OS_BEOS
#include <sys/socket.h>
#include <sys/wait.h>
#endif /* G_OS_BEOS */
#include "gmain.h"
#include "garray.h"
#include "giochannel.h"
#include "ghash.h"
#include "ghook.h"
#include "gqueue.h"
#include "gstrfuncs.h"
#include "gtestutils.h"
#ifdef G_OS_WIN32
#include "gwin32.h"
#endif
#ifdef G_MAIN_POLL_DEBUG
#include "gtimer.h"
#endif
#include "gwakeup.h"
#include "gmain-internal.h"
#include "glib-init.h"
#include "glib-private.h"
/**
* SECTION:main
* @title: The Main Event Loop
* @short_description: manages all available sources of events
*
* The main event loop manages all the available sources of events for
* GLib and GTK+ applications. These events can come from any number of
* different types of sources such as file descriptors (plain files,
* pipes or sockets) and timeouts. New types of event sources can also
* be added using g_source_attach().
*
* To allow multiple independent sets of sources to be handled in
* different threads, each source is associated with a #GMainContext.
* A GMainContext can only be running in a single thread, but
* sources can be added to it and removed from it from other threads.
*
* Each event source is assigned a priority. The default priority,
* #G_PRIORITY_DEFAULT, is 0. Values less than 0 denote higher priorities.
* Values greater than 0 denote lower priorities. Events from high priority
* sources are always processed before events from lower priority sources.
*
* Idle functions can also be added, and assigned a priority. These will
* be run whenever no events with a higher priority are ready to be processed.
*
* The #GMainLoop data type represents a main event loop. A GMainLoop is
* created with g_main_loop_new(). After adding the initial event sources,
* g_main_loop_run() is called. This continuously checks for new events from
* each of the event sources and dispatches them. Finally, the processing of
* an event from one of the sources leads to a call to g_main_loop_quit() to
* exit the main loop, and g_main_loop_run() returns.
*
* It is possible to create new instances of #GMainLoop recursively.
* This is often used in GTK+ applications when showing modal dialog
* boxes. Note that event sources are associated with a particular
* #GMainContext, and will be checked and dispatched for all main
* loops associated with that GMainContext.
*
* GTK+ contains wrappers of some of these functions, e.g. gtk_main(),
* gtk_main_quit() and gtk_events_pending().
*
* <refsect2><title>Creating new source types</title>
* <para>One of the unusual features of the #GMainLoop functionality
* is that new types of event source can be created and used in
* addition to the builtin type of event source. A new event source
* type is used for handling GDK events. A new source type is created
* by <firstterm>deriving</firstterm> from the #GSource structure.
* The derived type of source is represented by a structure that has
* the #GSource structure as a first element, and other elements specific
* to the new source type. To create an instance of the new source type,
* call g_source_new() passing in the size of the derived structure and
* a table of functions. These #GSourceFuncs determine the behavior of
* the new source type.</para>
* <para>New source types basically interact with the main context
* in two ways. Their prepare function in #GSourceFuncs can set a timeout
* to determine the maximum amount of time that the main loop will sleep
* before checking the source again. In addition, or as well, the source
* can add file descriptors to the set that the main context checks using
* g_source_add_poll().</para>
* </refsect2>
* <refsect2><title>Customizing the main loop iteration</title>
* <para>Single iterations of a #GMainContext can be run with
* g_main_context_iteration(). In some cases, more detailed control
* of exactly how the details of the main loop work is desired, for
* instance, when integrating the #GMainLoop with an external main loop.
* In such cases, you can call the component functions of
* g_main_context_iteration() directly. These functions are
* g_main_context_prepare(), g_main_context_query(),
* g_main_context_check() and g_main_context_dispatch().</para>
* <para>The operation of these functions can best be seen in terms
* of a state diagram, as shown in <xref linkend="mainloop-states"/>.</para>
* <figure id="mainloop-states"><title>States of a Main Context</title>
* <graphic fileref="mainloop-states.gif" format="GIF"></graphic>
* </figure>
* </refsect2>
*
* On Unix, the GLib mainloop is incompatible with fork(). Any program
* using the mainloop must either exec() or exit() from the child
* without returning to the mainloop.
*/
/* Types */
typedef struct _GTimeoutSource GTimeoutSource;
typedef struct _GChildWatchSource GChildWatchSource;
typedef struct _GUnixSignalWatchSource GUnixSignalWatchSource;
typedef struct _GPollRec GPollRec;
typedef struct _GSourceCallback GSourceCallback;
typedef enum
{
G_SOURCE_READY = 1 << G_HOOK_FLAG_USER_SHIFT,
G_SOURCE_CAN_RECURSE = 1 << (G_HOOK_FLAG_USER_SHIFT + 1),
G_SOURCE_BLOCKED = 1 << (G_HOOK_FLAG_USER_SHIFT + 2)
} GSourceFlags;
typedef struct _GSourceList GSourceList;
struct _GSourceList
{
GSource *head, *tail;
gint priority;
};
typedef struct _GMainWaiter GMainWaiter;
struct _GMainWaiter
{
GCond *cond;
GMutex *mutex;
};
typedef struct _GMainDispatch GMainDispatch;
struct _GMainDispatch
{
gint depth;
GSList *dispatching_sources; /* stack of current sources */
};
#ifdef G_MAIN_POLL_DEBUG
gboolean _g_main_poll_debug = FALSE;
#endif
struct _GMainContext
{
/* The following lock is used for both the list of sources
* and the list of poll records
*/
GMutex mutex;
GCond cond;
GThread *owner;
guint owner_count;
GSList *waiters;
gint ref_count;
GPtrArray *pending_dispatches;
gint timeout; /* Timeout for current iteration */
guint next_id;
GHashTable *overflow_used_source_ids; /* set<guint> */
GList *source_lists;
gint in_check_or_prepare;
GPollRec *poll_records, *poll_records_tail;
guint n_poll_records;
GPollFD *cached_poll_array;
guint cached_poll_array_size;
GWakeup *wakeup;
GPollFD wake_up_rec;
/* Flag indicating whether the set of fd's changed during a poll */
gboolean poll_changed;
GPollFunc poll_func;
gint64 time;
gboolean time_is_fresh;
};
struct _GSourceCallback
{
guint ref_count;
GSourceFunc func;
gpointer data;
GDestroyNotify notify;
};
struct _GMainLoop
{
GMainContext *context;
gboolean is_running;
gint ref_count;
};
struct _GTimeoutSource
{
GSource source;
guint interval;
gboolean seconds;
};
struct _GChildWatchSource
{
GSource source;
GPid pid;
gint child_status;
#ifdef G_OS_WIN32
GPollFD poll;
#else /* G_OS_WIN32 */
gboolean child_exited;
#endif /* G_OS_WIN32 */
};
struct _GUnixSignalWatchSource
{
GSource source;
int signum;
gboolean pending;
};
struct _GPollRec
{
GPollFD *fd;
GPollRec *prev;
GPollRec *next;
gint priority;
};
struct _GSourcePrivate
{
GSList *child_sources;
GSource *parent_source;
gint64 ready_time;
/* This is currently only used on UNIX, but we always declare it (and
* let it remain empty on Windows) to avoid #ifdef all over the place.
*/
GSList *fds;
};
typedef struct _GSourceIter
{
GMainContext *context;
gboolean may_modify;
GList *current_list;
GSource *source;
} GSourceIter;
#define LOCK_CONTEXT(context) g_mutex_lock (&context->mutex)
#define UNLOCK_CONTEXT(context) g_mutex_unlock (&context->mutex)
#define G_THREAD_SELF g_thread_self ()
#define SOURCE_DESTROYED(source) (((source)->flags & G_HOOK_FLAG_ACTIVE) == 0)
#define SOURCE_BLOCKED(source) (((source)->flags & G_SOURCE_BLOCKED) != 0)
#define SOURCE_UNREF(source, context) \
G_STMT_START { \
if ((source)->ref_count > 1) \
(source)->ref_count--; \
else \
g_source_unref_internal ((source), (context), TRUE); \
} G_STMT_END
/* Forward declarations */
static void g_source_unref_internal (GSource *source,
GMainContext *context,
gboolean have_lock);
static void g_source_destroy_internal (GSource *source,
GMainContext *context,
gboolean have_lock);
static void g_source_set_priority_unlocked (GSource *source,
GMainContext *context,
gint priority);
static void g_child_source_remove_internal (GSource *child_source,
GMainContext *context);
static void g_main_context_poll (GMainContext *context,
gint timeout,
gint priority,
GPollFD *fds,
gint n_fds);
static void g_main_context_add_poll_unlocked (GMainContext *context,
gint priority,
GPollFD *fd);
static void g_main_context_remove_poll_unlocked (GMainContext *context,
GPollFD *fd);
static void g_source_iter_init (GSourceIter *iter,
GMainContext *context,
gboolean may_modify);
static gboolean g_source_iter_next (GSourceIter *iter,
GSource **source);
static void g_source_iter_clear (GSourceIter *iter);
static gboolean g_timeout_dispatch (GSource *source,
GSourceFunc callback,
gpointer user_data);
static gboolean g_child_watch_prepare (GSource *source,
gint *timeout);
static gboolean g_child_watch_check (GSource *source);
static gboolean g_child_watch_dispatch (GSource *source,
GSourceFunc callback,
gpointer user_data);
static void g_child_watch_finalize (GSource *source);
#ifdef G_OS_UNIX
static void g_unix_signal_handler (int signum);
static gboolean g_unix_signal_watch_prepare (GSource *source,
gint *timeout);
static gboolean g_unix_signal_watch_check (GSource *source);
static gboolean g_unix_signal_watch_dispatch (GSource *source,
GSourceFunc callback,
gpointer user_data);
static void g_unix_signal_watch_finalize (GSource *source);
#endif
static gboolean g_idle_prepare (GSource *source,
gint *timeout);
static gboolean g_idle_check (GSource *source);
static gboolean g_idle_dispatch (GSource *source,
GSourceFunc callback,
gpointer user_data);
static void block_source (GSource *source);
static GMainContext *glib_worker_context;
G_LOCK_DEFINE_STATIC (main_loop);
static GMainContext *default_main_context;
#ifndef G_OS_WIN32
/* UNIX signals work by marking one of these variables then waking the
* worker context to check on them and dispatch accordingly.
*/
#ifdef HAVE_SIG_ATOMIC_T
static volatile sig_atomic_t unix_signal_pending[NSIG];
static volatile sig_atomic_t any_unix_signal_pending;
#else
static volatile int unix_signal_pending[NSIG];
static volatile int any_unix_signal_pending;
#endif
/* Guards all the data below */
G_LOCK_DEFINE_STATIC (unix_signal_lock);
static GSList *unix_signal_watches;
static GSList *unix_child_watches;
static GSourceFuncs g_unix_signal_funcs =
{
g_unix_signal_watch_prepare,
g_unix_signal_watch_check,
g_unix_signal_watch_dispatch,
g_unix_signal_watch_finalize
};
#endif /* !G_OS_WIN32 */
G_LOCK_DEFINE_STATIC (main_context_list);
static GSList *main_context_list = NULL;
GSourceFuncs g_timeout_funcs =
{
NULL, /* prepare */
NULL, /* check */
g_timeout_dispatch,
NULL
};
GSourceFuncs g_child_watch_funcs =
{
g_child_watch_prepare,
g_child_watch_check,
g_child_watch_dispatch,
g_child_watch_finalize
};
GSourceFuncs g_idle_funcs =
{
g_idle_prepare,
g_idle_check,
g_idle_dispatch,
NULL
};
/**
* g_main_context_ref:
* @context: a #GMainContext
*
* Increases the reference count on a #GMainContext object by one.
*
* Returns: the @context that was passed in (since 2.6)
**/
GMainContext *
g_main_context_ref (GMainContext *context)
{
g_return_val_if_fail (context != NULL, NULL);
g_return_val_if_fail (g_atomic_int_get (&context->ref_count) > 0, NULL);
g_atomic_int_inc (&context->ref_count);
return context;
}
static inline void
poll_rec_list_free (GMainContext *context,
GPollRec *list)
{
g_slice_free_chain (GPollRec, list, next);
}
/**
* g_main_context_unref:
* @context: a #GMainContext
*
* Decreases the reference count on a #GMainContext object by one. If
* the result is zero, free the context and free all associated memory.
**/
void
g_main_context_unref (GMainContext *context)
{
GSourceIter iter;
GSource *source;
GList *sl_iter;
GSourceList *list;
g_return_if_fail (context != NULL);
g_return_if_fail (g_atomic_int_get (&context->ref_count) > 0);
if (!g_atomic_int_dec_and_test (&context->ref_count))
return;
G_LOCK (main_context_list);
main_context_list = g_slist_remove (main_context_list, context);
G_UNLOCK (main_context_list);
/* g_source_iter_next() assumes the context is locked. */
LOCK_CONTEXT (context);
g_source_iter_init (&iter, context, TRUE);
while (g_source_iter_next (&iter, &source))
{
source->context = NULL;
g_source_destroy_internal (source, context, TRUE);
}
UNLOCK_CONTEXT (context);
for (sl_iter = context->source_lists; sl_iter; sl_iter = sl_iter->next)
{
list = sl_iter->data;
g_slice_free (GSourceList, list);
}
g_list_free (context->source_lists);
if (context->overflow_used_source_ids)
g_hash_table_destroy (context->overflow_used_source_ids);
g_mutex_clear (&context->mutex);
g_ptr_array_free (context->pending_dispatches, TRUE);
g_free (context->cached_poll_array);
poll_rec_list_free (context, context->poll_records);
g_wakeup_free (context->wakeup);
g_cond_clear (&context->cond);
g_free (context);
}
/* Helper function used by mainloop/overflow test.
*/
GMainContext *
g_main_context_new_with_next_id (guint next_id)
{
GMainContext *ret = g_main_context_new ();
ret->next_id = next_id;
return ret;
}
/**
* g_main_context_new:
*
* Creates a new #GMainContext structure.
*
* Return value: the new #GMainContext
**/
GMainContext *
g_main_context_new (void)
{
static gsize initialised;
GMainContext *context;
if (g_once_init_enter (&initialised))
{
#ifdef G_MAIN_POLL_DEBUG
if (getenv ("G_MAIN_POLL_DEBUG") != NULL)
_g_main_poll_debug = TRUE;
#endif
g_once_init_leave (&initialised, TRUE);
}
context = g_new0 (GMainContext, 1);
g_mutex_init (&context->mutex);
g_cond_init (&context->cond);
context->owner = NULL;
context->waiters = NULL;
context->ref_count = 1;
context->next_id = 1;
context->source_lists = NULL;
context->poll_func = g_poll;
context->cached_poll_array = NULL;
context->cached_poll_array_size = 0;
context->pending_dispatches = g_ptr_array_new ();
context->time_is_fresh = FALSE;
context->wakeup = g_wakeup_new ();
g_wakeup_get_pollfd (context->wakeup, &context->wake_up_rec);
g_main_context_add_poll_unlocked (context, 0, &context->wake_up_rec);
G_LOCK (main_context_list);
main_context_list = g_slist_append (main_context_list, context);
#ifdef G_MAIN_POLL_DEBUG
if (_g_main_poll_debug)
g_print ("created context=%p\n", context);
#endif
G_UNLOCK (main_context_list);
return context;
}
/**
* g_main_context_default:
*
* Returns the global default main context. This is the main context
* used for main loop functions when a main loop is not explicitly
* specified, and corresponds to the "main" main loop. See also
* g_main_context_get_thread_default().
*
* Return value: (transfer none): the global default main context.
**/
GMainContext *
g_main_context_default (void)
{
/* Slow, but safe */
G_LOCK (main_loop);
if (!default_main_context)
{
default_main_context = g_main_context_new ();
#ifdef G_MAIN_POLL_DEBUG
if (_g_main_poll_debug)
g_print ("default context=%p\n", default_main_context);
#endif
}
G_UNLOCK (main_loop);
return default_main_context;
}
static void
free_context (gpointer data)
{
GMainContext *context = data;
g_main_context_release (context);
if (context)
g_main_context_unref (context);
}
static void
free_context_stack (gpointer data)
{
g_queue_free_full((GQueue *) data, (GDestroyNotify) free_context);
}
static GPrivate thread_context_stack = G_PRIVATE_INIT (free_context_stack);
/**
* g_main_context_push_thread_default:
* @context: (allow-none): a #GMainContext, or %NULL for the global default context
*
* Acquires @context and sets it as the thread-default context for the
* current thread. This will cause certain asynchronous operations
* (such as most <link linkend="gio">gio</link>-based I/O) which are
* started in this thread to run under @context and deliver their
* results to its main loop, rather than running under the global
* default context in the main thread. Note that calling this function
* changes the context returned by
* g_main_context_get_thread_default(), <emphasis>not</emphasis> the
* one returned by g_main_context_default(), so it does not affect the
* context used by functions like g_idle_add().
