mirror of
https://gitlab.gnome.org/GNOME/glib.git
synced 2024-10-31 11:36:18 +01:00
3046 lines
103 KiB
C
3046 lines
103 KiB
C
/* gspawn.c - Process launching
|
||
*
|
||
* Copyright 2000 Red Hat, Inc.
|
||
* g_execvpe implementation based on GNU libc execvp:
|
||
* Copyright 1991, 92, 95, 96, 97, 98, 99 Free Software Foundation, Inc.
|
||
*
|
||
* SPDX-License-Identifier: LGPL-2.1-or-later
|
||
*
|
||
* This library is free software; you can redistribute it and/or
|
||
* modify it under the terms of the GNU Lesser General Public
|
||
* License as published by the Free Software Foundation; either
|
||
* version 2.1 of the License, or (at your option) any later version.
|
||
*
|
||
* This library is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
* Lesser General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU Lesser General Public License
|
||
* along with this library; if not, see <http://www.gnu.org/licenses/>.
|
||
*/
|
||
|
||
#include "config.h"
|
||
|
||
#include <sys/time.h>
|
||
#include <sys/types.h>
|
||
#include <sys/wait.h>
|
||
#include <unistd.h>
|
||
#include <errno.h>
|
||
#include <fcntl.h>
|
||
#include <signal.h>
|
||
#include <string.h>
|
||
#include <stdlib.h> /* for fdwalk */
|
||
#include <dirent.h>
|
||
#include <unistd.h>
|
||
|
||
#ifdef HAVE_SPAWN_H
|
||
#include <spawn.h>
|
||
#endif /* HAVE_SPAWN_H */
|
||
|
||
#ifdef HAVE_CRT_EXTERNS_H
|
||
#include <crt_externs.h> /* for _NSGetEnviron */
|
||
#endif
|
||
|
||
#ifdef HAVE_SYS_SELECT_H
|
||
#include <sys/select.h>
|
||
#endif /* HAVE_SYS_SELECT_H */
|
||
|
||
#ifdef HAVE_SYS_RESOURCE_H
|
||
#include <sys/resource.h>
|
||
#endif /* HAVE_SYS_RESOURCE_H */
|
||
|
||
#if defined(__linux__) || defined(__DragonFly__)
|
||
#include <sys/syscall.h> /* for syscall and SYS_getdents64 */
|
||
#endif
|
||
|
||
#include "gspawn.h"
|
||
#include "gspawn-private.h"
|
||
#include "gthread.h"
|
||
#include "gtrace-private.h"
|
||
#include "glib/gstdio.h"
|
||
|
||
#include "genviron.h"
|
||
#include "gmem.h"
|
||
#include "gshell.h"
|
||
#include "gstring.h"
|
||
#include "gstrfuncs.h"
|
||
#include "gtestutils.h"
|
||
#include "gutils.h"
|
||
#include "glibintl.h"
|
||
#include "glib-unix.h"
|
||
|
||
#ifdef __APPLE__
|
||
#include <libproc.h>
|
||
#include <sys/proc_info.h>
|
||
#endif
|
||
|
||
#define INHERITS_OR_NULL_STDIN (G_SPAWN_STDIN_FROM_DEV_NULL | G_SPAWN_CHILD_INHERITS_STDIN)
|
||
#define INHERITS_OR_NULL_STDOUT (G_SPAWN_STDOUT_TO_DEV_NULL | G_SPAWN_CHILD_INHERITS_STDOUT)
|
||
#define INHERITS_OR_NULL_STDERR (G_SPAWN_STDERR_TO_DEV_NULL | G_SPAWN_CHILD_INHERITS_STDERR)
|
||
|
||
#define IS_STD_FILENO(_fd) ((_fd >= STDIN_FILENO) && (_fd <= STDERR_FILENO))
|
||
#define IS_VALID_FILENO(_fd) (_fd >= 0)
|
||
|
||
/* posix_spawn() is assumed the fastest way to spawn, but glibc's
|
||
* implementation was buggy before glibc 2.24, so avoid it on old versions.
|
||
*/
|
||
#ifdef HAVE_POSIX_SPAWN
|
||
#ifdef __GLIBC__
|
||
|
||
#if __GLIBC_PREREQ(2,24)
|
||
#define POSIX_SPAWN_AVAILABLE
|
||
#endif
|
||
|
||
#else /* !__GLIBC__ */
|
||
/* Assume that all non-glibc posix_spawn implementations are fine. */
|
||
#define POSIX_SPAWN_AVAILABLE
|
||
#endif /* __GLIBC__ */
|
||
#endif /* HAVE_POSIX_SPAWN */
|
||
|
||
#ifdef HAVE__NSGETENVIRON
|
||
#define environ (*_NSGetEnviron())
|
||
#else
|
||
extern char **environ;
|
||
#endif
|
||
|
||
#ifndef O_CLOEXEC
|
||
#define O_CLOEXEC 0
|
||
#else
|
||
#define HAVE_O_CLOEXEC 1
|
||
#endif
|
||
|
||
/**
|
||
* SECTION:spawn
|
||
* @Short_description: process launching
|
||
* @Title: Spawning Processes
|
||
*
|
||
* GLib supports spawning of processes with an API that is more
|
||
* convenient than the bare UNIX fork() and exec().
