glib/glib/garcbox.c
Philip Withnall 00bfb3ab44 tree: Fix various typos and outdated terminology
This was mostly machine generated with the following command:
```
codespell \
    --builtin clear,rare,usage \
    --skip './po/*' --skip './.git/*' --skip './NEWS*' \
    --write-changes .
```
using the latest git version of `codespell` as per [these
instructions](https://github.com/codespell-project/codespell#user-content-updating).

Then I manually checked each change using `git add -p`, made a few
manual fixups and dropped a load of incorrect changes.

There are still some outdated or loaded terms used in GLib, mostly to do
with git branch terminology. They will need to be changed later as part
of a wider migration of git terminology.

If I’ve missed anything, please file an issue!

Signed-off-by: Philip Withnall <withnall@endlessm.com>
2020-06-12 15:01:08 +01:00

382 lines
10 KiB
C

/* garcbox.c: Atomically reference counted data
*
* Copyright 2018 Emmanuele Bassi
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include "grcboxprivate.h"
#include "gmessages.h"
#include "grefcount.h"
#ifdef ENABLE_VALGRIND
#include "valgrind.h"
#endif
#include "glib_trace.h"
#include <string.h>
#define G_ARC_BOX(p) (GArcBox *) (((char *) (p)) - G_ARC_BOX_SIZE)
/**
* SECTION:arcbox
* @Title: Atomically reference counted data
* @Short_description: Allocated memory with atomic reference counting semantics
*
* An "atomically reference counted box", or "ArcBox", is an opaque wrapper
* data type that is guaranteed to be as big as the size of a given data type,
* and which augments the given data type with thread safe reference counting
* semantics for its memory management.
*
* ArcBox is useful if you have a plain old data type, like a structure
* typically placed on the stack, and you wish to provide additional API
* to use it on the heap; or if you want to implement a new type to be
* passed around by reference without necessarily implementing copy/free
* semantics or your own reference counting.
*
* The typical use is:
*
* |[<!-- language="C" -->
* typedef struct {
* char *name;
* char *address;
* char *city;
* char *state;
* int age;
* } Person;
*
* Person *
* person_new (void)
* {
* return g_atomic_rc_box_new0 (Person);
* }
* ]|
*
* Every time you wish to acquire a reference on the memory, you should
* call g_atomic_rc_box_acquire(); similarly, when you wish to release a reference
* you should call g_atomic_rc_box_release():
*
* |[<!-- language="C" -->
* // Add a Person to the Database; the Database acquires ownership
* // of the Person instance
* void
* add_person_to_database (Database *db, Person *p)
* {
* db->persons = g_list_prepend (db->persons, g_atomic_rc_box_acquire (p));
* }
*
* // Removes a Person from the Database; the reference acquired by
* // add_person_to_database() is released here
* void
* remove_person_from_database (Database *db, Person *p)
* {
* db->persons = g_list_remove (db->persons, p);
* g_atomic_rc_box_release (p);
* }
* ]|
*
* If you have additional memory allocated inside the structure, you can
* use g_atomic_rc_box_release_full(), which takes a function pointer, which
* will be called if the reference released was the last:
*
* |[<!-- language="C" -->
* void
* person_clear (Person *p)
* {
* g_free (p->name);
* g_free (p->address);
* g_free (p->city);
* g_free (p->state);
* }
*
* void
* remove_person_from_database (Database *db, Person *p)
* {
* db->persons = g_list_remove (db->persons, p);
* g_atomic_rc_box_release_full (p, (GDestroyNotify) person_clear);
* }
* ]|
*
* If you wish to transfer the ownership of a reference counted data
* type without increasing the reference count, you can use g_steal_pointer():
*
* |[<!-- language="C" -->
* Person *p = g_atomic_rc_box_new (Person);
*
* fill_person_details (p);
*
* add_person_to_database (db, g_steal_pointer (&p));
* ]|
*
* ## Thread safety
*
* The reference counting operations on data allocated using g_atomic_rc_box_alloc(),
* g_atomic_rc_box_new(), and g_atomic_rc_box_dup() are guaranteed to be atomic, and thus
* can be safely be performed by different threads. It is important to note that
* only the reference acquisition and release are atomic; changes to the content
* of the data are your responsibility.
*
* ## Automatic pointer clean up
*
* If you want to add g_autoptr() support to your plain old data type through
* reference counting, you can use the G_DEFINE_AUTOPTR_CLEANUP_FUNC() and
* g_atomic_rc_box_release():
*
* |[<!-- language="C" -->
* G_DEFINE_AUTOPTR_CLEANUP_FUNC (MyDataStruct, g_atomic_rc_box_release)
* ]|
*
* If you need to clear the contents of the data, you will need to use an
* ancillary function that calls g_rc_box_release_full():
*
* |[<!-- language="C" -->
* static void
* my_data_struct_release (MyDataStruct *data)
* {
* // my_data_struct_clear() is defined elsewhere
* g_atomic_rc_box_release_full (data, (GDestroyNotify) my_data_struct_clear);
* }
*
* G_DEFINE_AUTOPTR_CLEANUP_FUNC (MyDataStruct, my_data_struct_release)
* ]|
*
* Since: 2.58
*/
/**
* g_atomic_rc_box_alloc:
* @block_size: the size of the allocation, must be greater than 0
*
* Allocates @block_size bytes of memory, and adds atomic
* reference counting semantics to it.
*
* The data will be freed when its reference count drops to