*
* Normally you would call this function shortly after creating a new
* thread, passing it a #GMainContext which will be run by a
* #GMainLoop in that thread, to set a new default context for all
* async operations in that thread. (In this case, you don't need to
* ever call g_main_context_pop_thread_default().) In some cases
* however, you may want to schedule a single operation in a
* non-default context, or temporarily use a non-default context in
* the main thread. In that case, you can wrap the call to the
* asynchronous operation inside a
* g_main_context_push_thread_default() /
* g_main_context_pop_thread_default() pair, but it is up to you to
* ensure that no other asynchronous operations accidentally get
* started while the non-default context is active.
*
* Beware that libraries that predate this function may not correctly
* handle being used from a thread with a thread-default context. Eg,
* see g_file_supports_thread_contexts().
*
* Since: 2.22
**/
void
g_main_context_push_thread_default (GMainContext *context)
{
GQueue *stack;
gboolean acquired_context;
acquired_context = g_main_context_acquire (context);
g_return_if_fail (acquired_context);
if (context == g_main_context_default ())
context = NULL;
else if (context)
g_main_context_ref (context);
stack = g_private_get (&thread_context_stack);
if (!stack)
{
stack = g_queue_new ();
g_private_set (&thread_context_stack, stack);
}
g_queue_push_head (stack, context);
}
/**
* g_main_context_pop_thread_default:
* @context: (allow-none): a #GMainContext object, or %NULL
*
* Pops @context off the thread-default context stack (verifying that
* it was on the top of the stack).
*
* Since: 2.22
**/
void
g_main_context_pop_thread_default (GMainContext *context)
{
GQueue *stack;
if (context == g_main_context_default ())
context = NULL;
stack = g_private_get (&thread_context_stack);
g_return_if_fail (stack != NULL);
g_return_if_fail (g_queue_peek_head (stack) == context);
g_queue_pop_head (stack);
g_main_context_release (context);
if (context)
g_main_context_unref (context);
}
/**
* g_main_context_get_thread_default:
*
* Gets the thread-default #GMainContext for this thread. Asynchronous
* operations that want to be able to be run in contexts other than
* the default one should call this method or
* g_main_context_ref_thread_default() to get a #GMainContext to add
* their #GSource<!-- -->s to. (Note that even in single-threaded
* programs applications may sometimes want to temporarily push a
* non-default context, so it is not safe to assume that this will
* always return %NULL if you are running in the default thread.)
*
* If you need to hold a reference on the context, use
* g_main_context_ref_thread_default() instead.
*
* Returns: (transfer none): the thread-default #GMainContext, or
* %NULL if the thread-default context is the global default context.
*
* Since: 2.22
**/
GMainContext *
g_main_context_get_thread_default (void)
{
GQueue *stack;
stack = g_private_get (&thread_context_stack);
if (stack)
return g_queue_peek_head (stack);
else
return NULL;
}
/**
* g_main_context_ref_thread_default:
*
* Gets the thread-default #GMainContext for this thread, as with
* g_main_context_get_thread_default(), but also adds a reference to
* it with g_main_context_ref(). In addition, unlike
* g_main_context_get_thread_default(), if the thread-default context
* is the global default context, this will return that #GMainContext
* (with a ref added to it) rather than returning %NULL.
*
* Returns: (transfer full): the thread-default #GMainContext. Unref
* with g_main_context_unref() when you are done with it.
*
* Since: 2.32
*/
GMainContext *
g_main_context_ref_thread_default (void)
{
GMainContext *context;
context = g_main_context_get_thread_default ();
if (!context)
context = g_main_context_default ();
return g_main_context_ref (context);
}
/* Hooks for adding to the main loop */
/**
* g_source_new:
* @source_funcs: structure containing functions that implement
* the sources behavior.
* @struct_size: size of the #GSource structure to create.
*
* Creates a new #GSource structure. The size is specified to
* allow creating structures derived from #GSource that contain
* additional data. The size passed in must be at least
* <literal>sizeof (GSource)</literal>.
*
* The source will not initially be associated with any #GMainContext
* and must be added to one with g_source_attach() before it will be
* executed.
*
* Return value: the newly-created #GSource.
**/
GSource *
g_source_new (GSourceFuncs *source_funcs,
guint struct_size)
{
GSource *source;
g_return_val_if_fail (source_funcs != NULL, NULL);
g_return_val_if_fail (struct_size >= sizeof (GSource), NULL);
source = (GSource*) g_malloc0 (struct_size);
source->priv = g_slice_new0 (GSourcePrivate);
source->source_funcs = source_funcs;
source->ref_count = 1;
source->priority = G_PRIORITY_DEFAULT;
source->flags = G_HOOK_FLAG_ACTIVE;
source->priv->ready_time = -1;
/* NULL/0 initialization for all other fields */
return source;
}
/* Holds context's lock */
static void
g_source_iter_init (GSourceIter *iter,
GMainContext *context,
gboolean may_modify)
{
iter->context = context;
iter->current_list = NULL;
iter->source = NULL;
iter->may_modify = may_modify;
}
/* Holds context's lock */
static gboolean
g_source_iter_next (GSourceIter *iter, GSource **source)
{
GSource *next_source;
if (iter->source)
next_source = iter->source->next;
else
next_source = NULL;
if (!next_source)
{
if (iter->current_list)
iter->current_list = iter->current_list->next;
else
iter->current_list = iter->context->source_lists;
if (iter->current_list)
{
GSourceList *source_list = iter->current_list->data;
next_source = source_list->head;
}
}
/* Note: unreffing iter->source could potentially cause its
* GSourceList to be removed from source_lists (if iter->source is
* the only source in its list, and it is destroyed), so we have to
* keep it reffed until after we advance iter->current_list, above.
*/
if (iter->source && iter->may_modify)
SOURCE_UNREF (iter->source, iter->context);
iter->source = next_source;
if (iter->source && iter->may_modify)
iter->source->ref_count++;
*source = iter->source;
return *source != NULL;
}
/* Holds context's lock. Only necessary to call if you broke out of
* the g_source_iter_next() loop early.
*/
static void
g_source_iter_clear (GSourceIter *iter)
{
if (iter->source && iter->may_modify)
{
SOURCE_UNREF (iter->source, iter->context);
iter->source = NULL;
}
}
/* Holds context's lock
*/
static GSourceList *
find_source_list_for_priority (GMainContext *context,
gint priority,
gboolean create)
{
GList *iter, *last;
GSourceList *source_list;
last = NULL;
for (iter = context->source_lists; iter != NULL; last = iter, iter = iter->next)
{
source_list = iter->data;
if (source_list->priority == priority)
return source_list;
if (source_list->priority > priority)
{
if (!create)
return NULL;
source_list = g_slice_new0 (GSourceList);
source_list->priority = priority;
context->source_lists = g_list_insert_before (context->source_lists,
iter,
source_list);
return source_list;
}
}
if (!create)
return NULL;
source_list = g_slice_new0 (GSourceList);
source_list->priority = priority;
if (!last)
context->source_lists = g_list_append (NULL, source_list);
else
{
/* This just appends source_list to the end of
* context->source_lists without having to walk the list again.
*/
last = g_list_append (last, source_list);
}
return source_list;
}
/* Holds context's lock
*/
static void
source_add_to_context (GSource *source,
GMainContext *context)
{
GSourceList *source_list;
GSource *prev, *next;
source_list = find_source_list_for_priority (context, source->priority, TRUE);
if (source->priv->parent_source)
{
g_assert (source_list->head != NULL);
/* Put the source immediately before its parent */
prev = source->priv->parent_source->prev;
next = source->priv->parent_source;
}
else
{
prev = source_list->tail;
next = NULL;
}
source->next = next;
if (next)
next->prev = source;
else
source_list->tail = source;
source->prev = prev;
if (prev)
prev->next = source;
else
source_list->head = source;
}
/* Holds context's lock
*/
static void
source_remove_from_context (GSource *source,
GMainContext *context)
{
GSourceList *source_list;
source_list = find_source_list_for_priority (context, source->priority, FALSE);
g_return_if_fail (source_list != NULL);
if (source->prev)
source->prev->next = source->next;
else
source_list->head = source->next;
if (source->next)
source->next->prev = source->prev;
else
source_list->tail = source->prev;
source->prev = NULL;
source->next = NULL;
if (source_list->head == NULL)
{
context->source_lists = g_list_remove (context->source_lists, source_list);
g_slice_free (GSourceList, source_list);
}
if (context->overflow_used_source_ids)
g_hash_table_remove (context->overflow_used_source_ids,
GUINT_TO_POINTER (source->source_id));
}
static void
assign_source_id_unlocked (GMainContext *context,
GSource *source)
{
guint id;
/* Are we about to overflow back to 0?
* See https://bugzilla.gnome.org/show_bug.cgi?id=687098
*/
if (G_UNLIKELY (context->next_id == G_MAXUINT &&
context->overflow_used_source_ids == NULL))
{
GSourceIter iter;
GSource *source;
context->overflow_used_source_ids = g_hash_table_new (NULL, NULL);
g_source_iter_init (&iter, context, FALSE);
while (g_source_iter_next (&iter, &source))
{
g_hash_table_add (context->overflow_used_source_ids,
GUINT_TO_POINTER (source->source_id));
}
id = G_MAXUINT;
}
else if (context->overflow_used_source_ids == NULL)
{
id = context->next_id++;
}
else
{
/*
* If we overran G_MAXUINT, we fall back to randomly probing the
* source ids for the current context. This will be slower the more
* sources there are, but we're mainly concerned right now about
* correctness and code size. There's time for a more clever solution
* later.
*/
do
id = g_random_int ();
while (id == 0 ||
g_hash_table_contains (context->overflow_used_source_ids,
GUINT_TO_POINTER (id)));
g_hash_table_add (context->overflow_used_source_ids, GUINT_TO_POINTER (id));
}
source->source_id = id;
}
static guint
g_source_attach_unlocked (GSource *source,
GMainContext *context)
{
GSList *tmp_list;
source->context = context;
assign_source_id_unlocked (context, source);
source->ref_count++;
source_add_to_context (source, context);
tmp_list = source->poll_fds;
while (tmp_list)
{
g_main_context_add_poll_unlocked (context, source->priority, tmp_list->data);
tmp_list = tmp_list->next;
}
for (tmp_list = source->priv->fds; tmp_list; tmp_list = tmp_list->next)
g_main_context_add_poll_unlocked (context, source->priority, tmp_list->data);
tmp_list = source->priv->child_sources;
while (tmp_list)
{
g_source_attach_unlocked (tmp_list->data, context);
tmp_list = tmp_list->next;
}
return source->source_id;
}
/**
* g_source_attach:
* @source: a #GSource
* @context: (allow-none): a #GMainContext (if %NULL, the default context will be used)
*
* Adds a #GSource to a @context so that it will be executed within
* that context. Remove it by calling g_source_destroy().
*
* Return value: the ID (greater than 0) for the source within the
* #GMainContext.
**/
guint
g_source_attach (GSource *source,
GMainContext *context)
{
guint result = 0;
g_return_val_if_fail (source->context == NULL, 0);
g_return_val_if_fail (!SOURCE_DESTROYED (source), 0);
if (!context)
context = g_main_context_default ();
LOCK_CONTEXT (context);
result = g_source_attach_unlocked (source, context);
/* If another thread has acquired the context, wake it up since it
* might be in poll() right now.
*/
if (context->owner && context->owner != G_THREAD_SELF)
g_wakeup_signal (context->wakeup);
UNLOCK_CONTEXT (context);
return result;
}
static void
g_source_destroy_internal (GSource *source,
GMainContext *context,
gboolean have_lock)
{
if (!have_lock)
LOCK_CONTEXT (context);
if (!SOURCE_DESTROYED (source))
{
GSList *tmp_list;
gpointer old_cb_data;
GSourceCallbackFuncs *old_cb_funcs;
source->flags &= ~G_HOOK_FLAG_ACTIVE;
old_cb_data = source->callback_data;
old_cb_funcs = source->callback_funcs;
source->callback_data = NULL;
source->callback_funcs = NULL;
if (old_cb_funcs)
{
UNLOCK_CONTEXT (context);
old_cb_funcs->unref (old_cb_data);
LOCK_CONTEXT (context);
}
if (!SOURCE_BLOCKED (source))
{
tmp_list = source->poll_fds;
while (tmp_list)
{
g_main_context_remove_poll_unlocked (context, tmp_list->data);
tmp_list = tmp_list->next;
}
for (tmp_list = source->priv->fds; tmp_list; tmp_list = tmp_list->next)
g_main_context_remove_poll_unlocked (context, tmp_list->data);
}
while (source->priv->child_sources)
g_child_source_remove_internal (source->priv->child_sources->data, context);
if (source->priv->parent_source)
g_child_source_remove_internal (source, context);
g_source_unref_internal (source, context, TRUE);
}
if (!have_lock)
UNLOCK_CONTEXT (context);
}
/**
* g_source_destroy:
* @source: a #GSource
*
* Removes a source from its #GMainContext, if any, and mark it as
* destroyed. The source cannot be subsequently added to another
* context.
**/
void
g_source_destroy (GSource *source)
{
GMainContext *context;
g_return_if_fail (source != NULL);
context = source->context;
if (context)
g_source_destroy_internal (source, context, FALSE);
else
source->flags &= ~G_HOOK_FLAG_ACTIVE;
}
/**
* g_source_get_id:
* @source: a #GSource
*
* Returns the numeric ID for a particular source. The ID of a source
* is a positive integer which is unique within a particular main loop
* context. The reverse
* mapping from ID to source is done by g_main_context_find_source_by_id().
*
* Return value: the ID (greater than 0) for the source
**/
guint
g_source_get_id (GSource *source)
{
guint result;
g_return_val_if_fail (source != NULL, 0);
g_return_val_if_fail (source->context != NULL, 0);
LOCK_CONTEXT (source->context);
result = source->source_id;
UNLOCK_CONTEXT (source->context);
return result;
}
/**
* g_source_get_context:
* @source: a #GSource
*
* Gets the #GMainContext with which the source is associated.
*
* You can call this on a source that has been destroyed, provided
* that the #GMainContext it was attached to still exists (in which
* case it will return that #GMainContext). In particular, you can
* always call this function on the source returned from
* g_main_current_source(). But calling this function on a source
* whose #GMainContext has been destroyed is an error.
*
* Return value: (transfer none) (allow-none): the #GMainContext with which the
* source is associated, or %NULL if the context has not
* yet been added to a source.
**/
GMainContext *
g_source_get_context (GSource *source)
{
g_return_val_if_fail (source->context != NULL || !SOURCE_DESTROYED (source), NULL);
return source->context;
}
/**
* g_source_add_poll:
* @source:a #GSource
* @fd: a #GPollFD structure holding information about a file
* descriptor to watch.
*
* Adds a file descriptor to the set of file descriptors polled for
* this source. This is usually combined with g_source_new() to add an
* event source. The event source's check function will typically test
* the @revents field in the #GPollFD struct and return %TRUE if events need
* to be processed.
*
* Using this API forces the linear scanning of event sources on each
* main loop iteration. Newly-written event sources should try to use
* g_source_add_unix_fd() instead of this API.
**/
void
g_source_add_poll (GSource *source,
GPollFD *fd)
{
GMainContext *context;
g_return_if_fail (source != NULL);
g_return_if_fail (fd != NULL);
g_return_if_fail (!SOURCE_DESTROYED (source));
context = source->context;
if (context)
LOCK_CONTEXT (context);
source->poll_fds = g_slist_prepend (source->poll_fds, fd);
if (context)
{
if (!SOURCE_BLOCKED (source))
g_main_context_add_poll_unlocked (context, source->priority, fd);
UNLOCK_CONTEXT (context);
}
}
/**
* g_source_remove_poll:
* @source:a #GSource
* @fd: a #GPollFD structure previously passed to g_source_add_poll().
*
* Removes a file descriptor from the set of file descriptors polled for
* this source.
**/
void
g_source_remove_poll (GSource *source,
GPollFD *fd)
{
GMainContext *context;
g_return_if_fail (source != NULL);
g_return_if_fail (fd != NULL);
g_return_if_fail (!SOURCE_DESTROYED (source));
context = source->context;
if (context)
LOCK_CONTEXT (context);
source->poll_fds = g_slist_remove (source->poll_fds, fd);
if (context)
{
if (!SOURCE_BLOCKED (source))
g_main_context_remove_poll_unlocked (context, fd);
UNLOCK_CONTEXT (context);
}
}
/**
* g_source_add_child_source:
* @source:a #GSource
* @child_source: a second #GSource that @source should "poll"
*
* Adds @child_source to @source as a "polled" source; when @source is
* added to a #GMainContext, @child_source will be automatically added
* with the same priority, when @child_source is triggered, it will
* cause @source to dispatch (in addition to calling its own
* callback), and when @source is destroyed, it will destroy
* @child_source as well. (@source will also still be dispatched if
* its own prepare/check functions indicate that it is ready.)
*
* If you don't need @child_source to do anything on its own when it
* triggers, you can call g_source_set_dummy_callback() on it to set a
* callback that does nothing (except return %TRUE if appropriate).