|
||
*
|
||
* The g_spawn family of functions has synchronous (g_spawn_sync())
|
||
* and asynchronous variants (g_spawn_async(), g_spawn_async_with_pipes()),
|
||
* as well as convenience variants that take a complete shell-like
|
||
* commandline (g_spawn_command_line_sync(), g_spawn_command_line_async()).
|
||
*
|
||
* See #GSubprocess in GIO for a higher-level API that provides
|
||
* stream interfaces for communication with child processes.
|
||
*
|
||
* An example of using g_spawn_async_with_pipes():
|
||
* |[<!-- language="C" -->
|
||
* const gchar * const argv[] = { "my-favourite-program", "--args", NULL };
|
||
* gint child_stdout, child_stderr;
|
||
* GPid child_pid;
|
||
* g_autoptr(GError) error = NULL;
|
||
*
|
||
* // Spawn child process.
|
||
* g_spawn_async_with_pipes (NULL, argv, NULL, G_SPAWN_DO_NOT_REAP_CHILD, NULL,
|
||
* NULL, &child_pid, NULL, &child_stdout,
|
||
* &child_stderr, &error);
|
||
* if (error != NULL)
|
||
* {
|
||
* g_error ("Spawning child failed: %s", error->message);
|
||
* return;
|
||
* }
|
||
*
|
||
* // Add a child watch function which will be called when the child process
|
||
* // exits.
|
||
* g_child_watch_add (child_pid, child_watch_cb, NULL);
|
||
*
|
||
* // You could watch for output on @child_stdout and @child_stderr using
|
||
* // #GUnixInputStream or #GIOChannel here.
|
||
*
|
||
* static void
|
||
* child_watch_cb (GPid pid,
|
||
* gint status,
|
||
* gpointer user_data)
|
||
* {
|
||
* g_message ("Child %" G_PID_FORMAT " exited %s", pid,
|
||
* g_spawn_check_wait_status (status, NULL) ? "normally" : "abnormally");
|
||
*
|
||
* // Free any resources associated with the child here, such as I/O channels
|
||
* // on its stdout and stderr FDs. If you have no code to put in the
|
||
* // child_watch_cb() callback, you can remove it and the g_child_watch_add()
|
||
* // call, but you must also remove the G_SPAWN_DO_NOT_REAP_CHILD flag,
|
||
* // otherwise the child process will stay around as a zombie until this
|
||
* // process exits.
|
||
*
|
||
* g_spawn_close_pid (pid);
|
||
* }
|
||
* ]|
|
||
*/
|
||
|
||
|
||
static gint g_execute (const gchar *file,
|
||
gchar **argv,
|
||
gchar **argv_buffer,
|
||
gsize argv_buffer_len,
|
||
gchar **envp,
|
||
const gchar *search_path,
|
||
gchar *search_path_buffer,
|
||
gsize search_path_buffer_len);
|
||
|
||
static gboolean fork_exec (gboolean intermediate_child,
|
||
const gchar *working_directory,
|
||
const gchar * const *argv,
|
||
const gchar * const *envp,
|
||
gboolean close_descriptors,
|
||
gboolean search_path,
|
||
gboolean search_path_from_envp,
|
||
gboolean stdout_to_null,
|
||
gboolean stderr_to_null,
|
||
gboolean child_inherits_stdin,
|
||
gboolean file_and_argv_zero,
|
||
gboolean cloexec_pipes,
|
||
GSpawnChildSetupFunc child_setup,
|
||
gpointer user_data,
|
||
GPid *child_pid,
|
||
gint *stdin_pipe_out,
|
||
gint *stdout_pipe_out,
|
||
gint *stderr_pipe_out,
|
||
gint stdin_fd,
|
||
gint stdout_fd,
|
||
gint stderr_fd,
|
||
const gint *source_fds,
|
||
const gint *target_fds,
|
||
gsize n_fds,
|
||
GError **error);
|
||
|
||
G_DEFINE_QUARK (g-exec-error-quark, g_spawn_error)
|
||
G_DEFINE_QUARK (g-spawn-exit-error-quark, g_spawn_exit_error)
|
||
|
||
/**
|
||
* g_spawn_async:
|
||
* @working_directory: (type filename) (nullable): child's current working
|
||
* directory, or %NULL to inherit parent's
|
||
* @argv: (array zero-terminated=1) (element-type filename):
|
||
* child's argument vector
|
||
* @envp: (array zero-terminated=1) (element-type filename) (nullable):
|
||
* child's environment, or %NULL to inherit parent's
|
||
* @flags: flags from #GSpawnFlags
|
||
* @child_setup: (scope async) (nullable): function to run in the child just before exec()
|
||
* @user_data: (closure): user data for @child_setup
|
||
* @child_pid: (out) (optional): return location for child process reference, or %NULL
|
||
* @error: return location for error
|
||
*
|
||
* Executes a child program asynchronously.