* zero.
*
* The allocated data is guaranteed to be suitably aligned for any
* built-in type.
*
* Returns: (transfer full) (not nullable): a pointer to the allocated memory
*
* Since: 2.58
*/
gpointer
g_atomic_rc_box_alloc (gsize block_size)
{
g_return_val_if_fail (block_size > 0, NULL);
return g_rc_box_alloc_full (block_size, STRUCT_ALIGNMENT, TRUE, FALSE);
}
/**
* g_atomic_rc_box_alloc0:
* @block_size: the size of the allocation, must be greater than 0
*
* Allocates @block_size bytes of memory, and adds atomic
* reference counting semantics to it.
*
* The contents of the returned data is set to zero.
*
* The data will be freed when its reference count drops to
* zero.
*
* The allocated data is guaranteed to be suitably aligned for any
* built-in type.
*
* Returns: (transfer full) (not nullable): a pointer to the allocated memory
*
* Since: 2.58
*/
gpointer
g_atomic_rc_box_alloc0 (gsize block_size)
{
g_return_val_if_fail (block_size > 0, NULL);
return g_rc_box_alloc_full (block_size, STRUCT_ALIGNMENT, TRUE, TRUE);
}
/**
* g_atomic_rc_box_new:
* @type: the type to allocate, typically a structure name
*
* A convenience macro to allocate atomically reference counted
* data with the size of the given @type.
*
* This macro calls g_atomic_rc_box_alloc() with `sizeof (@type)` and
* casts the returned pointer to a pointer of the given @type,
* avoiding a type cast in the source code.
*
* Returns: (transfer full) (not nullable): a pointer to the allocated
* memory, cast to a pointer for the given @type
*
* Since: 2.58
*/
/**
* g_atomic_rc_box_new0:
* @type: the type to allocate, typically a structure name
*
* A convenience macro to allocate atomically reference counted
* data with the size of the given @type, and set its contents
* to zero.
*
* This macro calls g_atomic_rc_box_alloc0() with `sizeof (@type)` and
* casts the returned pointer to a pointer of the given @type,
* avoiding a type cast in the source code.
*
* Returns: (transfer full) (not nullable): a pointer to the allocated
* memory, cast to a pointer for the given @type
*
* Since: 2.58
*/
/**
* g_atomic_rc_box_dup:
* @block_size: the number of bytes to copy, must be greater than 0
* @mem_block: (not nullable): the memory to copy
*
* Allocates a new block of data with atomic reference counting
* semantics, and copies @block_size bytes of @mem_block
* into it.
*
* Returns: (transfer full) (not nullable): a pointer to the allocated
* memory
*
* Since: 2.58
*/
gpointer
(g_atomic_rc_box_dup) (gsize block_size,
gconstpointer mem_block)
{
gpointer res;
g_return_val_if_fail (block_size > 0, NULL);
g_return_val_if_fail (mem_block != NULL, NULL);
res = g_rc_box_alloc_full (block_size, STRUCT_ALIGNMENT, TRUE, FALSE);
memcpy (res, mem_block, block_size);
return res;
}
/**
* g_atomic_rc_box_acquire:
* @mem_block: (not nullable): a pointer to reference counted data
*
* Atomically acquires a reference on the data pointed by @mem_block.
*
* Returns: (transfer full) (not nullable): a pointer to the data,
* with its reference count increased
*
* Since: 2.58
*/
gpointer
(g_atomic_rc_box_acquire) (gpointer mem_block)
{
GArcBox *real_box = G_ARC_BOX (mem_block);
g_return_val_if_fail (mem_block != NULL, NULL);
#ifndef G_DISABLE_ASSERT
g_return_val_if_fail (real_box->magic == G_BOX_MAGIC, NULL);
#endif
g_atomic_ref_count_inc (&real_box->ref_count);
TRACE (GLIB_RCBOX_ACQUIRE (mem_block, 1));
return mem_block;
}
/**
* g_atomic_rc_box_release:
* @mem_block: (transfer full) (not nullable): a pointer to reference counted data
*
* Atomically releases a reference on the data pointed by @mem_block.
*
* If the reference was the last one, it will free the
* resources allocated for @mem_block.
*
* Since: 2.58
*/
void
g_atomic_rc_box_release (gpointer mem_block)
{
g_atomic_rc_box_release_full (mem_block, NULL);
}
/**
* g_atomic_rc_box_release_full:
* @mem_block: (transfer full) (not nullable): a pointer to reference counted data
* @clear_func: (not nullable): a function to call when clearing the data
*
* Atomically releases a reference on the data pointed by @mem_block.
*
* If the reference was the last one, it will call @clear_func
* to clear the contents of @mem_block, and then will free the
* resources allocated for @mem_block.
*
* Since: 2.58
*/
void
g_atomic_rc_box_release_full (gpointer mem_block,
GDestroyNotify clear_func)
{
GArcBox *real_box = G_ARC_BOX (mem_block);
g_return_if_fail (mem_block != NULL);
#ifndef G_DISABLE_ASSERT
g_return_if_fail (real_box->magic == G_BOX_MAGIC);
#endif
if (g_atomic_ref_count_dec (&real_box->ref_count))
{
char *real_mem = (char *) real_box - real_box->private_offset;
TRACE (GLIB_RCBOX_RELEASE (mem_block, 1));
if (clear_func != NULL)
clear_func (mem_block);
TRACE (GLIB_RCBOX_FREE (mem_block));
g_free (real_mem);
}
}
/**
* g_atomic_rc_box_get_size:
* @mem_block: (not nullable): a pointer to reference counted data
*
* Retrieves the size of the reference counted data pointed by @mem_block.
*
* Returns: the size of the data, in bytes
*
* Since: 2.58
*/
gsize
g_atomic_rc_box_get_size (gpointer mem_block)
{
GArcBox *real_box = G_ARC_BOX (mem_block);
g_return_val_if_fail (mem_block != NULL, 0);
#ifndef G_DISABLE_ASSERT
g_return_val_if_fail (real_box->magic == G_BOX_MAGIC, 0);
#endif
return real_box->mem_size;
}