*
* @source will hold a reference on @child_source while @child_source
* is attached to it.
*
* Since: 2.28
**/
void
g_source_add_child_source (GSource *source,
GSource *child_source)
{
GMainContext *context;
g_return_if_fail (source != NULL);
g_return_if_fail (child_source != NULL);
g_return_if_fail (!SOURCE_DESTROYED (source));
g_return_if_fail (!SOURCE_DESTROYED (child_source));
g_return_if_fail (child_source->context == NULL);
g_return_if_fail (child_source->priv->parent_source == NULL);
context = source->context;
if (context)
LOCK_CONTEXT (context);
source->priv->child_sources = g_slist_prepend (source->priv->child_sources,
g_source_ref (child_source));
child_source->priv->parent_source = source;
g_source_set_priority_unlocked (child_source, NULL, source->priority);
if (SOURCE_BLOCKED (source))
block_source (child_source);
if (context)
{
UNLOCK_CONTEXT (context);
g_source_attach (child_source, context);
}
}
static void
g_child_source_remove_internal (GSource *child_source,
GMainContext *context)
{
GSource *parent_source = child_source->priv->parent_source;
parent_source->priv->child_sources =
g_slist_remove (parent_source->priv->child_sources, child_source);
child_source->priv->parent_source = NULL;
g_source_destroy_internal (child_source, context, TRUE);
g_source_unref_internal (child_source, context, TRUE);
}
/**
* g_source_remove_child_source:
* @source:a #GSource
* @child_source: a #GSource previously passed to
* g_source_add_child_source().
*
* Detaches @child_source from @source and destroys it.
*
* Since: 2.28
**/
void
g_source_remove_child_source (GSource *source,
GSource *child_source)
{
GMainContext *context;
g_return_if_fail (source != NULL);
g_return_if_fail (child_source != NULL);
g_return_if_fail (child_source->priv->parent_source == source);
g_return_if_fail (!SOURCE_DESTROYED (source));
g_return_if_fail (!SOURCE_DESTROYED (child_source));
context = source->context;
if (context)
LOCK_CONTEXT (context);
g_child_source_remove_internal (child_source, context);
if (context)
UNLOCK_CONTEXT (context);
}
/**
* g_source_set_callback_indirect:
* @source: the source
* @callback_data: pointer to callback data "object"
* @callback_funcs: functions for reference counting @callback_data
* and getting the callback and data
*
* Sets the callback function storing the data as a refcounted callback
* "object". This is used internally. Note that calling
* g_source_set_callback_indirect() assumes
* an initial reference count on @callback_data, and thus
* @callback_funcs->unref will eventually be called once more
* than @callback_funcs->ref.
**/
void
g_source_set_callback_indirect (GSource *source,
gpointer callback_data,
GSourceCallbackFuncs *callback_funcs)
{
GMainContext *context;
gpointer old_cb_data;
GSourceCallbackFuncs *old_cb_funcs;
g_return_if_fail (source != NULL);
g_return_if_fail (callback_funcs != NULL || callback_data == NULL);
context = source->context;
if (context)
LOCK_CONTEXT (context);
old_cb_data = source->callback_data;
old_cb_funcs = source->callback_funcs;
source->callback_data = callback_data;
source->callback_funcs = callback_funcs;
if (context)
UNLOCK_CONTEXT (context);
if (old_cb_funcs)
old_cb_funcs->unref (old_cb_data);
}
static void
g_source_callback_ref (gpointer cb_data)
{
GSourceCallback *callback = cb_data;
callback->ref_count++;
}
static void
g_source_callback_unref (gpointer cb_data)
{
GSourceCallback *callback = cb_data;
callback->ref_count--;
if (callback->ref_count == 0)
{
if (callback->notify)
callback->notify (callback->data);
g_free (callback);
}
}
static void
g_source_callback_get (gpointer cb_data,
GSource *source,
GSourceFunc *func,
gpointer *data)
{
GSourceCallback *callback = cb_data;
*func = callback->func;
*data = callback->data;
}
static GSourceCallbackFuncs g_source_callback_funcs = {
g_source_callback_ref,
g_source_callback_unref,
g_source_callback_get,
};
/**
* g_source_set_callback:
* @source: the source
* @func: a callback function
* @data: the data to pass to callback function
* @notify: (allow-none): a function to call when @data is no longer in use, or %NULL.
*
* Sets the callback function for a source. The callback for a source is
* called from the source's dispatch function.
*
* The exact type of @func depends on the type of source; ie. you
* should not count on @func being called with @data as its first
* parameter.
*
* Typically, you won't use this function. Instead use functions specific
* to the type of source you are using.
**/
void
g_source_set_callback (GSource *source,
GSourceFunc func,
gpointer data,
GDestroyNotify notify)
{
GSourceCallback *new_callback;
g_return_if_fail (source != NULL);
new_callback = g_new (GSourceCallback, 1);
new_callback->ref_count = 1;
new_callback->func = func;
new_callback->data = data;
new_callback->notify = notify;
g_source_set_callback_indirect (source, new_callback, &g_source_callback_funcs);
}
/**
* g_source_set_funcs:
* @source: a #GSource
* @funcs: the new #GSourceFuncs
*
* Sets the source functions (can be used to override
* default implementations) of an unattached source.
*
* Since: 2.12
*/
void
g_source_set_funcs (GSource *source,
GSourceFuncs *funcs)
{
g_return_if_fail (source != NULL);
g_return_if_fail (source->context == NULL);
g_return_if_fail (source->ref_count > 0);
g_return_if_fail (funcs != NULL);
source->source_funcs = funcs;
}
static void
g_source_set_priority_unlocked (GSource *source,
GMainContext *context,
gint priority)
{
GSList *tmp_list;
g_return_if_fail (source->priv->parent_source == NULL ||
source->priv->parent_source->priority == priority);
if (context)
{
/* Remove the source from the context's source and then
* add it back after so it is sorted in the correct place
*/
source_remove_from_context (source, source->context);
}
source->priority = priority;
if (context)
{
source_add_to_context (source, source->context);
if (!SOURCE_BLOCKED (source))
{
tmp_list = source->poll_fds;
while (tmp_list)
{
g_main_context_remove_poll_unlocked (context, tmp_list->data);
g_main_context_add_poll_unlocked (context, priority, tmp_list->data);
tmp_list = tmp_list->next;
}
for (tmp_list = source->priv->fds; tmp_list; tmp_list = tmp_list->next)
{
g_main_context_remove_poll_unlocked (context, tmp_list->data);
g_main_context_add_poll_unlocked (context, priority, tmp_list->data);
}
}
}
if (source->priv->child_sources)
{
tmp_list = source->priv->child_sources;
while (tmp_list)
{
g_source_set_priority_unlocked (tmp_list->data, context, priority);
tmp_list = tmp_list->next;
}
}
}
/**
* g_source_set_priority:
* @source: a #GSource
* @priority: the new priority.
*
* Sets the priority of a source. While the main loop is being run, a
* source will be dispatched if it is ready to be dispatched and no
* sources at a higher (numerically smaller) priority are ready to be
* dispatched.
**/
void
g_source_set_priority (GSource *source,
gint priority)
{
GMainContext *context;
g_return_if_fail (source != NULL);
context = source->context;
if (context)
LOCK_CONTEXT (context);
g_source_set_priority_unlocked (source, context, priority);
if (context)
UNLOCK_CONTEXT (source->context);
}
/**
* g_source_get_priority:
* @source: a #GSource
*
* Gets the priority of a source.
*
* Return value: the priority of the source
**/
gint
g_source_get_priority (GSource *source)
{
g_return_val_if_fail (source != NULL, 0);
return source->priority;
}
/**
* g_source_set_ready_time:
* @source: a #GSource
* @ready_time: the monotonic time at which the source will be ready,
* 0 for "immediately", -1 for "never"
*
* Sets a #GSource to be dispatched when the given monotonic time is
* reached (or passed). If the monotonic time is in the past (as it
* always will be if @ready_time is 0) then the source will be
* dispatched immediately.
*
* If @ready_time is -1 then the source is never woken up on the basis
* of the passage of time.
*
* Dispatching the source does not reset the ready time. You should do
* so yourself, from the source dispatch function.
*
* Note that if you have a pair of sources where the ready time of one
* suggests that it will be delivered first but the priority for the
* other suggests that it would be delivered first, and the ready time
* for both sources is reached during the same main context iteration
* then the order of dispatch is undefined.
*
* Since: 2.36
**/
void
g_source_set_ready_time (GSource *source,
gint64 ready_time)
{
GMainContext *context;
g_return_if_fail (source != NULL);
g_return_if_fail (source->ref_count > 0);
if (source->priv->ready_time == ready_time)
return;
context = source->context;
if (context)
LOCK_CONTEXT (context);
source->priv->ready_time = ready_time;
if (context)
{
/* Quite likely that we need to change the timeout on the poll */
if (!SOURCE_BLOCKED (source))
g_wakeup_signal (context->wakeup);
UNLOCK_CONTEXT (context);
}
}
/**
* g_source_get_ready_time:
* @source: a #GSource
*
* Gets the "ready time" of @source, as set by
* g_source_set_ready_time().
*
* Any time before the current monotonic time (including 0) is an
* indication that the source will fire immediately.
*
* Returns: the monotonic ready time, -1 for "never"
**/
gint64
g_source_get_ready_time (GSource *source)
{
g_return_val_if_fail (source != NULL, -1);
return source->priv->ready_time;
}
/**
* g_source_set_can_recurse:
* @source: a #GSource
* @can_recurse: whether recursion is allowed for this source
*
* Sets whether a source can be called recursively. If @can_recurse is
* %TRUE, then while the source is being dispatched then this source
* will be processed normally. Otherwise, all processing of this
* source is blocked until the dispatch function returns.
**/
void
g_source_set_can_recurse (GSource *source,
gboolean can_recurse)
{
GMainContext *context;
g_return_if_fail (source != NULL);
context = source->context;
if (context)
LOCK_CONTEXT (context);
if (can_recurse)
source->flags |= G_SOURCE_CAN_RECURSE;
else
source->flags &= ~G_SOURCE_CAN_RECURSE;
if (context)
UNLOCK_CONTEXT (context);
}
/**
* g_source_get_can_recurse:
* @source: a #GSource
*
* Checks whether a source is allowed to be called recursively.
* see g_source_set_can_recurse().
*
* Return value: whether recursion is allowed.
**/
gboolean
g_source_get_can_recurse (GSource *source)
{
g_return_val_if_fail (source != NULL, FALSE);
return (source->flags & G_SOURCE_CAN_RECURSE) != 0;
}
/**
* g_source_set_name:
* @source: a #GSource
* @name: debug name for the source
*
* Sets a name for the source, used in debugging and profiling.
* The name defaults to #NULL.
*
* The source name should describe in a human-readable way
* what the source does. For example, "X11 event queue"
* or "GTK+ repaint idle handler" or whatever it is.
*
* It is permitted to call this function multiple times, but is not
* recommended due to the potential performance impact. For example,
* one could change the name in the "check" function of a #GSourceFuncs
* to include details like the event type in the source name.
*
* Since: 2.26
**/
void
g_source_set_name (GSource *source,
const char *name)
{
g_return_if_fail (source != NULL);
/* setting back to NULL is allowed, just because it's
* weird if get_name can return NULL but you can't
* set that.
*/
g_free (source->name);
source->name = g_strdup (name);
}
/**
* g_source_get_name:
* @source: a #GSource
*
* Gets a name for the source, used in debugging and profiling.
* The name may be #NULL if it has never been set with
* g_source_set_name().
*
* Return value: the name of the source
* Since: 2.26
**/
const char *
g_source_get_name (GSource *source)
{
g_return_val_if_fail (source != NULL, NULL);
return source->name;
}
/**
* g_source_set_name_by_id:
* @tag: a #GSource ID
* @name: debug name for the source
*
* Sets the name of a source using its ID.
*
* This is a convenience utility to set source names from the return
* value of g_idle_add(), g_timeout_add(), etc.
*
* Since: 2.26
**/
void
g_source_set_name_by_id (guint tag,
const char *name)
{
GSource *source;
g_return_if_fail (tag > 0);
source = g_main_context_find_source_by_id (NULL, tag);
if (source == NULL)
return;
g_source_set_name (source, name);
}
/**
* g_source_ref:
* @source: a #GSource
*
* Increases the reference count on a source by one.
*
* Return value: @source
**/
GSource *
g_source_ref (GSource *source)
{
GMainContext *context;
g_return_val_if_fail (source != NULL, NULL);
context = source->context;
if (context)
LOCK_CONTEXT (context);
source->ref_count++;
if (context)
UNLOCK_CONTEXT (context);
return source;
}
/* g_source_unref() but possible to call within context lock
*/
static void
g_source_unref_internal (GSource *source,
GMainContext *context,
gboolean have_lock)
{
gpointer old_cb_data = NULL;
GSourceCallbackFuncs *old_cb_funcs = NULL;
g_return_if_fail (source != NULL);
if (!have_lock && context)
LOCK_CONTEXT (context);
source->ref_count--;
if (source->ref_count == 0)
{
old_cb_data = source->callback_data;
old_cb_funcs = source->callback_funcs;
source->callback_data = NULL;
source->callback_funcs = NULL;
if (context)
{
if (!SOURCE_DESTROYED (source))
g_warning (G_STRLOC ": ref_count == 0, but source was still attached to a context!");
source_remove_from_context (source, context);
}
if (source->source_funcs->finalize)
{
if (context)
UNLOCK_CONTEXT (context);
source->source_funcs->finalize (source);
if (context)
LOCK_CONTEXT (context);
}
g_free (source->name);
source->name = NULL;
g_slist_free (source->poll_fds);
source->poll_fds = NULL;
g_slist_free_full (source->priv->fds, g_free);
g_slice_free (GSourcePrivate, source->priv);
source->priv = NULL;
g_free (source);
}
if (!have_lock && context)
UNLOCK_CONTEXT (context);
if (old_cb_funcs)
{
if (have_lock)
UNLOCK_CONTEXT (context);
old_cb_funcs->unref (old_cb_data);
if (have_lock)
LOCK_CONTEXT (context);
}
}
/**
* g_source_unref:
* @source: a #GSource
*
* Decreases the reference count of a source by one. If the
* resulting reference count is zero the source and associated
* memory will be destroyed.
**/
void
g_source_unref (GSource *source)
{
g_return_if_fail (source != NULL);
g_source_unref_internal (source, source->context, FALSE);
}
/**
* g_main_context_find_source_by_id:
* @context: (allow-none): a #GMainContext (if %NULL, the default context will be used)
* @source_id: the source ID, as returned by g_source_get_id().
*
* Finds a #GSource given a pair of context and ID.
*
* Return value: (transfer none): the #GSource if found, otherwise, %NULL
**/
GSource *
g_main_context_find_source_by_id (GMainContext *context,
guint source_id)
{
GSourceIter iter;
GSource *source;
g_return_val_if_fail (source_id > 0, NULL);
if (context == NULL)
context = g_main_context_default ();
LOCK_CONTEXT (context);
g_source_iter_init (&iter, context, FALSE);
while (g_source_iter_next (&iter, &source))
{
if (!SOURCE_DESTROYED (source) &&
source->source_id == source_id)
break;
}
g_source_iter_clear (&iter);
UNLOCK_CONTEXT (context);
return source;
}
/**
* g_main_context_find_source_by_funcs_user_data:
* @context: (allow-none): a #GMainContext (if %NULL, the default context will be used).
* @funcs: the @source_funcs passed to g_source_new().
* @user_data: the user data from the callback.
*
* Finds a source with the given source functions and user data. If
* multiple sources exist with the same source function and user data,
* the first one found will be returned.
*
* Return value: (transfer none): the source, if one was found, otherwise %NULL
**/
GSource *
g_main_context_find_source_by_funcs_user_data (GMainContext *context,
GSourceFuncs *funcs,
gpointer user_data)
{
GSourceIter iter;
GSource *source;
g_return_val_if_fail (funcs != NULL, NULL);
if (context == NULL)
context = g_main_context_default ();
LOCK_CONTEXT (context);
g_source_iter_init (&iter, context, FALSE);
while (g_source_iter_next (&iter, &source))
{
if (!SOURCE_DESTROYED (source) &&
source->source_funcs == funcs &&
source->callback_funcs)
{
GSourceFunc callback;
gpointer callback_data;
source->callback_funcs->get (source->callback_data, source, &callback, &callback_data);
if (callback_data == user_data)
break;
}
}
g_source_iter_clear (&iter);
UNLOCK_CONTEXT (context);
return source;
}
/**
* g_main_context_find_source_by_user_data:
* @context: a #GMainContext
* @user_data: the user_data for the callback.
*
* Finds a source with the given user data for the callback. If
* multiple sources exist with the same user data, the first
* one found will be returned.