|
||
*
|
||
* See g_spawn_async_with_pipes() for a full description; this function
|
||
* simply calls the g_spawn_async_with_pipes() without any pipes.
|
||
*
|
||
* You should call g_spawn_close_pid() on the returned child process
|
||
* reference when you don't need it any more.
|
||
*
|
||
* If you are writing a GTK application, and the program you are spawning is a
|
||
* graphical application too, then to ensure that the spawned program opens its
|
||
* windows on the right screen, you may want to use #GdkAppLaunchContext,
|
||
* #GAppLaunchContext, or set the %DISPLAY environment variable.
|
||
*
|
||
* Note that the returned @child_pid on Windows is a handle to the child
|
||
* process and not its identifier. Process handles and process identifiers
|
||
* are different concepts on Windows.
|
||
*
|
||
* Returns: %TRUE on success, %FALSE if error is set
|
||
**/
|
||
gboolean
|
||
g_spawn_async (const gchar *working_directory,
|
||
gchar **argv,
|
||
gchar **envp,
|
||
GSpawnFlags flags,
|
||
GSpawnChildSetupFunc child_setup,
|
||
gpointer user_data,
|
||
GPid *child_pid,
|
||
GError **error)
|
||
{
|
||
return g_spawn_async_with_pipes (working_directory,
|
||
argv, envp,
|
||
flags,
|
||
child_setup,
|
||
user_data,
|
||
child_pid,
|
||
NULL, NULL, NULL,
|
||
error);
|
||
}
|
||
|
||
/* Avoids a danger in threaded situations (calling close()
|
||
* on a file descriptor twice, and another thread has
|
||
* re-opened it since the first close)
|
||
*
|
||
* This function is called between fork() and exec() and hence must be
|
||
* async-signal-safe (see signal-safety(7)).
|
||
*/
|
||
static void
|
||
close_and_invalidate (gint *fd)
|
||
{
|
||
if (*fd < 0)
|
||
return;
|
||
|
||
g_close (*fd, NULL);
|
||
*fd = -1;
|
||
}
|
||
|
||
/* Some versions of OS X define READ_OK in public headers */
|
||
#undef READ_OK
|
||
|
||
typedef enum
|
||
{
|
||
READ_FAILED = 0, /* FALSE */
|
||
READ_OK,
|
||
READ_EOF
|
||
} ReadResult;
|
||
|
||
static ReadResult
|
||
read_data (GString *str,
|
||
gint fd,
|
||
GError **error)
|
||
{
|
||
gssize bytes;
|
||
gchar buf[4096];
|
||
|
||
again:
|
||
bytes = read (fd, buf, 4096);
|
||
|
||
if (bytes == 0)
|
||
return READ_EOF;
|
||
else if (bytes > 0)
|
||
{
|
||
g_string_append_len (str, buf, bytes);
|
||
return READ_OK;
|
||
}
|
||
else if (errno == EINTR)
|
||
goto again;
|
||
else
|
||
{
|
||
int errsv = errno;
|
||
|
||
g_set_error (error,
|
||
G_SPAWN_ERROR,
|
||
G_SPAWN_ERROR_READ,
|
||
_("Failed to read data from child process (%s)"),
|
||
g_strerror (errsv));
|
||
|
||
return READ_FAILED;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* g_spawn_sync:
|
||
* @working_directory: (type filename) (nullable): child's current working
|
||
* directory, or %NULL to inherit parent's
|
||
* @argv: (array zero-terminated=1) (element-type filename):
|
||
* child's argument vector, which must be non-empty and %NULL-terminated
|
||
* @envp: (array zero-terminated=1) (element-type filename) (nullable):
|
||
* child's environment, or %NULL to inherit parent's
|
||
* @flags: flags from #GSpawnFlags
|
||
* @child_setup: (scope async) (nullable): function to run in the child just before exec()
|
||
* @user_data: (closure): user data for @child_setup
|
||
* @standard_output: (out) (array zero-terminated=1) (element-type guint8) (optional): return location for child output, or %NULL
|
||
* @standard_error: (out) (array zero-terminated=1) (element-type guint8) (optional): return location for child error messages, or %NULL
|
||
* @wait_status: (out) (optional): return location for child wait status, as returned by waitpid(), or %NULL
|
||
* @error: return location for error, or %NULL
|
||
*
|
||
* Executes a child synchronously (waits for the child to exit before returning).
|
||
*
|
||
* All output from the child is stored in @standard_output and @standard_error,
|
||
* if those parameters are non-%NULL. Note that you must set the
|
||
* %G_SPAWN_STDOUT_TO_DEV_NULL and %G_SPAWN_STDERR_TO_DEV_NULL flags when
|
||
* passing %NULL for @standard_output and @standard_error.
|
||
*
|
||
* If @wait_status is non-%NULL, the platform-specific status of
|
||
* the child is stored there; see the documentation of
|
||
* g_spawn_check_wait_status() for how to use and interpret this.
|
||
* On Unix platforms, note that it is usually not equal
|
||
* to the integer passed to `exit()` or returned from `main()`.