*
* Return value: (transfer none): the source, if one was found, otherwise %NULL
**/
GSource *
g_main_context_find_source_by_user_data (GMainContext *context,
gpointer user_data)
{
GSourceIter iter;
GSource *source;
if (context == NULL)
context = g_main_context_default ();
LOCK_CONTEXT (context);
g_source_iter_init (&iter, context, FALSE);
while (g_source_iter_next (&iter, &source))
{
if (!SOURCE_DESTROYED (source) &&
source->callback_funcs)
{
GSourceFunc callback;
gpointer callback_data = NULL;
source->callback_funcs->get (source->callback_data, source, &callback, &callback_data);
if (callback_data == user_data)
break;
}
}
g_source_iter_clear (&iter);
UNLOCK_CONTEXT (context);
return source;
}
/**
* g_source_remove:
* @tag: the ID of the source to remove.
*
* Removes the source with the given id from the default main context.
* The id of
* a #GSource is given by g_source_get_id(), or will be returned by the
* functions g_source_attach(), g_idle_add(), g_idle_add_full(),
* g_timeout_add(), g_timeout_add_full(), g_child_watch_add(),
* g_child_watch_add_full(), g_io_add_watch(), and g_io_add_watch_full().
*
* See also g_source_destroy(). You must use g_source_destroy() for sources
* added to a non-default main context.
*
* Return value: %TRUE if the source was found and removed.
**/
gboolean
g_source_remove (guint tag)
{
GSource *source;
g_return_val_if_fail (tag > 0, FALSE);
source = g_main_context_find_source_by_id (NULL, tag);
if (source)
g_source_destroy (source);
return source != NULL;
}
/**
* g_source_remove_by_user_data:
* @user_data: the user_data for the callback.
*
* Removes a source from the default main loop context given the user
* data for the callback. If multiple sources exist with the same user
* data, only one will be destroyed.
*
* Return value: %TRUE if a source was found and removed.
**/
gboolean
g_source_remove_by_user_data (gpointer user_data)
{
GSource *source;
source = g_main_context_find_source_by_user_data (NULL, user_data);
if (source)
{
g_source_destroy (source);
return TRUE;
}
else
return FALSE;
}
/**
* g_source_remove_by_funcs_user_data:
* @funcs: The @source_funcs passed to g_source_new()
* @user_data: the user data for the callback
*
* Removes a source from the default main loop context given the
* source functions and user data. If multiple sources exist with the
* same source functions and user data, only one will be destroyed.
*
* Return value: %TRUE if a source was found and removed.
**/
gboolean
g_source_remove_by_funcs_user_data (GSourceFuncs *funcs,
gpointer user_data)
{
GSource *source;
g_return_val_if_fail (funcs != NULL, FALSE);
source = g_main_context_find_source_by_funcs_user_data (NULL, funcs, user_data);
if (source)
{
g_source_destroy (source);
return TRUE;
}
else
return FALSE;
}
#ifdef G_OS_UNIX
/**
* g_source_add_unix_fd:
* @source: a #GSource
* @fd: the fd to monitor
* @events: an event mask
*
* Monitors @fd for the IO events in @events.
*
* The tag returned by this function can be used to remove or modify the
* monitoring of the fd using g_source_remove_unix_fd() or
* g_source_modify_unix_fd().
*
* It is not necessary to remove the fd before destroying the source; it
* will be cleaned up automatically.
*
* As the name suggests, this function is not available on Windows.
*
* Returns: an opaque tag
*
* Since: 2.36
**/
gpointer
g_source_add_unix_fd (GSource *source,
gint fd,
GIOCondition events)
{
GMainContext *context;
GPollFD *poll_fd;
g_return_val_if_fail (source != NULL, NULL);
g_return_val_if_fail (!SOURCE_DESTROYED (source), NULL);
poll_fd = g_new (GPollFD, 1);
poll_fd->fd = fd;
poll_fd->events = events;
poll_fd->revents = 0;
context = source->context;
if (context)
LOCK_CONTEXT (context);
source->priv->fds = g_slist_prepend (source->priv->fds, poll_fd);
if (context)
{
if (!SOURCE_BLOCKED (source))
g_main_context_add_poll_unlocked (context, source->priority, poll_fd);
UNLOCK_CONTEXT (context);
}
return poll_fd;
}
/**
* g_source_modify_unix_fd:
* @source: a #GSource
* @tag: the tag from g_source_add_unix_fd()
* @new_events: the new event mask to watch
*
* Updates the event mask to watch for the fd identified by @tag.
*
* @tag is the tag returned from g_source_add_unix_fd().
*
* If you want to remove a fd, don't set its event mask to zero.
* Instead, call g_source_remove_unix_fd().
*
* As the name suggests, this function is not available on Windows.
*
* Since: 2.36
**/
void
g_source_modify_unix_fd (GSource *source,
gpointer tag,
GIOCondition new_events)
{
GMainContext *context;
GPollFD *poll_fd;
g_return_if_fail (source != NULL);
g_return_if_fail (g_slist_find (source->priv->fds, tag));
context = source->context;
poll_fd = tag;
poll_fd->events = new_events;
if (context)
g_main_context_wakeup (context);
}
/**
* g_source_remove_unix_fd:
* @source: a #GSource
* @tag: the tag from g_source_add_unix_fd()
*
* Reverses the effect of a previous call to g_source_add_unix_fd().
*
* You only need to call this if you want to remove an fd from being
* watched while keeping the same source around. In the normal case you
* will just want to destroy the source.
*
* As the name suggests, this function is not available on Windows.
*
* Since: 2.36
**/
void
g_source_remove_unix_fd (GSource *source,
gpointer tag)
{
GMainContext *context;
GPollFD *poll_fd;
g_return_if_fail (source != NULL);
g_return_if_fail (g_slist_find (source->priv->fds, tag));
context = source->context;
poll_fd = tag;
if (context)
LOCK_CONTEXT (context);
source->priv->fds = g_slist_remove (source->priv->fds, poll_fd);
if (context)
{
if (!SOURCE_BLOCKED (source))
g_main_context_remove_poll_unlocked (context, poll_fd);
UNLOCK_CONTEXT (context);
}
g_free (poll_fd);
}
/**
* g_source_query_unix_fd:
* @source: a #GSource
* @tag: the tag from g_source_add_unix_fd()
*
* Queries the events reported for the fd corresponding to @tag on
* @source during the last poll.
*
* The return value of this function is only defined when the function
* is called from the check or dispatch functions for @source.
*
* As the name suggests, this function is not available on Windows.
*
* Returns: the conditions reported on the fd
*
* Since: 2.36
**/
GIOCondition
g_source_query_unix_fd (GSource *source,
gpointer tag)
{
GPollFD *poll_fd;
g_return_val_if_fail (source != NULL, 0);
g_return_val_if_fail (g_slist_find (source->priv->fds, tag), 0);
poll_fd = tag;
return poll_fd->revents;
}
#endif /* G_OS_UNIX */
/**
* g_get_current_time:
* @result: #GTimeVal structure in which to store current time.
*
* Equivalent to the UNIX gettimeofday() function, but portable.
*
* You may find g_get_real_time() to be more convenient.
**/
void
g_get_current_time (GTimeVal *result)
{
#ifndef G_OS_WIN32
struct timeval r;
g_return_if_fail (result != NULL);
/*this is required on alpha, there the timeval structs are int's
not longs and a cast only would fail horribly*/
gettimeofday (&r, NULL);
result->tv_sec = r.tv_sec;
result->tv_usec = r.tv_usec;
#else
FILETIME ft;
guint64 time64;
g_return_if_fail (result != NULL);
GetSystemTimeAsFileTime (&ft);
memmove (&time64, &ft, sizeof (FILETIME));
/* Convert from 100s of nanoseconds since 1601-01-01
* to Unix epoch. Yes, this is Y2038 unsafe.
*/
time64 -= G_GINT64_CONSTANT (116444736000000000);
time64 /= 10;
result->tv_sec = time64 / 1000000;
result->tv_usec = time64 % 1000000;
#endif
}
/**
* g_get_real_time:
*
* Queries the system wall-clock time.
*
* This call is functionally equivalent to g_get_current_time() except
* that the return value is often more convenient than dealing with a
* #GTimeVal.
*
* You should only use this call if you are actually interested in the real
* wall-clock time. g_get_monotonic_time() is probably more useful for
* measuring intervals.
*
* Returns: the number of microseconds since January 1, 1970 UTC.
*
* Since: 2.28
**/
gint64
g_get_real_time (void)
{
GTimeVal tv;
g_get_current_time (&tv);
return (((gint64) tv.tv_sec) * 1000000) + tv.tv_usec;
}
#ifdef G_OS_WIN32
static ULONGLONG (*g_GetTickCount64) (void) = NULL;
static guint32 g_win32_tick_epoch = 0;
void
g_clock_win32_init (void)
{
HMODULE kernel32;
g_GetTickCount64 = NULL;
kernel32 = GetModuleHandle ("KERNEL32.DLL");
if (kernel32 != NULL)
g_GetTickCount64 = (void *) GetProcAddress (kernel32, "GetTickCount64");
g_win32_tick_epoch = ((guint32)GetTickCount()) >> 31;
}
#endif
/**
* g_get_monotonic_time:
*
* Queries the system monotonic time, if available.
*
* On POSIX systems with clock_gettime() and <literal>CLOCK_MONOTONIC</literal> this call
* is a very shallow wrapper for that. Otherwise, we make a best effort
* that probably involves returning the wall clock time (with at least
* microsecond accuracy, subject to the limitations of the OS kernel).
*
* It's important to note that POSIX <literal>CLOCK_MONOTONIC</literal> does
* not count time spent while the machine is suspended.
*
* On Windows, "limitations of the OS kernel" is a rather substantial
* statement. Depending on the configuration of the system, the wall
* clock time is updated as infrequently as 64 times a second (which
* is approximately every 16ms). Also, on XP (but not on Vista or later)
* the monotonic clock is locally monotonic, but may differ in exact
* value between processes due to timer wrap handling.
*
* Returns: the monotonic time, in microseconds
*
* Since: 2.28
**/
gint64
g_get_monotonic_time (void)
{
#ifdef HAVE_CLOCK_GETTIME
/* librt clock_gettime() is our first choice */
struct timespec ts;
#ifdef CLOCK_MONOTONIC
clock_gettime (CLOCK_MONOTONIC, &ts);
#else
clock_gettime (CLOCK_REALTIME, &ts);
#endif
/* In theory monotonic time can have any epoch.
*
* glib presently assumes the following:
*
* 1) The epoch comes some time after the birth of Jesus of Nazareth, but
* not more than 10000 years later.
*
* 2) The current time also falls sometime within this range.
*
* These two reasonable assumptions leave us with a maximum deviation from
* the epoch of 10000 years, or 315569520000000000 seconds.
*
* If we restrict ourselves to this range then the number of microseconds
* will always fit well inside the constraints of a int64 (by a factor of
* about 29).
*
* If you actually hit the following assertion, probably you should file a
* bug against your operating system for being excessively silly.
**/
g_assert (G_GINT64_CONSTANT (-315569520000000000) < ts.tv_sec &&
ts.tv_sec < G_GINT64_CONSTANT (315569520000000000));
return (((gint64) ts.tv_sec) * 1000000) + (ts.tv_nsec / 1000);
#elif defined (G_OS_WIN32)
guint64 ticks;
guint32 ticks32;
/* There are four sources for the monotonic time on Windows:
*
* Three are based on a (1 msec accuracy, but only read periodically) clock chip:
* - GetTickCount (GTC)
* 32bit msec counter, updated each ~15msec, wraps in ~50 days
* - GetTickCount64 (GTC64)
* Same as GetTickCount, but extended to 64bit, so no wrap
* Only available in Vista or later
* - timeGetTime (TGT)
* similar to GetTickCount by default: 15msec, 50 day wrap.
* available in winmm.dll (thus known as the multimedia timers)
* However apps can raise the system timer clock frequency using timeBeginPeriod()
* increasing the accuracy up to 1 msec, at a cost in general system performance
* and battery use.
*
* One is based on high precision clocks:
* - QueryPrecisionCounter (QPC)
* This has much higher accuracy, but is not guaranteed monotonic, and
* has lots of complications like clock jumps and different times on different
* CPUs. It also has lower long term accuracy (i.e. it will drift compared to
* the low precision clocks.
*
* Additionally, the precision available in the timer-based wakeup such as
* MsgWaitForMultipleObjectsEx (which is what the mainloop is based on) is based
* on the TGT resolution, so by default it is ~15msec, but can be increased by apps.
*
* The QPC timer has too many issues to be used as is. The only way it could be used
* is to use it to interpolate the lower precision clocks. Firefox does something like
* this:
* https://bugzilla.mozilla.org/show_bug.cgi?id=363258
*
* However this seems quite complicated, so we're not doing this right now.
*
* The approach we take instead is to use the TGT timer, extending it to 64bit
* either by using the GTC64 value, or if that is not available, a process local
* time epoch that we increment when we detect a timer wrap (assumes that we read
* the time at least once every 50 days).
*
* This means that:
* - We have a globally consistent monotonic clock on Vista and later
* - We have a locally monotonic clock on XP
* - Apps that need higher precision in timeouts and clock reads can call
* timeBeginPeriod() to increase it as much as they want
*/
if (g_GetTickCount64 != NULL)
{
guint32 ticks_as_32bit;
ticks = g_GetTickCount64 ();
ticks32 = timeGetTime();
/* GTC64 and TGT are sampled at different times, however they
* have the same base and source (msecs since system boot).
* They can differ by as much as -16 to +16 msecs.
* We can't just inject the low bits into the 64bit counter
* as one of the counters can have wrapped in 32bit space and
* the other not. Instead we calculate the signed difference
* in 32bit space and apply that difference to the 64bit counter.
*/
ticks_as_32bit = (guint32)ticks;
/* We could do some 2's complement hack, but we play it safe */
if (ticks32 - ticks_as_32bit <= G_MAXINT32)
ticks += ticks32 - ticks_as_32bit;
else
ticks -= ticks_as_32bit - ticks32;
}
else
{
guint32 epoch;
epoch = g_atomic_int_get (&g_win32_tick_epoch);
/* Must read ticks after the epoch. Then we're guaranteed
* that the ticks value we read is higher or equal to any
* previous ones that lead to the writing of the epoch.
*/
ticks32 = timeGetTime();
/* We store the MSB of the current time as the LSB
* of the epoch. Comparing these bits lets us detect when
* the 32bit counter has wrapped so we can increase the
* epoch.
*
* This will work as long as this function is called at
* least once every ~24 days, which is half the wrap time
* of a 32bit msec counter. I think this is pretty likely.
*
* Note that g_win32_tick_epoch is a process local state,
* so the monotonic clock will not be the same between
* processes.
*/
if ((ticks32 >> 31) != (epoch & 1))
{
epoch++;
g_atomic_int_set (&g_win32_tick_epoch, epoch);
}
ticks = (guint64)ticks32 | ((guint64)epoch) << 31;
}
return ticks * 1000;
#else /* !HAVE_CLOCK_GETTIME && ! G_OS_WIN32*/
GTimeVal tv;
g_get_current_time (&tv);
return (((gint64) tv.tv_sec) * 1000000) + tv.tv_usec;
#endif
}
static void
g_main_dispatch_free (gpointer dispatch)
{
g_slice_free (GMainDispatch, dispatch);
}
/* Running the main loop */
static GMainDispatch *
get_dispatch (void)
{
static GPrivate depth_private = G_PRIVATE_INIT (g_main_dispatch_free);
GMainDispatch *dispatch;
dispatch = g_private_get (&depth_private);
if (!dispatch)
{
dispatch = g_slice_new0 (GMainDispatch);
g_private_set (&depth_private, dispatch);
}
return dispatch;
}
/**
* g_main_depth:
*
* Returns the depth of the stack of calls to
* g_main_context_dispatch() on any #GMainContext in the current thread.
* That is, when called from the toplevel, it gives 0. When
* called from within a callback from g_main_context_iteration()
* (or g_main_loop_run(), etc.) it returns 1. When called from within
* a callback to a recursive call to g_main_context_iteration(),
* it returns 2. And so forth.
*
* This function is useful in a situation like the following:
* Imagine an extremely simple "garbage collected" system.
*
* |[
* static GList *free_list;
*
* gpointer
* allocate_memory (gsize size)
* {
* gpointer result = g_malloc (size);
* free_list = g_list_prepend (free_list, result);
* return result;
* }
*
* void
* free_allocated_memory (void)
* {
* GList *l;
* for (l = free_list; l; l = l->next);
* g_free (l->data);
* g_list_free (free_list);
* free_list = NULL;
* }
*
* [...]