|
||
*
|
||
* Note that it is invalid to pass %G_SPAWN_DO_NOT_REAP_CHILD in
|
||
* @flags, and on POSIX platforms, the same restrictions as for
|
||
* g_child_watch_source_new() apply.
|
||
*
|
||
* If an error occurs, no data is returned in @standard_output,
|
||
* @standard_error, or @wait_status.
|
||
*
|
||
* This function calls g_spawn_async_with_pipes() internally; see that
|
||
* function for full details on the other parameters and details on
|
||
* how these functions work on Windows.
|
||
*
|
||
* Returns: %TRUE on success, %FALSE if an error was set
|
||
*/
|
||
gboolean
|
||
g_spawn_sync (const gchar *working_directory,
|
||
gchar **argv,
|
||
gchar **envp,
|
||
GSpawnFlags flags,
|
||
GSpawnChildSetupFunc child_setup,
|
||
gpointer user_data,
|
||
gchar **standard_output,
|
||
gchar **standard_error,
|
||
gint *wait_status,
|
||
GError **error)
|
||
{
|
||
gint outpipe = -1;
|
||
gint errpipe = -1;
|
||
GPid pid;
|
||
gint ret;
|
||
GString *outstr = NULL;
|
||
GString *errstr = NULL;
|
||
gboolean failed;
|
||
gint status;
|
||
|
||
g_return_val_if_fail (argv != NULL, FALSE);
|
||
g_return_val_if_fail (argv[0] != NULL, FALSE);
|
||
g_return_val_if_fail (!(flags & G_SPAWN_DO_NOT_REAP_CHILD), FALSE);
|
||
g_return_val_if_fail (standard_output == NULL ||
|
||
!(flags & G_SPAWN_STDOUT_TO_DEV_NULL), FALSE);
|
||
g_return_val_if_fail (standard_error == NULL ||
|
||
!(flags & G_SPAWN_STDERR_TO_DEV_NULL), FALSE);
|
||
|
||
/* Just to ensure segfaults if callers try to use
|
||
* these when an error is reported.
|
||
*/
|
||
if (standard_output)
|
||
*standard_output = NULL;
|
||
|
||
if (standard_error)
|
||
*standard_error = NULL;
|
||
|
||
if (!fork_exec (FALSE,
|
||
working_directory,
|
||
(const gchar * const *) argv,
|
||
(const gchar * const *) envp,
|
||
!(flags & G_SPAWN_LEAVE_DESCRIPTORS_OPEN),
|
||
(flags & G_SPAWN_SEARCH_PATH) != 0,
|
||
(flags & G_SPAWN_SEARCH_PATH_FROM_ENVP) != 0,
|
||
(flags & G_SPAWN_STDOUT_TO_DEV_NULL) != 0,
|
||
(flags & G_SPAWN_STDERR_TO_DEV_NULL) != 0,
|
||
(flags & G_SPAWN_CHILD_INHERITS_STDIN) != 0,
|
||
(flags & G_SPAWN_FILE_AND_ARGV_ZERO) != 0,
|
||
(flags & G_SPAWN_CLOEXEC_PIPES) != 0,
|
||
child_setup,
|
||
user_data,
|
||
&pid,
|
||
NULL,
|
||
standard_output ? &outpipe : NULL,
|
||
standard_error ? &errpipe : NULL,
|
||
-1, -1, -1,
|
||
NULL, NULL, 0,
|
||
error))
|
||
return FALSE;
|
||
|
||
/* Read data from child. */
|
||
|
||
failed = FALSE;
|
||
|
||
if (outpipe >= 0)
|
||
{
|
||
outstr = g_string_new (NULL);
|
||
}
|
||
|
||
if (errpipe >= 0)
|
||
{
|
||
errstr = g_string_new (NULL);
|
||
}
|
||
|
||
/* Read data until we get EOF on both pipes. */
|
||
while (!failed &&
|
||
(outpipe >= 0 ||
|
||
errpipe >= 0))
|
||
{
|
||
/* Any negative FD in the array is ignored, so we can use a fixed length.
|
||
* We can use UNIX FDs here without worrying about Windows HANDLEs because
|
||
* the Windows implementation is entirely in gspawn-win32.c. */
|
||
GPollFD fds[] =
|
||
{
|
||
{ outpipe, G_IO_IN | G_IO_HUP | G_IO_ERR, 0 },
|
||
{ errpipe, G_IO_IN | G_IO_HUP | G_IO_ERR, 0 },
|
||
};
|
||
|
||
ret = g_poll (fds, G_N_ELEMENTS (fds), -1 /* no timeout */);
|
||
|
||
if (ret < 0)
|
||
{
|
||
int errsv = errno;
|
||
|
||
if (errno == EINTR)
|
||
continue;
|
||
|
||
failed = TRUE;
|
||
|
||
g_set_error (error,
|
||
G_SPAWN_ERROR,
|
||
G_SPAWN_ERROR_READ,
|
||
_("Unexpected error in reading data from a child process (%s)"),
|
||
g_strerror (errsv));
|
||
|
||
break;
|
||
}
|
||
|
||
if (outpipe >= 0 && fds[0].revents != 0)
|
||
{
|
||
switch (read_data (outstr, outpipe, error))
|
||
{
|
||
case READ_FAILED:
|
||
failed = TRUE;
|
||
break;
|
||
case READ_EOF:
|
||
close_and_invalidate (&outpipe);
|
||
outpipe = -1;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (failed)
|
||
break;
|
||
}
|
||
|
||
if (errpipe >= 0 && fds[1].revents != 0)
|
||
{
|
||
switch (read_data (errstr, errpipe, error))
|
||
{
|
||
case READ_FAILED:
|
||
failed = TRUE;
|
||
break;
|
||
case READ_EOF:
|
||
close_and_invalidate (&errpipe);
|
||
errpipe = -1;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (failed)
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* These should only be open still if we had an error. */
|
||
|
||
if (outpipe >= 0)
|
||
close_and_invalidate (&outpipe);
|
||
if (errpipe >= 0)
|
||
close_and_invalidate (&errpipe);
|
||
|
||
/* Wait for child to exit, even if we have
|
||
* an error pending.
|
||
*/
|
||
again:
|
||
|
||
ret = waitpid (pid, &status, 0);
|
||
|
||
if (ret < 0)
|
||
{
|
||
if (errno == EINTR)
|
||
goto again;
|
||
else if (errno == ECHILD)
|
||
{
|
||
if (wait_status)
|
||
{
|
||
g_warning ("In call to g_spawn_sync(), wait status of a child process was requested but ECHILD was received by waitpid(). See the documentation of g_child_watch_source_new() for possible causes.");
|
||
}
|
||
else
|
||
{
|
||
/* We don't need the wait status. */
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (!failed) /* avoid error pileups */
|
||
{
|
||
int errsv = errno;
|
||
|
||
failed = TRUE;
|
||
|
||
g_set_error (error,
|
||
G_SPAWN_ERROR,
|
||
G_SPAWN_ERROR_READ,
|
||
_("Unexpected error in waitpid() (%s)"),
|
||
g_strerror (errsv));
|
||
}
|
||
}
|
||
}
|
||
|
||
if (failed)
|
||
{
|
||
if (outstr)
|
||
g_string_free (outstr, TRUE);
|
||
if (errstr)
|
||
g_string_free (errstr, TRUE);
|
||
|
||
return FALSE;
|
||
}
|
||
else
|
||
{
|
||
if (wait_status)
|
||
*wait_status = status;
|
||
|
||
if (standard_output)
|
||
*standard_output = g_string_free (outstr, FALSE);
|
||
|
||
if (standard_error)
|
||
*standard_error = g_string_free (errstr, FALSE);
|
||
|
||
return TRUE;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* g_spawn_async_with_pipes:
|
||
* @working_directory: (type filename) (nullable): child's current working
|
||
* directory, or %NULL to inherit parent's, in the GLib file name encoding
|
||
* @argv: (array zero-terminated=1) (element-type filename): child's argument
|
||
* vector, in the GLib file name encoding; it must be non-empty and %NULL-terminated
|
||
* @envp: (array zero-terminated=1) (element-type filename) (nullable):
|
||
* child's environment, or %NULL to inherit parent's, in the GLib file
|
||
* name encoding
|
||
* @flags: flags from #GSpawnFlags
|
||
* @child_setup: (scope async) (nullable): function to run in the child just before exec()
|
||
* @user_data: (closure): user data for @child_setup
|
||
* @child_pid: (out) (optional): return location for child process ID, or %NULL
|
||
* @standard_input: (out) (optional): return location for file descriptor to write to child's stdin, or %NULL
|
||
* @standard_output: (out) (optional): return location for file descriptor to read child's stdout, or %NULL
|
||
* @standard_error: (out) (optional): return location for file descriptor to read child's stderr, or %NULL
|
||
* @error: return location for error
|
||
*
|
||
* Identical to g_spawn_async_with_pipes_and_fds() but with `n_fds` set to zero,
|
||
* so no FD assignments are used.