*
* while (TRUE);
* {
* g_main_context_iteration (NULL, TRUE);
* free_allocated_memory();
* }
* ]|
*
* This works from an application, however, if you want to do the same
* thing from a library, it gets more difficult, since you no longer
* control the main loop. You might think you can simply use an idle
* function to make the call to free_allocated_memory(), but that
* doesn't work, since the idle function could be called from a
* recursive callback. This can be fixed by using g_main_depth()
*
* |[
* gpointer
* allocate_memory (gsize size)
* {
* FreeListBlock *block = g_new (FreeListBlock, 1);
* block->mem = g_malloc (size);
* block->depth = g_main_depth ();
* free_list = g_list_prepend (free_list, block);
* return block->mem;
* }
*
* void
* free_allocated_memory (void)
* {
* GList *l;
*
* int depth = g_main_depth ();
* for (l = free_list; l; );
* {
* GList *next = l->next;
* FreeListBlock *block = l->data;
* if (block->depth > depth)
* {
* g_free (block->mem);
* g_free (block);
* free_list = g_list_delete_link (free_list, l);
* }
*
* l = next;
* }
* }
* ]|
*
* There is a temptation to use g_main_depth() to solve
* problems with reentrancy. For instance, while waiting for data
* to be received from the network in response to a menu item,
* the menu item might be selected again. It might seem that
* one could make the menu item's callback return immediately
* and do nothing if g_main_depth() returns a value greater than 1.
* However, this should be avoided since the user then sees selecting
* the menu item do nothing. Furthermore, you'll find yourself adding
* these checks all over your code, since there are doubtless many,
* many things that the user could do. Instead, you can use the
* following techniques:
*
* <orderedlist>
* <listitem>
* <para>
* Use gtk_widget_set_sensitive() or modal dialogs to prevent
* the user from interacting with elements while the main
* loop is recursing.
* </para>
* </listitem>
* <listitem>
* <para>
* Avoid main loop recursion in situations where you can't handle
* arbitrary callbacks. Instead, structure your code so that you
* simply return to the main loop and then get called again when
* there is more work to do.
* </para>
* </listitem>
* </orderedlist>
*
* Return value: The main loop recursion level in the current thread
**/
int
g_main_depth (void)
{
GMainDispatch *dispatch = get_dispatch ();
return dispatch->depth;
}
/**
* g_main_current_source:
*
* Returns the currently firing source for this thread.
*
* Return value: (transfer none): The currently firing source or %NULL.
*
* Since: 2.12
*/
GSource *
g_main_current_source (void)
{
GMainDispatch *dispatch = get_dispatch ();
return dispatch->dispatching_sources ? dispatch->dispatching_sources->data : NULL;
}
/**
* g_source_is_destroyed:
* @source: a #GSource
*
* Returns whether @source has been destroyed.
*
* This is important when you operate upon your objects
* from within idle handlers, but may have freed the object
* before the dispatch of your idle handler.
*
* |[
* static gboolean
* idle_callback (gpointer data)
* {
* SomeWidget *self = data;
*
* GDK_THREADS_ENTER (<!-- -->);
* /<!-- -->* do stuff with self *<!-- -->/
* self->idle_id = 0;
* GDK_THREADS_LEAVE (<!-- -->);
*
* return G_SOURCE_REMOVE;
* }
*
* static void
* some_widget_do_stuff_later (SomeWidget *self)
* {
* self->idle_id = g_idle_add (idle_callback, self);
* }
*
* static void
* some_widget_finalize (GObject *object)
* {
* SomeWidget *self = SOME_WIDGET (object);
*
* if (self->idle_id)
* g_source_remove (self->idle_id);
*
* G_OBJECT_CLASS (parent_class)->finalize (object);
* }
* ]|
*
* This will fail in a multi-threaded application if the
* widget is destroyed before the idle handler fires due
* to the use after free in the callback. A solution, to
* this particular problem, is to check to if the source
* has already been destroy within the callback.
*
* |[
* static gboolean
* idle_callback (gpointer data)
* {
* SomeWidget *self = data;
*
* GDK_THREADS_ENTER ();
* if (!g_source_is_destroyed (g_main_current_source ()))
* {
* /<!-- -->* do stuff with self *<!-- -->/
* }
* GDK_THREADS_LEAVE ();
*
* return FALSE;
* }
* ]|
*
* Return value: %TRUE if the source has been destroyed
*
* Since: 2.12
*/
gboolean
g_source_is_destroyed (GSource *source)
{
return SOURCE_DESTROYED (source);
}
/* Temporarily remove all this source's file descriptors from the
* poll(), so that if data comes available for one of the file descriptors
* we don't continually spin in the poll()
*/
/* HOLDS: source->context's lock */
static void
block_source (GSource *source)
{
GSList *tmp_list;
g_return_if_fail (!SOURCE_BLOCKED (source));
source->flags |= G_SOURCE_BLOCKED;
tmp_list = source->poll_fds;
while (tmp_list)
{
g_main_context_remove_poll_unlocked (source->context, tmp_list->data);
tmp_list = tmp_list->next;
}
for (tmp_list = source->priv->fds; tmp_list; tmp_list = tmp_list->next)
g_main_context_remove_poll_unlocked (source->context, tmp_list->data);
if (source->priv && source->priv->child_sources)
{
tmp_list = source->priv->child_sources;
while (tmp_list)
{
block_source (tmp_list->data);
tmp_list = tmp_list->next;
}
}
}
/* HOLDS: source->context's lock */
static void
unblock_source (GSource *source)
{
GSList *tmp_list;
g_return_if_fail (SOURCE_BLOCKED (source)); /* Source already unblocked */
g_return_if_fail (!SOURCE_DESTROYED (source));
source->flags &= ~G_SOURCE_BLOCKED;
tmp_list = source->poll_fds;
while (tmp_list)
{
g_main_context_add_poll_unlocked (source->context, source->priority, tmp_list->data);
tmp_list = tmp_list->next;
}
for (tmp_list = source->priv->fds; tmp_list; tmp_list = tmp_list->next)
g_main_context_add_poll_unlocked (source->context, source->priority, tmp_list->data);
if (source->priv && source->priv->child_sources)
{
tmp_list = source->priv->child_sources;
while (tmp_list)
{
unblock_source (tmp_list->data);
tmp_list = tmp_list->next;
}
}
}
/* HOLDS: context's lock */
static void
g_main_dispatch (GMainContext *context)
{
GMainDispatch *current = get_dispatch ();
guint i;
for (i = 0; i < context->pending_dispatches->len; i++)
{
GSource *source = context->pending_dispatches->pdata[i];
context->pending_dispatches->pdata[i] = NULL;
g_assert (source);
source->flags &= ~G_SOURCE_READY;
if (!SOURCE_DESTROYED (source))
{
gboolean was_in_call;
gpointer user_data = NULL;
GSourceFunc callback = NULL;
GSourceCallbackFuncs *cb_funcs;
gpointer cb_data;
gboolean need_destroy;
gboolean (*dispatch) (GSource *,
GSourceFunc,
gpointer);
GSList current_source_link;
dispatch = source->source_funcs->dispatch;
cb_funcs = source->callback_funcs;
cb_data = source->callback_data;
if (cb_funcs)
cb_funcs->ref (cb_data);
if ((source->flags & G_SOURCE_CAN_RECURSE) == 0)
block_source (source);
was_in_call = source->flags & G_HOOK_FLAG_IN_CALL;
source->flags |= G_HOOK_FLAG_IN_CALL;
if (cb_funcs)
cb_funcs->get (cb_data, source, &callback, &user_data);
UNLOCK_CONTEXT (context);
current->depth++;
/* The on-stack allocation of the GSList is unconventional, but
* we know that the lifetime of the link is bounded to this
* function as the link is kept in a thread specific list and
* not manipulated outside of this function and its descendants.
* Avoiding the overhead of a g_slist_alloc() is useful as many
* applications do little more than dispatch events.
*
* This is a performance hack - do not revert to g_slist_prepend()!
*/
current_source_link.data = source;
current_source_link.next = current->dispatching_sources;
current->dispatching_sources = &current_source_link;
need_destroy = ! dispatch (source,
callback,
user_data);
g_assert (current->dispatching_sources == &current_source_link);
current->dispatching_sources = current_source_link.next;
current->depth--;
if (cb_funcs)
cb_funcs->unref (cb_data);
LOCK_CONTEXT (context);
if (!was_in_call)
source->flags &= ~G_HOOK_FLAG_IN_CALL;
if (SOURCE_BLOCKED (source) && !SOURCE_DESTROYED (source))
unblock_source (source);
/* Note: this depends on the fact that we can't switch
* sources from one main context to another
*/
if (need_destroy && !SOURCE_DESTROYED (source))
{
g_assert (source->context == context);
g_source_destroy_internal (source, context, TRUE);
}
}
SOURCE_UNREF (source, context);
}
g_ptr_array_set_size (context->pending_dispatches, 0);
}
/**
* g_main_context_acquire:
* @context: a #GMainContext
*
* Tries to become the owner of the specified context.
* If some other thread is the owner of the context,
* returns %FALSE immediately. Ownership is properly
* recursive: the owner can require ownership again
* and will release ownership when g_main_context_release()
* is called as many times as g_main_context_acquire().
*
* You must be the owner of a context before you
* can call g_main_context_prepare(), g_main_context_query(),
* g_main_context_check(), g_main_context_dispatch().
*
* Return value: %TRUE if the operation succeeded, and
* this thread is now the owner of @context.
**/
gboolean
g_main_context_acquire (GMainContext *context)
{
gboolean result = FALSE;
GThread *self = G_THREAD_SELF;
if (context == NULL)
context = g_main_context_default ();
LOCK_CONTEXT (context);
if (!context->owner)
{
context->owner = self;
g_assert (context->owner_count == 0);
}
if (context->owner == self)
{
context->owner_count++;
result = TRUE;
}
UNLOCK_CONTEXT (context);
return result;
}
/**
* g_main_context_release:
* @context: a #GMainContext
*
* Releases ownership of a context previously acquired by this thread
* with g_main_context_acquire(). If the context was acquired multiple
* times, the ownership will be released only when g_main_context_release()
* is called as many times as it was acquired.
**/
void
g_main_context_release (GMainContext *context)
{
if (context == NULL)
context = g_main_context_default ();
LOCK_CONTEXT (context);
context->owner_count--;
if (context->owner_count == 0)
{
context->owner = NULL;
if (context->waiters)
{
GMainWaiter *waiter = context->waiters->data;
gboolean loop_internal_waiter = (waiter->mutex == &context->mutex);
context->waiters = g_slist_delete_link (context->waiters,
context->waiters);
if (!loop_internal_waiter)
g_mutex_lock (waiter->mutex);
g_cond_signal (waiter->cond);
if (!loop_internal_waiter)
g_mutex_unlock (waiter->mutex);
}
}
UNLOCK_CONTEXT (context);
}
/**
* g_main_context_wait:
* @context: a #GMainContext
* @cond: a condition variable
* @mutex: a mutex, currently held
*
* Tries to become the owner of the specified context,
* as with g_main_context_acquire(). But if another thread
* is the owner, atomically drop @mutex and wait on @cond until
* that owner releases ownership or until @cond is signaled, then
* try again (once) to become the owner.
*
* Return value: %TRUE if the operation succeeded, and
* this thread is now the owner of @context.
**/
gboolean
g_main_context_wait (GMainContext *context,
GCond *cond,
GMutex *mutex)
{
gboolean result = FALSE;
GThread *self = G_THREAD_SELF;
gboolean loop_internal_waiter;
if (context == NULL)
context = g_main_context_default ();
loop_internal_waiter = (mutex == &context->mutex);
if (!loop_internal_waiter)
LOCK_CONTEXT (context);
if (context->owner && context->owner != self)
{
GMainWaiter waiter;
waiter.cond = cond;
waiter.mutex = mutex;
context->waiters = g_slist_append (context->waiters, &waiter);
if (!loop_internal_waiter)
UNLOCK_CONTEXT (context);
g_cond_wait (cond, mutex);
if (!loop_internal_waiter)
LOCK_CONTEXT (context);
context->waiters = g_slist_remove (context->waiters, &waiter);
}
if (!context->owner)
{
context->owner = self;
g_assert (context->owner_count == 0);
}
if (context->owner == self)
{
context->owner_count++;
result = TRUE;
}
if (!loop_internal_waiter)
UNLOCK_CONTEXT (context);
return result;
}
/**
* g_main_context_prepare:
* @context: a #GMainContext
* @priority: location to store priority of highest priority
* source already ready.
*
* Prepares to poll sources within a main loop. The resulting information
* for polling is determined by calling g_main_context_query ().
*
* Return value: %TRUE if some source is ready to be dispatched
* prior to polling.
**/
gboolean
g_main_context_prepare (GMainContext *context,
gint *priority)
{
gint i;
gint n_ready = 0;
gint current_priority = G_MAXINT;
GSource *source;
GSourceIter iter;
if (context == NULL)
context = g_main_context_default ();
LOCK_CONTEXT (context);
context->time_is_fresh = FALSE;
if (context->in_check_or_prepare)
{
g_warning ("g_main_context_prepare() called recursively from within a source's check() or "
"prepare() member.");
UNLOCK_CONTEXT (context);
return FALSE;
}
#if 0
/* If recursing, finish up current dispatch, before starting over */
if (context->pending_dispatches)
{
if (dispatch)
g_main_dispatch (context, &current_time);
UNLOCK_CONTEXT (context);
return TRUE;
}
#endif
/* If recursing, clear list of pending dispatches */
for (i = 0; i < context->pending_dispatches->len; i++)
{
if (context->pending_dispatches->pdata[i])
SOURCE_UNREF ((GSource *)context->pending_dispatches->pdata[i], context);
}
g_ptr_array_set_size (context->pending_dispatches, 0);
/* Prepare all sources */
context->timeout = -1;
g_source_iter_init (&iter, context, TRUE);
while (g_source_iter_next (&iter, &source))
{
gint source_timeout = -1;
if (SOURCE_DESTROYED (source) || SOURCE_BLOCKED (source))
continue;
if ((n_ready > 0) && (source->priority > current_priority))
break;
if (!(source->flags & G_SOURCE_READY))
{
gboolean result;
gboolean (* prepare) (GSource *source,
gint *timeout);
prepare = source->source_funcs->prepare;
if (prepare)
{
context->in_check_or_prepare++;
UNLOCK_CONTEXT (context);
result = (* prepare) (source, &source_timeout);
LOCK_CONTEXT (context);
context->in_check_or_prepare--;
}
else
{
source_timeout = -1;
result = FALSE;
}
if (result == FALSE && source->priv->ready_time != -1)
{
if (!context->time_is_fresh)
{
context->time = g_get_monotonic_time ();
context->time_is_fresh = TRUE;
}
if (source->priv->ready_time <= context->time)
{
source_timeout = 0;
result = TRUE;
}
else
{
gint timeout;
/* rounding down will lead to spinning, so always round up */
timeout = (source->priv->ready_time - context->time + 999) / 1000;
if (source_timeout < 0 || timeout < source_timeout)
source_timeout = timeout;
}
}
if (result)
{
GSource *ready_source = source;
while (ready_source)
{
ready_source->flags |= G_SOURCE_READY;
ready_source = ready_source->priv->parent_source;
}
}
}
if (source->flags & G_SOURCE_READY)
{
n_ready++;
current_priority = source->priority;
context->timeout = 0;
}
if (source_timeout >= 0)
{
if (context->timeout < 0)
context->timeout = source_timeout;
else
context->timeout = MIN (context->timeout, source_timeout);
}
}
g_source_iter_clear (&iter);
UNLOCK_CONTEXT (context);
if (priority)
*priority = current_priority;
return (n_ready > 0);
}
/**
* g_main_context_query:
* @context: a #GMainContext
* @max_priority: maximum priority source to check
* @timeout_: (out): location to store timeout to be used in polling
* @fds: (out caller-allocates) (array length=n_fds): location to
* store #GPollFD records that need to be polled.
* @n_fds: length of @fds.
*
* Determines information necessary to poll this main loop.
*
* Return value: the number of records actually stored in @fds,
* or, if more than @n_fds records need to be stored, the number
* of records that need to be stored.
**/
gint
g_main_context_query (GMainContext *context,
gint max_priority,
gint *timeout,
GPollFD *fds,
gint n_fds)
{
gint n_poll;
GPollRec *pollrec;
LOCK_CONTEXT (context);
pollrec = context->poll_records;
n_poll = 0;
while (pollrec && max_priority >= pollrec->priority)
{
/* We need to include entries with fd->events == 0 in the array because
* otherwise if the application changes fd->events behind our back and
* makes it non-zero, we'll be out of sync when we check the fds[] array.
* (Changing fd->events after adding an FD wasn't an anticipated use of
* this API, but it occurs in practice.) */
if (n_poll < n_fds)
{
fds[n_poll].fd = pollrec->fd->fd;
/* In direct contradiction to the Unix98 spec, IRIX runs into
* difficulty if you pass in POLLERR, POLLHUP or POLLNVAL
* flags in the events field of the pollfd while it should
* just ignoring them. So we mask them out here.
*/
fds[n_poll].events = pollrec->fd->events & ~(G_IO_ERR|G_IO_HUP|G_IO_NVAL);
fds[n_poll].revents = 0;
}
pollrec = pollrec->next;
n_poll++;
}
context->poll_changed = FALSE;
if (timeout)
{
*timeout = context->timeout;
if (*timeout != 0)
context->time_is_fresh = FALSE;
}
UNLOCK_CONTEXT (context);
return n_poll;
}
/**
* g_main_context_check:
* @context: a #GMainContext
* @max_priority: the maximum numerical priority of sources to check
* @fds: (array length=n_fds): array of #GPollFD's that was passed to
* the last call to g_main_context_query()
* @n_fds: return value of g_main_context_query()
*
* Passes the results of polling back to the main loop.