|
||
*
|
||
* Returns: %TRUE on success, %FALSE if an error was set
|
||
*/
|
||
gboolean
|
||
g_spawn_async_with_pipes (const gchar *working_directory,
|
||
gchar **argv,
|
||
gchar **envp,
|
||
GSpawnFlags flags,
|
||
GSpawnChildSetupFunc child_setup,
|
||
gpointer user_data,
|
||
GPid *child_pid,
|
||
gint *standard_input,
|
||
gint *standard_output,
|
||
gint *standard_error,
|
||
GError **error)
|
||
{
|
||
return g_spawn_async_with_pipes_and_fds (working_directory,
|
||
(const gchar * const *) argv,
|
||
(const gchar * const *) envp,
|
||
flags,
|
||
child_setup, user_data,
|
||
-1, -1, -1,
|
||
NULL, NULL, 0,
|
||
child_pid,
|
||
standard_input,
|
||
standard_output,
|
||
standard_error,
|
||
error);
|
||
}
|
||
|
||
/**
|
||
* g_spawn_async_with_pipes_and_fds:
|
||
* @working_directory: (type filename) (nullable): child's current working
|
||
* directory, or %NULL to inherit parent's, in the GLib file name encoding
|
||
* @argv: (array zero-terminated=1) (element-type filename): child's argument
|
||
* vector, in the GLib file name encoding; it must be non-empty and %NULL-terminated
|
||
* @envp: (array zero-terminated=1) (element-type filename) (nullable):
|
||
* child's environment, or %NULL to inherit parent's, in the GLib file
|
||
* name encoding
|
||
* @flags: flags from #GSpawnFlags
|
||
* @child_setup: (scope async) (nullable): function to run in the child just before `exec()`
|
||
* @user_data: (closure): user data for @child_setup
|
||
* @stdin_fd: file descriptor to use for child's stdin, or `-1`
|
||
* @stdout_fd: file descriptor to use for child's stdout, or `-1`
|
||
* @stderr_fd: file descriptor to use for child's stderr, or `-1`
|
||
* @source_fds: (array length=n_fds) (nullable): array of FDs from the parent
|
||
* process to make available in the child process
|
||
* @target_fds: (array length=n_fds) (nullable): array of FDs to remap
|
||
* @source_fds to in the child process
|
||
* @n_fds: number of FDs in @source_fds and @target_fds
|
||
* @child_pid_out: (out) (optional): return location for child process ID, or %NULL
|
||
* @stdin_pipe_out: (out) (optional): return location for file descriptor to write to child's stdin, or %NULL
|
||
* @stdout_pipe_out: (out) (optional): return location for file descriptor to read child's stdout, or %NULL
|
||
* @stderr_pipe_out: (out) (optional): return location for file descriptor to read child's stderr, or %NULL
|
||
* @error: return location for error
|
||
*
|
||
* Executes a child program asynchronously (your program will not
|
||
* block waiting for the child to exit).
|
||
*
|
||
* The child program is specified by the only argument that must be
|
||
* provided, @argv. @argv should be a %NULL-terminated array of strings,
|
||
* to be passed as the argument vector for the child. The first string
|
||
* in @argv is of course the name of the program to execute. By default,
|
||
* the name of the program must be a full path. If @flags contains the
|
||
* %G_SPAWN_SEARCH_PATH flag, the `PATH` environment variable is used to
|
||
* search for the executable. If @flags contains the
|
||
* %G_SPAWN_SEARCH_PATH_FROM_ENVP flag, the `PATH` variable from @envp
|
||
* is used to search for the executable. If both the
|
||
* %G_SPAWN_SEARCH_PATH and %G_SPAWN_SEARCH_PATH_FROM_ENVP flags are
|
||
* set, the `PATH` variable from @envp takes precedence over the
|
||
* environment variable.
|
||
*
|
||
* If the program name is not a full path and %G_SPAWN_SEARCH_PATH flag
|
||
* is not used, then the program will be run from the current directory
|
||
* (or @working_directory, if specified); this might be unexpected or even
|
||
* dangerous in some cases when the current directory is world-writable.
|
||
*
|
||
* On Windows, note that all the string or string vector arguments to
|
||
* this function and the other `g_spawn*()` functions are in UTF-8, the
|
||
* GLib file name encoding. Unicode characters that are not part of
|
||
* the system codepage passed in these arguments will be correctly
|
||
* available in the spawned program only if it uses wide character API
|
||
* to retrieve its command line. For C programs built with Microsoft's
|
||
* tools it is enough to make the program have a `wmain()` instead of
|
||
* `main()`. `wmain()` has a wide character argument vector as parameter.
|
||
*
|
||
* At least currently, mingw doesn't support `wmain()`, so if you use
|
||
* mingw to develop the spawned program, it should call
|
||
* g_win32_get_command_line() to get arguments in UTF-8.
|
||
*
|
||
* On Windows the low-level child process creation API `CreateProcess()`
|
||
* doesn't use argument vectors, but a command line. The C runtime
|
||
* library's `spawn*()` family of functions (which g_spawn_async_with_pipes()
|
||
* eventually calls) paste the argument vector elements together into
|
||
* a command line, and the C runtime startup code does a corresponding
|
||
* reconstruction of an argument vector from the command line, to be
|
||
* passed to `main()`. Complications arise when you have argument vector
|
||
* elements that contain spaces or double quotes. The `spawn*()` functions
|
||
* don't do any quoting or escaping, but on the other hand the startup
|
||
* code does do unquoting and unescaping in order to enable receiving
|
||
* arguments with embedded spaces or double quotes. To work around this
|
||
* asymmetry, g_spawn_async_with_pipes() will do quoting and escaping on
|
||
* argument vector elements that need it before calling the C runtime
|
||
* `spawn()` function.
|
||
*
|
||
* The returned @child_pid on Windows is a handle to the child
|
||
* process, not its identifier. Process handles and process
|
||
* identifiers are different concepts on Windows.
|
||
*
|
||
* @envp is a %NULL-terminated array of strings, where each string
|
||
* has the form `KEY=VALUE`. This will become the child's environment.
|
||
* If @envp is %NULL, the child inherits its parent's environment.