*
* Return value: %TRUE if some sources are ready to be dispatched.
**/
gboolean
g_main_context_check (GMainContext *context,
gint max_priority,
GPollFD *fds,
gint n_fds)
{
GSource *source;
GSourceIter iter;
GPollRec *pollrec;
gint n_ready = 0;
gint i;
LOCK_CONTEXT (context);
if (context->in_check_or_prepare)
{
g_warning ("g_main_context_check() called recursively from within a source's check() or "
"prepare() member.");
UNLOCK_CONTEXT (context);
return FALSE;
}
if (context->wake_up_rec.revents)
g_wakeup_acknowledge (context->wakeup);
/* If the set of poll file descriptors changed, bail out
* and let the main loop rerun
*/
if (context->poll_changed)
{
UNLOCK_CONTEXT (context);
return FALSE;
}
pollrec = context->poll_records;
i = 0;
while (i < n_fds)
{
if (pollrec->fd->events)
pollrec->fd->revents = fds[i].revents;
pollrec = pollrec->next;
i++;
}
g_source_iter_init (&iter, context, TRUE);
while (g_source_iter_next (&iter, &source))
{
if (SOURCE_DESTROYED (source) || SOURCE_BLOCKED (source))
continue;
if ((n_ready > 0) && (source->priority > max_priority))
break;
if (!(source->flags & G_SOURCE_READY))
{
gboolean result;
gboolean (* check) (GSource *source);
check = source->source_funcs->check;
if (check)
{
/* If the check function is set, call it. */
context->in_check_or_prepare++;
UNLOCK_CONTEXT (context);
result = (* check) (source);
LOCK_CONTEXT (context);
context->in_check_or_prepare--;
}
else
result = FALSE;
if (result == FALSE)
{
GSList *tmp_list;
/* If not already explicitly flagged ready by ->check()
* (or if we have no check) then we can still be ready if
* any of our fds poll as ready.
*/
for (tmp_list = source->priv->fds; tmp_list; tmp_list = tmp_list->next)
{
GPollFD *pollfd = tmp_list->data;
if (pollfd->revents)
{
result = TRUE;
break;
}
}
}
if (result == FALSE && source->priv->ready_time != -1)
{
if (!context->time_is_fresh)
{
context->time = g_get_monotonic_time ();
context->time_is_fresh = TRUE;
}
if (source->priv->ready_time <= context->time)
result = TRUE;
}
if (result)
{
GSource *ready_source = source;
while (ready_source)
{
ready_source->flags |= G_SOURCE_READY;
ready_source = ready_source->priv->parent_source;
}
}
}
if (source->flags & G_SOURCE_READY)
{
source->ref_count++;
g_ptr_array_add (context->pending_dispatches, source);
n_ready++;
/* never dispatch sources with less priority than the first
* one we choose to dispatch
*/
max_priority = source->priority;
}
}
g_source_iter_clear (&iter);
UNLOCK_CONTEXT (context);
return n_ready > 0;
}
/**
* g_main_context_dispatch:
* @context: a #GMainContext
*
* Dispatches all pending sources.
**/
void
g_main_context_dispatch (GMainContext *context)
{
LOCK_CONTEXT (context);
if (context->pending_dispatches->len > 0)
{
g_main_dispatch (context);
}
UNLOCK_CONTEXT (context);
}
/* HOLDS context lock */
static gboolean
g_main_context_iterate (GMainContext *context,
gboolean block,
gboolean dispatch,
GThread *self)
{
gint max_priority;
gint timeout;
gboolean some_ready;
gint nfds, allocated_nfds;
GPollFD *fds = NULL;
UNLOCK_CONTEXT (context);
if (!g_main_context_acquire (context))
{
gboolean got_ownership;
LOCK_CONTEXT (context);
if (!block)
return FALSE;
got_ownership = g_main_context_wait (context,
&context->cond,
&context->mutex);
if (!got_ownership)
return FALSE;
}
else
LOCK_CONTEXT (context);
if (!context->cached_poll_array)
{
context->cached_poll_array_size = context->n_poll_records;
context->cached_poll_array = g_new (GPollFD, context->n_poll_records);
}
allocated_nfds = context->cached_poll_array_size;
fds = context->cached_poll_array;
UNLOCK_CONTEXT (context);
g_main_context_prepare (context, &max_priority);
while ((nfds = g_main_context_query (context, max_priority, &timeout, fds,
allocated_nfds)) > allocated_nfds)
{
LOCK_CONTEXT (context);
g_free (fds);
context->cached_poll_array_size = allocated_nfds = nfds;
context->cached_poll_array = fds = g_new (GPollFD, nfds);
UNLOCK_CONTEXT (context);
}
if (!block)
timeout = 0;
g_main_context_poll (context, timeout, max_priority, fds, nfds);
some_ready = g_main_context_check (context, max_priority, fds, nfds);
if (dispatch)
g_main_context_dispatch (context);
g_main_context_release (context);
LOCK_CONTEXT (context);
return some_ready;
}
/**
* g_main_context_pending:
* @context: (allow-none): a #GMainContext (if %NULL, the default context will be used)
*
* Checks if any sources have pending events for the given context.
*
* Return value: %TRUE if events are pending.
**/
gboolean
g_main_context_pending (GMainContext *context)
{
gboolean retval;
if (!context)
context = g_main_context_default();
LOCK_CONTEXT (context);
retval = g_main_context_iterate (context, FALSE, FALSE, G_THREAD_SELF);
UNLOCK_CONTEXT (context);
return retval;
}
/**
* g_main_context_iteration:
* @context: (allow-none): a #GMainContext (if %NULL, the default context will be used)
* @may_block: whether the call may block.
*
* Runs a single iteration for the given main loop. This involves
* checking to see if any event sources are ready to be processed,
* then if no events sources are ready and @may_block is %TRUE, waiting
* for a source to become ready, then dispatching the highest priority
* events sources that are ready. Otherwise, if @may_block is %FALSE
* sources are not waited to become ready, only those highest priority
* events sources will be dispatched (if any), that are ready at this
* given moment without further waiting.
*
* Note that even when @may_block is %TRUE, it is still possible for
* g_main_context_iteration() to return %FALSE, since the wait may
* be interrupted for other reasons than an event source becoming ready.
*
* Return value: %TRUE if events were dispatched.
**/
gboolean
g_main_context_iteration (GMainContext *context, gboolean may_block)
{
gboolean retval;
if (!context)
context = g_main_context_default();
LOCK_CONTEXT (context);
retval = g_main_context_iterate (context, may_block, TRUE, G_THREAD_SELF);
UNLOCK_CONTEXT (context);
return retval;
}
/**
* g_main_loop_new:
* @context: (allow-none): a #GMainContext (if %NULL, the default context will be used).
* @is_running: set to %TRUE to indicate that the loop is running. This
* is not very important since calling g_main_loop_run() will set this to
* %TRUE anyway.
*
* Creates a new #GMainLoop structure.
*
* Return value: a new #GMainLoop.
**/
GMainLoop *
g_main_loop_new (GMainContext *context,
gboolean is_running)
{
GMainLoop *loop;
if (!context)
context = g_main_context_default();
g_main_context_ref (context);
loop = g_new0 (GMainLoop, 1);
loop->context = context;
loop->is_running = is_running != FALSE;
loop->ref_count = 1;
return loop;
}
/**
* g_main_loop_ref:
* @loop: a #GMainLoop
*
* Increases the reference count on a #GMainLoop object by one.
*
* Return value: @loop
**/
GMainLoop *
g_main_loop_ref (GMainLoop *loop)
{
g_return_val_if_fail (loop != NULL, NULL);
g_return_val_if_fail (g_atomic_int_get (&loop->ref_count) > 0, NULL);
g_atomic_int_inc (&loop->ref_count);
return loop;
}
/**
* g_main_loop_unref:
* @loop: a #GMainLoop
*
* Decreases the reference count on a #GMainLoop object by one. If
* the result is zero, free the loop and free all associated memory.
**/
void
g_main_loop_unref (GMainLoop *loop)
{
g_return_if_fail (loop != NULL);
g_return_if_fail (g_atomic_int_get (&loop->ref_count) > 0);
if (!g_atomic_int_dec_and_test (&loop->ref_count))
return;
g_main_context_unref (loop->context);
g_free (loop);
}
/**
* g_main_loop_run:
* @loop: a #GMainLoop
*
* Runs a main loop until g_main_loop_quit() is called on the loop.
* If this is called for the thread of the loop's #GMainContext,
* it will process events from the loop, otherwise it will
* simply wait.
**/
void
g_main_loop_run (GMainLoop *loop)
{
GThread *self = G_THREAD_SELF;
g_return_if_fail (loop != NULL);
g_return_if_fail (g_atomic_int_get (&loop->ref_count) > 0);
if (!g_main_context_acquire (loop->context))
{
gboolean got_ownership = FALSE;
/* Another thread owns this context */
LOCK_CONTEXT (loop->context);
g_atomic_int_inc (&loop->ref_count);
if (!loop->is_running)
loop->is_running = TRUE;
while (loop->is_running && !got_ownership)
got_ownership = g_main_context_wait (loop->context,
&loop->context->cond,
&loop->context->mutex);
if (!loop->is_running)
{
UNLOCK_CONTEXT (loop->context);
if (got_ownership)
g_main_context_release (loop->context);
g_main_loop_unref (loop);
return;
}
g_assert (got_ownership);
}
else
LOCK_CONTEXT (loop->context);
if (loop->context->in_check_or_prepare)
{
g_warning ("g_main_loop_run(): called recursively from within a source's "
"check() or prepare() member, iteration not possible.");
return;
}
g_atomic_int_inc (&loop->ref_count);
loop->is_running = TRUE;
while (loop->is_running)
g_main_context_iterate (loop->context, TRUE, TRUE, self);
UNLOCK_CONTEXT (loop->context);
g_main_context_release (loop->context);
g_main_loop_unref (loop);
}
/**
* g_main_loop_quit:
* @loop: a #GMainLoop
*
* Stops a #GMainLoop from running. Any calls to g_main_loop_run()
* for the loop will return.
*
* Note that sources that have already been dispatched when
* g_main_loop_quit() is called will still be executed.
**/
void
g_main_loop_quit (GMainLoop *loop)
{
g_return_if_fail (loop != NULL);
g_return_if_fail (g_atomic_int_get (&loop->ref_count) > 0);
LOCK_CONTEXT (loop->context);
loop->is_running = FALSE;
g_wakeup_signal (loop->context->wakeup);
g_cond_broadcast (&loop->context->cond);
UNLOCK_CONTEXT (loop->context);
}
/**
* g_main_loop_is_running:
* @loop: a #GMainLoop.
*
* Checks to see if the main loop is currently being run via g_main_loop_run().
*
* Return value: %TRUE if the mainloop is currently being run.
**/
gboolean
g_main_loop_is_running (GMainLoop *loop)
{
g_return_val_if_fail (loop != NULL, FALSE);
g_return_val_if_fail (g_atomic_int_get (&loop->ref_count) > 0, FALSE);
return loop->is_running;
}
/**
* g_main_loop_get_context:
* @loop: a #GMainLoop.
*
* Returns the #GMainContext of @loop.
*
* Return value: (transfer none): the #GMainContext of @loop
**/
GMainContext *
g_main_loop_get_context (GMainLoop *loop)
{
g_return_val_if_fail (loop != NULL, NULL);
g_return_val_if_fail (g_atomic_int_get (&loop->ref_count) > 0, NULL);
return loop->context;
}
/* HOLDS: context's lock */
static void
g_main_context_poll (GMainContext *context,
gint timeout,
gint priority,
GPollFD *fds,
gint n_fds)
{
#ifdef G_MAIN_POLL_DEBUG
GTimer *poll_timer;
GPollRec *pollrec;
gint i;
#endif
GPollFunc poll_func;
if (n_fds || timeout != 0)
{
#ifdef G_MAIN_POLL_DEBUG
if (_g_main_poll_debug)
{
g_print ("polling context=%p n=%d timeout=%d\n",
context, n_fds, timeout);
poll_timer = g_timer_new ();
}
#endif
LOCK_CONTEXT (context);
poll_func = context->poll_func;
UNLOCK_CONTEXT (context);
if ((*poll_func) (fds, n_fds, timeout) < 0 && errno != EINTR)
{
#ifndef G_OS_WIN32
g_warning ("poll(2) failed due to: %s.",
g_strerror (errno));
#else
/* If g_poll () returns -1, it has already called g_warning() */
#endif
}
#ifdef G_MAIN_POLL_DEBUG
if (_g_main_poll_debug)
{
LOCK_CONTEXT (context);
g_print ("g_main_poll(%d) timeout: %d - elapsed %12.10f seconds",
n_fds,
timeout,
g_timer_elapsed (poll_timer, NULL));
g_timer_destroy (poll_timer);
pollrec = context->poll_records;
while (pollrec != NULL)
{
i = 0;
while (i < n_fds)
{
if (fds[i].fd == pollrec->fd->fd &&
pollrec->fd->events &&
fds[i].revents)
{
g_print (" [" G_POLLFD_FORMAT " :", fds[i].fd);
if (fds[i].revents & G_IO_IN)
g_print ("i");
if (fds[i].revents & G_IO_OUT)
g_print ("o");
if (fds[i].revents & G_IO_PRI)
g_print ("p");
if (fds[i].revents & G_IO_ERR)
g_print ("e");
if (fds[i].revents & G_IO_HUP)
g_print ("h");
if (fds[i].revents & G_IO_NVAL)
g_print ("n");
g_print ("]");
}
i++;
}
pollrec = pollrec->next;
}
g_print ("\n");
UNLOCK_CONTEXT (context);
}
#endif
} /* if (n_fds || timeout != 0) */
}
/**
* g_main_context_add_poll:
* @context: (allow-none): a #GMainContext (or %NULL for the default context)
* @fd: a #GPollFD structure holding information about a file
* descriptor to watch.
* @priority: the priority for this file descriptor which should be
* the same as the priority used for g_source_attach() to ensure that the
* file descriptor is polled whenever the results may be needed.
*
* Adds a file descriptor to the set of file descriptors polled for
* this context. This will very seldom be used directly. Instead
* a typical event source will use g_source_add_unix_fd() instead.
**/
void
g_main_context_add_poll (GMainContext *context,
GPollFD *fd,
gint priority)
{
if (!context)
context = g_main_context_default ();
g_return_if_fail (g_atomic_int_get (&context->ref_count) > 0);
g_return_if_fail (fd);
LOCK_CONTEXT (context);
g_main_context_add_poll_unlocked (context, priority, fd);
UNLOCK_CONTEXT (context);
}
/* HOLDS: main_loop_lock */
static void
g_main_context_add_poll_unlocked (GMainContext *context,
gint priority,
GPollFD *fd)
{
GPollRec *prevrec, *nextrec;
GPollRec *newrec = g_slice_new (GPollRec);
/* This file descriptor may be checked before we ever poll */
fd->revents = 0;
newrec->fd = fd;
newrec->priority = priority;
prevrec = context->poll_records_tail;
nextrec = NULL;
while (prevrec && priority < prevrec->priority)
{
nextrec = prevrec;
prevrec = prevrec->prev;
}
if (prevrec)
prevrec->next = newrec;
else
context->poll_records = newrec;
newrec->prev = prevrec;
newrec->next = nextrec;
if (nextrec)
nextrec->prev = newrec;
else
context->poll_records_tail = newrec;
context->n_poll_records++;
context->poll_changed = TRUE;
/* Now wake up the main loop if it is waiting in the poll() */
g_wakeup_signal (context->wakeup);
}
/**
* g_main_context_remove_poll:
* @context:a #GMainContext
* @fd: a #GPollFD descriptor previously added with g_main_context_add_poll()
*
* Removes file descriptor from the set of file descriptors to be
* polled for a particular context.
**/
void
g_main_context_remove_poll (GMainContext *context,
GPollFD *fd)
{
if (!context)
context = g_main_context_default ();
g_return_if_fail (g_atomic_int_get (&context->ref_count) > 0);
g_return_if_fail (fd);
LOCK_CONTEXT (context);
g_main_context_remove_poll_unlocked (context, fd);
UNLOCK_CONTEXT (context);
}
static void
g_main_context_remove_poll_unlocked (GMainContext *context,
GPollFD *fd)
{
GPollRec *pollrec, *prevrec, *nextrec;
prevrec = NULL;
pollrec = context->poll_records;
while (pollrec)
{
nextrec = pollrec->next;
if (pollrec->fd == fd)
{
if (prevrec != NULL)
prevrec->next = nextrec;
else
context->poll_records = nextrec;
if (nextrec != NULL)
nextrec->prev = prevrec;
else
context->poll_records_tail = prevrec;
g_slice_free (GPollRec, pollrec);
context->n_poll_records--;
break;
}
prevrec = pollrec;
pollrec = nextrec;
}
context->poll_changed = TRUE;
/* Now wake up the main loop if it is waiting in the poll() */
g_wakeup_signal (context->wakeup);
}
/**
* g_source_get_current_time:
* @source: a #GSource
* @timeval: #GTimeVal structure in which to store current time.
*
* This function ignores @source and is otherwise the same as
* g_get_current_time().
*
* Deprecated: 2.28: use g_source_get_time() instead
**/
void
g_source_get_current_time (GSource *source,
GTimeVal *timeval)
{
g_get_current_time (timeval);
}
/**
* g_source_get_time:
* @source: a #GSource
*
* Gets the time to be used when checking this source. The advantage of
* calling this function over calling g_get_monotonic_time() directly is
* that when checking multiple sources, GLib can cache a single value
* instead of having to repeatedly get the system monotonic time.
*
* The time here is the system monotonic time, if available, or some
* other reasonable alternative otherwise. See g_get_monotonic_time().
*
* Returns: the monotonic time in microseconds
*
* Since: 2.28
**/
gint64
g_source_get_time (GSource *source)
{
GMainContext *context;
gint64 result;
g_return_val_if_fail (source->context != NULL, 0);
context = source->context;
LOCK_CONTEXT (context);
if (!context->time_is_fresh)
{
context->time = g_get_monotonic_time ();
context->time_is_fresh = TRUE;
}
result = context->time;
UNLOCK_CONTEXT (context);
return result;
}
/**
* g_main_context_set_poll_func:
* @context: a #GMainContext
* @func: the function to call to poll all file descriptors
*
* Sets the function to use to handle polling of file descriptors. It
* will be used instead of the poll() system call
* (or GLib's replacement function, which is used where
* poll() isn't available).
*
* This function could possibly be used to integrate the GLib event
* loop with an external event loop.
**/
void
g_main_context_set_poll_func (GMainContext *context,
GPollFunc func)
{
if (!context)
context = g_main_context_default ();
g_return_if_fail (g_atomic_int_get (&context->ref_count) > 0);
LOCK_CONTEXT (context);
if (func)
context->poll_func = func;
else
context->poll_func = g_poll;
UNLOCK_CONTEXT (context);
}
/**
* g_main_context_get_poll_func:
* @context: a #GMainContext
*
* Gets the poll function set by g_main_context_set_poll_func().
*
* Return value: the poll function
**/
GPollFunc
g_main_context_get_poll_func (GMainContext *context)
{
GPollFunc result;
if (!context)
context = g_main_context_default ();
g_return_val_if_fail (g_atomic_int_get (&context->ref_count) > 0, NULL);
LOCK_CONTEXT (context);
result = context->poll_func;
UNLOCK_CONTEXT (context);
return result;
}
/**
* g_main_context_wakeup:
* @context: a #GMainContext
*
* If @context is currently waiting in a poll(), interrupt
* the poll(), and continue the iteration process.
**/
void
g_main_context_wakeup (GMainContext *context)
{
if (!context)
context = g_main_context_default ();
g_return_if_fail (g_atomic_int_get (&context->ref_count) > 0);
g_wakeup_signal (context->wakeup);
}
/**
* g_main_context_is_owner:
* @context: a #GMainContext
*
* Determines whether this thread holds the (recursive)
* ownership of this #GMainContext. This is useful to
* know before waiting on another thread that may be
* blocking to get ownership of @context.
*
* Returns: %TRUE if current thread is owner of @context.
*
* Since: 2.10
**/
gboolean
g_main_context_is_owner (GMainContext *context)
{
gboolean is_owner;
if (!context)
context = g_main_context_default ();
LOCK_CONTEXT (context);
is_owner = context->owner == G_THREAD_SELF;
UNLOCK_CONTEXT (context);
return is_owner;
}
/* Timeouts */
static void
g_timeout_set_expiration (GTimeoutSource *timeout_source,
gint64 current_time)
{
gint64 expiration;
expiration = current_time + (guint64) timeout_source->interval * 1000;
if (timeout_source->seconds)
{
gint64 remainder;
static gint timer_perturb = -1;
if (timer_perturb == -1)
{
/*
* we want a per machine/session unique 'random' value; try the dbus
* address first, that has a UUID in it. If there is no dbus, use the
* hostname for hashing.
*/
const char *session_bus_address = g_getenv ("DBUS_SESSION_BUS_ADDRESS");
if (!session_bus_address)
session_bus_address = g_getenv ("HOSTNAME");
if (session_bus_address)
timer_perturb = ABS ((gint) g_str_hash (session_bus_address)) % 1000000;
else
timer_perturb = 0;
}
/* We want the microseconds part of the timeout to land on the
* 'timer_perturb' mark, but we need to make sure we don't try to
* set the timeout in the past. We do this by ensuring that we
* always only *increase* the expiration time by adding a full
* second in the case that the microsecond portion decreases.
*/
expiration -= timer_perturb;
remainder = expiration % 1000000;
if (remainder >= 1000000/4)
expiration += 1000000;
expiration -= remainder;
expiration += timer_perturb;
}
g_source_set_ready_time ((GSource *) timeout_source, expiration);
}
static gboolean
g_timeout_dispatch (GSource *source,
GSourceFunc callback,
gpointer user_data)
{
GTimeoutSource *timeout_source = (GTimeoutSource *)source;
gboolean again;
if (!callback)
{
g_warning ("Timeout source dispatched without callback\n"
"You must call g_source_set_callback().");
return FALSE;
}
again = callback (user_data);
if (again)
g_timeout_set_expiration (timeout_source, g_source_get_time (source));
return again;
}
/**
* g_timeout_source_new:
* @interval: the timeout interval in milliseconds.
*
* Creates a new timeout source.
*
* The source will not initially be associated with any #GMainContext
* and must be added to one with g_source_attach() before it will be
* executed.
*
* The interval given is in terms of monotonic time, not wall clock
* time. See g_get_monotonic_time().
*
* Return value: the newly-created timeout source
**/
GSource *
g_timeout_source_new (guint interval)
{
GSource *source = g_source_new (&g_timeout_funcs, sizeof (GTimeoutSource));
GTimeoutSource *timeout_source = (GTimeoutSource *)source;
timeout_source->interval = interval;
g_timeout_set_expiration (timeout_source, g_get_monotonic_time ());
return source;
}
/**
* g_timeout_source_new_seconds:
* @interval: the timeout interval in seconds
*
* Creates a new timeout source.
*
* The source will not initially be associated with any #GMainContext
* and must be added to one with g_source_attach() before it will be
* executed.
*
* The scheduling granularity/accuracy of this timeout source will be
* in seconds.
*
* The interval given in terms of monotonic time, not wall clock time.
* See g_get_monotonic_time().
*
* Return value: the newly-created timeout source
*
* Since: 2.14
**/
GSource *
g_timeout_source_new_seconds (guint interval)
{
GSource *source = g_source_new (&g_timeout_funcs, sizeof (GTimeoutSource));
GTimeoutSource *timeout_source = (GTimeoutSource *)source;
timeout_source->interval = 1000 * interval;
timeout_source->seconds = TRUE;
g_timeout_set_expiration (timeout_source, g_get_monotonic_time ());
return source;
}
/**
* g_timeout_add_full:
* @priority: the priority of the timeout source. Typically this will be in
* the range between #G_PRIORITY_DEFAULT and #G_PRIORITY_HIGH.
* @interval: the time between calls to the function, in milliseconds
* (1/1000ths of a second)
* @function: function to call
* @data: data to pass to @function
* @notify: (allow-none): function to call when the timeout is removed, or %NULL
*
* Sets a function to be called at regular intervals, with the given
* priority. The function is called repeatedly until it returns
* %FALSE, at which point the timeout is automatically destroyed and
* the function will not be called again. The @notify function is
* called when the timeout is destroyed. The first call to the
* function will be at the end of the first @interval.
*
* Note that timeout functions may be delayed, due to the processing of other
* event sources. Thus they should not be relied on for precise timing.
* After each call to the timeout function, the time of the next
* timeout is recalculated based on the current time and the given interval
* (it does not try to 'catch up' time lost in delays).
*
* This internally creates a main loop source using g_timeout_source_new()
* and attaches it to the main loop context using g_source_attach(). You can
* do these steps manually if you need greater control.
*
* The interval given in terms of monotonic time, not wall clock time.
* See g_get_monotonic_time().
*
* Return value: the ID (greater than 0) of the event source.
* Rename to: g_timeout_add
**/
guint
g_timeout_add_full (gint priority,
guint interval,
GSourceFunc function,
gpointer data,
GDestroyNotify notify)
{
GSource *source;
guint id;
g_return_val_if_fail (function != NULL, 0);
source = g_timeout_source_new (interval);
if (priority != G_PRIORITY_DEFAULT)
g_source_set_priority (source, priority);
g_source_set_callback (source, function, data, notify);
id = g_source_attach (source, NULL);
g_source_unref (source);
return id;
}
/**
* g_timeout_add:
* @interval: the time between calls to the function, in milliseconds
* (1/1000ths of a second)
* @function: function to call
* @data: data to pass to @function
*
* Sets a function to be called at regular intervals, with the default
* priority, #G_PRIORITY_DEFAULT. The function is called repeatedly
* until it returns %FALSE, at which point the timeout is automatically
* destroyed and the function will not be called again. The first call
* to the function will be at the end of the first @interval.
*
* Note that timeout functions may be delayed, due to the processing of other
* event sources. Thus they should not be relied on for precise timing.
* After each call to the timeout function, the time of the next
* timeout is recalculated based on the current time and the given interval
* (it does not try to 'catch up' time lost in delays).
*
* If you want to have a timer in the "seconds" range and do not care
* about the exact time of the first call of the timer, use the
* g_timeout_add_seconds() function; this function allows for more
* optimizations and more efficient system power usage.
*
* This internally creates a main loop source using g_timeout_source_new()
* and attaches it to the main loop context using g_source_attach(). You can
* do these steps manually if you need greater control.
*
* The interval given is in terms of monotonic time, not wall clock
* time. See g_get_monotonic_time().
*
* Return value: the ID (greater than 0) of the event source.
**/
guint
g_timeout_add (guint32 interval,
GSourceFunc function,
gpointer data)
{
return g_timeout_add_full (G_PRIORITY_DEFAULT,
interval, function, data, NULL);
}
/**
* g_timeout_add_seconds_full:
* @priority: the priority of the timeout source. Typically this will be in
* the range between #G_PRIORITY_DEFAULT and #G_PRIORITY_HIGH.
* @interval: the time between calls to the function, in seconds
* @function: function to call
* @data: data to pass to @function
* @notify: (allow-none): function to call when the timeout is removed, or %NULL
*
* Sets a function to be called at regular intervals, with @priority.
* The function is called repeatedly until it returns %FALSE, at which
* point the timeout is automatically destroyed and the function will
* not be called again.
*
* Unlike g_timeout_add(), this function operates at whole second granularity.
* The initial starting point of the timer is determined by the implementation
* and the implementation is expected to group multiple timers together so that
* they fire all at the same time.
* To allow this grouping, the @interval to the first timer is rounded
* and can deviate up to one second from the specified interval.
* Subsequent timer iterations will generally run at the specified interval.
*
* Note that timeout functions may be delayed, due to the processing of other
* event sources. Thus they should not be relied on for precise timing.
* After each call to the timeout function, the time of the next
* timeout is recalculated based on the current time and the given @interval
*
* If you want timing more precise than whole seconds, use g_timeout_add()
* instead.
*
* The grouping of timers to fire at the same time results in a more power
* and CPU efficient behavior so if your timer is in multiples of seconds
* and you don't require the first timer exactly one second from now, the
* use of g_timeout_add_seconds() is preferred over g_timeout_add().
*
* This internally creates a main loop source using
* g_timeout_source_new_seconds() and attaches it to the main loop context
* using g_source_attach(). You can do these steps manually if you need
* greater control.
*
* The interval given is in terms of monotonic time, not wall clock
* time. See g_get_monotonic_time().
*
* Return value: the ID (greater than 0) of the event source.
*
* Rename to: g_timeout_add_seconds
* Since: 2.14
**/
guint
g_timeout_add_seconds_full (gint priority,
guint32 interval,
GSourceFunc function,
gpointer data,
GDestroyNotify notify)
{
GSource *source;
guint id;
g_return_val_if_fail (function != NULL, 0);
source = g_timeout_source_new_seconds (interval);
if (priority != G_PRIORITY_DEFAULT)
g_source_set_priority (source, priority);
g_source_set_callback (source, function, data, notify);
id = g_source_attach (source, NULL);
g_source_unref (source);
return id;
}
/**
* g_timeout_add_seconds:
* @interval: the time between calls to the function, in seconds
* @function: function to call
* @data: data to pass to @function
*
* Sets a function to be called at regular intervals with the default
* priority, #G_PRIORITY_DEFAULT. The function is called repeatedly until
* it returns %FALSE, at which point the timeout is automatically destroyed
* and the function will not be called again.
*
* This internally creates a main loop source using
* g_timeout_source_new_seconds() and attaches it to the main loop context
* using g_source_attach(). You can do these steps manually if you need
* greater control. Also see g_timeout_add_seconds_full().
*
* Note that the first call of the timer may not be precise for timeouts
* of one second. If you need finer precision and have such a timeout,
* you may want to use g_timeout_add() instead.
*
* The interval given is in terms of monotonic time, not wall clock
* time. See g_get_monotonic_time().
*
* Return value: the ID (greater than 0) of the event source.
*
* Since: 2.14
**/
guint
g_timeout_add_seconds (guint interval,
GSourceFunc function,
gpointer data)
{
g_return_val_if_fail (function != NULL, 0);
return g_timeout_add_seconds_full (G_PRIORITY_DEFAULT, interval, function, data, NULL);
}
/* Child watch functions */
#ifdef G_OS_WIN32
static gboolean
g_child_watch_prepare (GSource *source,
gint *timeout)
{
*timeout = -1;
return FALSE;
}
static gboolean
g_child_watch_check (GSource *source)
{
GChildWatchSource *child_watch_source;
gboolean child_exited;
child_watch_source = (GChildWatchSource *) source;
child_exited = child_watch_source->poll.revents & G_IO_IN;
if (child_exited)
{
DWORD child_status;
/*
* Note: We do _not_ check for the special value of STILL_ACTIVE
* since we know that the process has exited and doing so runs into
* problems if the child process "happens to return STILL_ACTIVE(259)"
* as Microsoft's Platform SDK puts it.
*/
if (!GetExitCodeProcess (child_watch_source->pid, &child_status))
{
gchar *emsg = g_win32_error_message (GetLastError ());
g_warning (G_STRLOC ": GetExitCodeProcess() failed: %s", emsg);
g_free (emsg);
child_watch_source->child_status = -1;
}
else
child_watch_source->child_status = child_status;
}
return child_exited;
}
static void
g_child_watch_finalize (GSource *source)
{
}
#else /* G_OS_WIN32 */
static void
wake_source (GSource *source)
{
GMainContext *context;
/* This should be thread-safe:
*
* - if the source is currently being added to a context, that
* context will be woken up anyway
*
* - if the source is currently being destroyed, we simply need not
* to crash:
*
* - the memory for the source will remain valid until after the
* source finalize function was called (which would remove the
* source from the global list which we are currently holding the
* lock for)
*
* - the GMainContext will either be NULL or point to a live
* GMainContext
*
* - the GMainContext will remain valid since we hold the
* main_context_list lock
*
* Since we are holding a lot of locks here, don't try to enter any
* more GMainContext functions for fear of dealock -- just hit the
* GWakeup and run. Even if that's safe now, it could easily become
* unsafe with some very minor changes in the future, and signal
* handling is not the most well-tested codepath.
*/
G_LOCK(main_context_list);
context = source->context;
if (context)
g_wakeup_signal (context->wakeup);
G_UNLOCK(main_context_list);
}
static void
dispatch_unix_signals (void)
{
GSList *node;
/* clear this first incase another one arrives while we're processing */
any_unix_signal_pending = FALSE;
G_LOCK(unix_signal_lock);
/* handle GChildWatchSource instances */
if (unix_signal_pending[SIGCHLD])
{
unix_signal_pending[SIGCHLD] = FALSE;
/* The only way we can do this is to scan all of the children.
*
* The docs promise that we will not reap children that we are not
* explicitly watching, so that ties our hands from calling
* waitpid(-1). We also can't use siginfo's si_pid field since if
* multiple SIGCHLD arrive at the same time, one of them can be
* dropped (since a given UNIX signal can only be pending once).