|
||
*
|
||
* @flags should be the bitwise OR of any flags you want to affect the
|
||
* function's behaviour. The %G_SPAWN_DO_NOT_REAP_CHILD means that the
|
||
* child will not automatically be reaped; you must use a child watch
|
||
* (g_child_watch_add()) to be notified about the death of the child process,
|
||
* otherwise it will stay around as a zombie process until this process exits.
|
||
* Eventually you must call g_spawn_close_pid() on the @child_pid, in order to
|
||
* free resources which may be associated with the child process. (On Unix,
|
||
* using a child watch is equivalent to calling waitpid() or handling
|
||
* the `SIGCHLD` signal manually. On Windows, calling g_spawn_close_pid()
|
||
* is equivalent to calling `CloseHandle()` on the process handle returned
|
||
* in @child_pid). See g_child_watch_add().
|
||
*
|
||
* Open UNIX file descriptors marked as `FD_CLOEXEC` will be automatically
|
||
* closed in the child process. %G_SPAWN_LEAVE_DESCRIPTORS_OPEN means that
|
||
* other open file descriptors will be inherited by the child; otherwise all
|
||
* descriptors except stdin/stdout/stderr will be closed before calling `exec()`
|
||
* in the child. %G_SPAWN_SEARCH_PATH means that @argv[0] need not be an
|
||
* absolute path, it will be looked for in the `PATH` environment
|
||
* variable. %G_SPAWN_SEARCH_PATH_FROM_ENVP means need not be an
|
||
* absolute path, it will be looked for in the `PATH` variable from
|
||
* @envp. If both %G_SPAWN_SEARCH_PATH and %G_SPAWN_SEARCH_PATH_FROM_ENVP
|
||
* are used, the value from @envp takes precedence over the environment.
|
||
*
|
||
* %G_SPAWN_CHILD_INHERITS_STDIN means that the child will inherit the parent's
|
||
* standard input (by default, the child's standard input is attached to
|
||
* `/dev/null`). %G_SPAWN_STDIN_FROM_DEV_NULL explicitly imposes the default
|
||
* behavior. Both flags cannot be enabled at the same time and, in both cases,
|
||
* the @stdin_pipe_out argument is ignored.
|
||
*
|
||
* %G_SPAWN_STDOUT_TO_DEV_NULL means that the child's standard output
|
||
* will be discarded (by default, it goes to the same location as the parent's
|
||
* standard output). %G_SPAWN_CHILD_INHERITS_STDOUT explicitly imposes the
|
||
* default behavior. Both flags cannot be enabled at the same time and, in
|
||
* both cases, the @stdout_pipe_out argument is ignored.
|
||
*
|
||
* %G_SPAWN_STDERR_TO_DEV_NULL means that the child's standard error
|
||
* will be discarded (by default, it goes to the same location as the parent's
|
||
* standard error). %G_SPAWN_CHILD_INHERITS_STDERR explicitly imposes the
|
||
* default behavior. Both flags cannot be enabled at the same time and, in
|
||
* both cases, the @stderr_pipe_out argument is ignored.
|
||
*
|
||
* It is valid to pass the same FD in multiple parameters (e.g. you can pass
|
||
* a single FD for both @stdout_fd and @stderr_fd, and include it in
|
||
* @source_fds too).
|
||
*
|
||
* @source_fds and @target_fds allow zero or more FDs from this process to be
|
||
* remapped to different FDs in the spawned process. If @n_fds is greater than
|
||
* zero, @source_fds and @target_fds must both be non-%NULL and the same length.
|
||
* Each FD in @source_fds is remapped to the FD number at the same index in
|
||
* @target_fds. The source and target FD may be equal to simply propagate an FD
|
||
* to the spawned process. FD remappings are processed after standard FDs, so
|
||
* any target FDs which equal @stdin_fd, @stdout_fd or @stderr_fd will overwrite
|
||
* them in the spawned process.
|
||
*
|
||
* @source_fds is supported on Windows since 2.72.
|
||
*
|
||
* %G_SPAWN_FILE_AND_ARGV_ZERO means that the first element of @argv is
|
||
* the file to execute, while the remaining elements are the actual
|
||
* argument vector to pass to the file. Normally g_spawn_async_with_pipes()
|
||
* uses @argv[0] as the file to execute, and passes all of @argv to the child.
|
||
*
|
||
* @child_setup and @user_data are a function and user data. On POSIX
|
||
* platforms, the function is called in the child after GLib has
|
||
* performed all the setup it plans to perform (including creating
|
||
* pipes, closing file descriptors, etc.) but before calling `exec()`.
|
||
* That is, @child_setup is called just before calling `exec()` in the
|
||
* child. Obviously actions taken in this function will only affect
|
||
* the child, not the parent.
|
||
*
|
||
* On Windows, there is no separate `fork()` and `exec()` functionality.
|
||
* Child processes are created and run with a single API call,
|
||
* `CreateProcess()`. There is no sensible thing @child_setup
|
||
* could be used for on Windows so it is ignored and not called.