*/
for (node = unix_child_watches; node; node = node->next)
{
GChildWatchSource *source = node->data;
if (!source->child_exited)
{
pid_t pid;
do
{
pid = waitpid (source->pid, &source->child_status, WNOHANG);
if (pid > 0)
{
source->child_exited = TRUE;
wake_source ((GSource *) source);
}
else if (pid == -1 && errno == ECHILD)
{
g_warning ("GChildWatchSource: Exit status of a child process was requested but ECHILD was received by waitpid(). Most likely the process is ignoring SIGCHLD, or some other thread is invoking waitpid() with a nonpositive first argument; either behavior can break applications that use g_child_watch_add()/g_spawn_sync() either directly or indirectly.");
source->child_exited = TRUE;
source->child_status = 0;
wake_source ((GSource *) source);
}
}
while (pid == -1 && errno == EINTR);
}
}
}
/* handle GUnixSignalWatchSource instances */
for (node = unix_signal_watches; node; node = node->next)
{
GUnixSignalWatchSource *source = node->data;
if (!source->pending)
{
if (unix_signal_pending[source->signum])
{
unix_signal_pending[source->signum] = FALSE;
source->pending = TRUE;
wake_source ((GSource *) source);
}
}
}
G_UNLOCK(unix_signal_lock);
}
static gboolean
g_child_watch_prepare (GSource *source,
gint *timeout)
{
GChildWatchSource *child_watch_source;
child_watch_source = (GChildWatchSource *) source;
return child_watch_source->child_exited;
}
static gboolean
g_child_watch_check (GSource *source)
{
GChildWatchSource *child_watch_source;
child_watch_source = (GChildWatchSource *) source;
return child_watch_source->child_exited;
}
static gboolean
g_unix_signal_watch_prepare (GSource *source,
gint *timeout)
{
GUnixSignalWatchSource *unix_signal_source;
unix_signal_source = (GUnixSignalWatchSource *) source;
return unix_signal_source->pending;
}
static gboolean
g_unix_signal_watch_check (GSource *source)
{
GUnixSignalWatchSource *unix_signal_source;
unix_signal_source = (GUnixSignalWatchSource *) source;
return unix_signal_source->pending;
}
static gboolean
g_unix_signal_watch_dispatch (GSource *source,
GSourceFunc callback,
gpointer user_data)
{
GUnixSignalWatchSource *unix_signal_source;
gboolean again;
unix_signal_source = (GUnixSignalWatchSource *) source;
if (!callback)
{
g_warning ("Unix signal source dispatched without callback\n"
"You must call g_source_set_callback().");
return FALSE;
}
again = (callback) (user_data);
unix_signal_source->pending = FALSE;
return again;
}
static void
ensure_unix_signal_handler_installed_unlocked (int signum)
{
static sigset_t installed_signal_mask;
static gboolean initialized;
struct sigaction action;
if (!initialized)
{
sigemptyset (&installed_signal_mask);
g_get_worker_context ();
initialized = TRUE;
}
if (sigismember (&installed_signal_mask, signum))
return;
sigaddset (&installed_signal_mask, signum);
action.sa_handler = g_unix_signal_handler;
sigemptyset (&action.sa_mask);
action.sa_flags = SA_RESTART | SA_NOCLDSTOP;
sigaction (signum, &action, NULL);
}
GSource *
_g_main_create_unix_signal_watch (int signum)
{
GSource *source;
GUnixSignalWatchSource *unix_signal_source;
source = g_source_new (&g_unix_signal_funcs, sizeof (GUnixSignalWatchSource));
unix_signal_source = (GUnixSignalWatchSource *) source;
unix_signal_source->signum = signum;
unix_signal_source->pending = FALSE;
G_LOCK (unix_signal_lock);
ensure_unix_signal_handler_installed_unlocked (signum);
unix_signal_watches = g_slist_prepend (unix_signal_watches, unix_signal_source);
if (unix_signal_pending[signum])
unix_signal_source->pending = TRUE;
unix_signal_pending[signum] = FALSE;
G_UNLOCK (unix_signal_lock);
return source;
}
static void
g_unix_signal_watch_finalize (GSource *source)
{
G_LOCK (unix_signal_lock);
unix_signal_watches = g_slist_remove (unix_signal_watches, source);
G_UNLOCK (unix_signal_lock);
}
static void
g_child_watch_finalize (GSource *source)
{
G_LOCK (unix_signal_lock);
unix_child_watches = g_slist_remove (unix_child_watches, source);
G_UNLOCK (unix_signal_lock);
}
#endif /* G_OS_WIN32 */
static gboolean
g_child_watch_dispatch (GSource *source,
GSourceFunc callback,
gpointer user_data)
{
GChildWatchSource *child_watch_source;
GChildWatchFunc child_watch_callback = (GChildWatchFunc) callback;
child_watch_source = (GChildWatchSource *) source;
if (!callback)
{
g_warning ("Child watch source dispatched without callback\n"
"You must call g_source_set_callback().");
return FALSE;
}
(child_watch_callback) (child_watch_source->pid, child_watch_source->child_status, user_data);
/* We never keep a child watch source around as the child is gone */
return FALSE;
}
#ifndef G_OS_WIN32
static void
g_unix_signal_handler (int signum)
{
unix_signal_pending[signum] = TRUE;
any_unix_signal_pending = TRUE;
g_wakeup_signal (glib_worker_context->wakeup);
}
#endif /* !G_OS_WIN32 */
/**
* g_child_watch_source_new:
* @pid: process to watch. On POSIX the pid of a child process. On
* Windows a handle for a process (which doesn't have to be a child).
*
* Creates a new child_watch source.
*
* The source will not initially be associated with any #GMainContext
* and must be added to one with g_source_attach() before it will be
* executed.
*
* Note that child watch sources can only be used in conjunction with
* <literal>g_spawn...</literal> when the %G_SPAWN_DO_NOT_REAP_CHILD
* flag is used.
*
* Note that on platforms where #GPid must be explicitly closed
* (see g_spawn_close_pid()) @pid must not be closed while the
* source is still active. Typically, you will want to call
* g_spawn_close_pid() in the callback function for the source.
*
* Note further that using g_child_watch_source_new() is not
* compatible with calling <literal>waitpid</literal> with a
* nonpositive first argument in the application. Calling waitpid()
* for individual pids will still work fine.
*
* Return value: the newly-created child watch source
*
* Since: 2.4
**/
GSource *
g_child_watch_source_new (GPid pid)
{
GSource *source = g_source_new (&g_child_watch_funcs, sizeof (GChildWatchSource));
GChildWatchSource *child_watch_source = (GChildWatchSource *)source;
child_watch_source->pid = pid;
#ifdef G_OS_WIN32
child_watch_source->poll.fd = (gintptr) pid;
child_watch_source->poll.events = G_IO_IN;
g_source_add_poll (source, &child_watch_source->poll);
#else /* G_OS_WIN32 */
G_LOCK (unix_signal_lock);
ensure_unix_signal_handler_installed_unlocked (SIGCHLD);
unix_child_watches = g_slist_prepend (unix_child_watches, child_watch_source);
if (waitpid (pid, &child_watch_source->child_status, WNOHANG) > 0)
child_watch_source->child_exited = TRUE;
G_UNLOCK (unix_signal_lock);
#endif /* G_OS_WIN32 */
return source;
}
/**
* g_child_watch_add_full:
* @priority: the priority of the idle source. Typically this will be in the
* range between #G_PRIORITY_DEFAULT_IDLE and #G_PRIORITY_HIGH_IDLE.
* @pid: process to watch. On POSIX the pid of a child process. On
* Windows a handle for a process (which doesn't have to be a child).
* @function: function to call
* @data: data to pass to @function
* @notify: (allow-none): function to call when the idle is removed, or %NULL
*
* Sets a function to be called when the child indicated by @pid
* exits, at the priority @priority.
*
* If you obtain @pid from g_spawn_async() or g_spawn_async_with_pipes()
* you will need to pass #G_SPAWN_DO_NOT_REAP_CHILD as flag to
* the spawn function for the child watching to work.
*
* In many programs, you will want to call g_spawn_check_exit_status()
* in the callback to determine whether or not the child exited
* successfully.
*
* Also, note that on platforms where #GPid must be explicitly closed
* (see g_spawn_close_pid()) @pid must not be closed while the source
* is still active. Typically, you should invoke g_spawn_close_pid()
* in the callback function for the source.
*
* GLib supports only a single callback per process id.
*
* This internally creates a main loop source using
* g_child_watch_source_new() and attaches it to the main loop context
* using g_source_attach(). You can do these steps manually if you
* need greater control.
*
* Return value: the ID (greater than 0) of the event source.
*
* Rename to: g_child_watch_add
* Since: 2.4
**/
guint
g_child_watch_add_full (gint priority,
GPid pid,
GChildWatchFunc function,
gpointer data,
GDestroyNotify notify)
{
GSource *source;
guint id;
g_return_val_if_fail (function != NULL, 0);
source = g_child_watch_source_new (pid);
if (priority != G_PRIORITY_DEFAULT)
g_source_set_priority (source, priority);
g_source_set_callback (source, (GSourceFunc) function, data, notify);
id = g_source_attach (source, NULL);
g_source_unref (source);
return id;
}
/**
* g_child_watch_add:
* @pid: process id to watch. On POSIX the pid of a child process. On
* Windows a handle for a process (which doesn't have to be a child).
* @function: function to call
* @data: data to pass to @function
*
* Sets a function to be called when the child indicated by @pid
* exits, at a default priority, #G_PRIORITY_DEFAULT.
*
* If you obtain @pid from g_spawn_async() or g_spawn_async_with_pipes()
* you will need to pass #G_SPAWN_DO_NOT_REAP_CHILD as flag to
* the spawn function for the child watching to work.
*
* Note that on platforms where #GPid must be explicitly closed
* (see g_spawn_close_pid()) @pid must not be closed while the
* source is still active. Typically, you will want to call
* g_spawn_close_pid() in the callback function for the source.
*
* GLib supports only a single callback per process id.
*
* This internally creates a main loop source using
* g_child_watch_source_new() and attaches it to the main loop context
* using g_source_attach(). You can do these steps manually if you
* need greater control.
*
* Return value: the ID (greater than 0) of the event source.
*
* Since: 2.4
**/
guint
g_child_watch_add (GPid pid,
GChildWatchFunc function,
gpointer data)
{
return g_child_watch_add_full (G_PRIORITY_DEFAULT, pid, function, data, NULL);
}
/* Idle functions */
static gboolean
g_idle_prepare (GSource *source,
gint *timeout)
{
*timeout = 0;
return TRUE;
}
static gboolean
g_idle_check (GSource *source)
{
return TRUE;
}
static gboolean
g_idle_dispatch (GSource *source,
GSourceFunc callback,
gpointer user_data)
{
if (!callback)
{
g_warning ("Idle source dispatched without callback\n"
"You must call g_source_set_callback().");
return FALSE;
}
return callback (user_data);
}
/**
* g_idle_source_new:
*
* Creates a new idle source.
*
* The source will not initially be associated with any #GMainContext
* and must be added to one with g_source_attach() before it will be
* executed. Note that the default priority for idle sources is
* %G_PRIORITY_DEFAULT_IDLE, as compared to other sources which
* have a default priority of %G_PRIORITY_DEFAULT.
*
* Return value: the newly-created idle source
**/
GSource *
g_idle_source_new (void)
{
GSource *source;
source = g_source_new (&g_idle_funcs, sizeof (GSource));
g_source_set_priority (source, G_PRIORITY_DEFAULT_IDLE);
return source;
}
/**
* g_idle_add_full:
* @priority: the priority of the idle source. Typically this will be in the
* range between #G_PRIORITY_DEFAULT_IDLE and #G_PRIORITY_HIGH_IDLE.
* @function: function to call
* @data: data to pass to @function
* @notify: (allow-none): function to call when the idle is removed, or %NULL
*
* Adds a function to be called whenever there are no higher priority
* events pending. If the function returns %FALSE it is automatically
* removed from the list of event sources and will not be called again.
*
* This internally creates a main loop source using g_idle_source_new()
* and attaches it to the main loop context using g_source_attach().
* You can do these steps manually if you need greater control.
*
* Return value: the ID (greater than 0) of the event source.
* Rename to: g_idle_add
**/
guint
g_idle_add_full (gint priority,
GSourceFunc function,
gpointer data,
GDestroyNotify notify)
{
GSource *source;
guint id;
g_return_val_if_fail (function != NULL, 0);
source = g_idle_source_new ();
if (priority != G_PRIORITY_DEFAULT_IDLE)
g_source_set_priority (source, priority);
g_source_set_callback (source, function, data, notify);
id = g_source_attach (source, NULL);
g_source_unref (source);
return id;
}
/**
* g_idle_add:
* @function: function to call
* @data: data to pass to @function.
*
* Adds a function to be called whenever there are no higher priority
* events pending to the default main loop. The function is given the
* default idle priority, #G_PRIORITY_DEFAULT_IDLE. If the function
* returns %FALSE it is automatically removed from the list of event
* sources and will not be called again.
*
* This internally creates a main loop source using g_idle_source_new()
* and attaches it to the main loop context using g_source_attach().
* You can do these steps manually if you need greater control.
*
* Return value: the ID (greater than 0) of the event source.
**/
guint
g_idle_add (GSourceFunc function,
gpointer data)
{
return g_idle_add_full (G_PRIORITY_DEFAULT_IDLE, function, data, NULL);
}
/**
* g_idle_remove_by_data:
* @data: the data for the idle source's callback.
*
* Removes the idle function with the given data.
*
* Return value: %TRUE if an idle source was found and removed.
**/
gboolean
g_idle_remove_by_data (gpointer data)
{
return g_source_remove_by_funcs_user_data (&g_idle_funcs, data);
}
/**
* g_main_context_invoke:
* @context: (allow-none): a #GMainContext, or %NULL
* @function: function to call
* @data: data to pass to @function
*
* Invokes a function in such a way that @context is owned during the
* invocation of @function.
*
* If @context is %NULL then the global default main context — as
* returned by g_main_context_default() — is used.
*
* If @context is owned by the current thread, @function is called
* directly. Otherwise, if @context is the thread-default main context
* of the current thread and g_main_context_acquire() succeeds, then
* @function is called and g_main_context_release() is called
* afterwards.
*
* In any other case, an idle source is created to call @function and
* that source is attached to @context (presumably to be run in another
* thread). The idle source is attached with #G_PRIORITY_DEFAULT
* priority. If you want a different priority, use
* g_main_context_invoke_full().
*
* Note that, as with normal idle functions, @function should probably
* return %FALSE. If it returns %TRUE, it will be continuously run in a
* loop (and may prevent this call from returning).
*
* Since: 2.28
**/
void
g_main_context_invoke (GMainContext *context,
GSourceFunc function,
gpointer data)
{
g_main_context_invoke_full (context,
G_PRIORITY_DEFAULT,
function, data, NULL);
}
/**
* g_main_context_invoke_full:
* @context: (allow-none): a #GMainContext, or %NULL
* @priority: the priority at which to run @function
* @function: function to call
* @data: data to pass to @function
* @notify: (allow-none): a function to call when @data is no longer in use, or %NULL.
*
* Invokes a function in such a way that @context is owned during the
* invocation of @function.
*
* This function is the same as g_main_context_invoke() except that it
* lets you specify the priority incase @function ends up being
* scheduled as an idle and also lets you give a #GDestroyNotify for @data.
*
* @notify should not assume that it is called from any particular
* thread or with any particular context acquired.
*
* Since: 2.28
**/
void
g_main_context_invoke_full (GMainContext *context,
gint priority,
GSourceFunc function,
gpointer data,
GDestroyNotify notify)
{
g_return_if_fail (function != NULL);
if (!context)
context = g_main_context_default ();
if (g_main_context_is_owner (context))
{
while (function (data));
if (notify != NULL)
notify (data);
}
else
{
GMainContext *thread_default;
thread_default = g_main_context_get_thread_default ();
if (!thread_default)
thread_default = g_main_context_default ();
if (thread_default == context && g_main_context_acquire (context))
{
while (function (data));
g_main_context_release (context);
if (notify != NULL)
notify (data);
}
else
{
GSource *source;
source = g_idle_source_new ();
g_source_set_priority (source, priority);
g_source_set_callback (source, function, data, notify);
g_source_attach (source, context);
g_source_unref (source);
}
}
}
static gpointer
glib_worker_main (gpointer data)
{
while (TRUE)
{
g_main_context_iteration (glib_worker_context, TRUE);
#ifdef G_OS_UNIX
if (any_unix_signal_pending)
dispatch_unix_signals ();
#endif
}
return NULL; /* worst GCC warning message ever... */
}
GMainContext *
g_get_worker_context (void)
{
static gsize initialised;
if (g_once_init_enter (&initialised))
{
/* mask all signals in the worker thread */
#ifdef G_OS_UNIX
sigset_t prev_mask;
sigset_t all;
sigfillset (&all);
pthread_sigmask (SIG_SETMASK, &all, &prev_mask);
#endif
glib_worker_context = g_main_context_new ();
g_thread_new ("gmain", glib_worker_main, NULL);
#ifdef G_OS_UNIX
pthread_sigmask (SIG_SETMASK, &prev_mask, NULL);
#endif
g_once_init_leave (&initialised, TRUE);
}
return glib_worker_context;
}