|
||
*
|
||
* If non-%NULL, @child_pid will on Unix be filled with the child's
|
||
* process ID. You can use the process ID to send signals to the child,
|
||
* or to use g_child_watch_add() (or `waitpid()`) if you specified the
|
||
* %G_SPAWN_DO_NOT_REAP_CHILD flag. On Windows, @child_pid will be
|
||
* filled with a handle to the child process only if you specified the
|
||
* %G_SPAWN_DO_NOT_REAP_CHILD flag. You can then access the child
|
||
* process using the Win32 API, for example wait for its termination
|
||
* with the `WaitFor*()` functions, or examine its exit code with
|
||
* `GetExitCodeProcess()`. You should close the handle with `CloseHandle()`
|
||
* or g_spawn_close_pid() when you no longer need it.
|
||
*
|
||
* If non-%NULL, the @stdin_pipe_out, @stdout_pipe_out, @stderr_pipe_out
|
||
* locations will be filled with file descriptors for writing to the child's
|
||
* standard input or reading from its standard output or standard error.
|
||
* The caller of g_spawn_async_with_pipes() must close these file descriptors
|
||
* when they are no longer in use. If these parameters are %NULL, the
|
||
* corresponding pipe won't be created.
|
||
*
|
||
* If @stdin_pipe_out is %NULL, the child's standard input is attached to
|
||
* `/dev/null` unless %G_SPAWN_CHILD_INHERITS_STDIN is set.
|
||
*
|
||
* If @stderr_pipe_out is NULL, the child's standard error goes to the same
|
||
* location as the parent's standard error unless %G_SPAWN_STDERR_TO_DEV_NULL
|
||
* is set.
|
||
*
|
||
* If @stdout_pipe_out is NULL, the child's standard output goes to the same
|
||
* location as the parent's standard output unless %G_SPAWN_STDOUT_TO_DEV_NULL
|
||
* is set.
|
||
*
|
||
* @error can be %NULL to ignore errors, or non-%NULL to report errors.
|
||
* If an error is set, the function returns %FALSE. Errors are reported
|
||
* even if they occur in the child (for example if the executable in
|
||
* `@argv[0]` is not found). Typically the `message` field of returned
|
||
* errors should be displayed to users. Possible errors are those from
|
||
* the %G_SPAWN_ERROR domain.
|
||
*
|
||
* If an error occurs, @child_pid, @stdin_pipe_out, @stdout_pipe_out,
|
||
* and @stderr_pipe_out will not be filled with valid values.
|
||
*
|
||
* If @child_pid is not %NULL and an error does not occur then the returned
|
||
* process reference must be closed using g_spawn_close_pid().
|
||
*
|
||
* On modern UNIX platforms, GLib can use an efficient process launching
|
||
* codepath driven internally by `posix_spawn()`. This has the advantage of
|
||
* avoiding the fork-time performance costs of cloning the parent process
|
||
* address space, and avoiding associated memory overcommit checks that are
|
||
* not relevant in the context of immediately executing a distinct process.
|
||
* This optimized codepath will be used provided that the following conditions
|
||
* are met:
|
||
*
|
||
* 1. %G_SPAWN_DO_NOT_REAP_CHILD is set
|
||
* 2. %G_SPAWN_LEAVE_DESCRIPTORS_OPEN is set
|
||
* 3. %G_SPAWN_SEARCH_PATH_FROM_ENVP is not set
|
||
* 4. @working_directory is %NULL
|
||
* 5. @child_setup is %NULL
|
||
* 6. The program is of a recognised binary format, or has a shebang.
|
||
* Otherwise, GLib will have to execute the program through the
|
||
* shell, which is not done using the optimized codepath.
|
||
*
|
||
* If you are writing a GTK application, and the program you are spawning is a
|
||
* graphical application too, then to ensure that the spawned program opens its
|
||
* windows on the right screen, you may want to use #GdkAppLaunchContext,
|
||
* #GAppLaunchContext, or set the `DISPLAY` environment variable.
|
||
*
|
||
* Returns: %TRUE on success, %FALSE if an error was set
|
||
*
|
||
* Since: 2.68
|
||
*/
|
||
gboolean
|
||
g_spawn_async_with_pipes_and_fds (const gchar *working_directory,
|
||
const gchar * const *argv,
|
||
const gchar * const *envp,
|
||
GSpawnFlags flags,
|
||
GSpawnChildSetupFunc child_setup,
|
||
gpointer user_data,
|
||
gint stdin_fd,
|
||
gint stdout_fd,
|
||
gint stderr_fd,
|
||
const gint *source_fds,
|
||
const gint *target_fds,
|
||
gsize n_fds,
|
||
GPid *child_pid_out,
|
||
gint *stdin_pipe_out,
|
||
gint *stdout_pipe_out,
|
||
gint *stderr_pipe_out,
|
||
GError **error)
|
||
{
|
||
g_return_val_if_fail (argv != NULL, FALSE);
|
||
g_return_val_if_fail (argv[0] != NULL, FALSE);
|
||
/* can’t both inherit and set pipes to /dev/null */
|
||
g_return_val_if_fail ((flags & INHERITS_OR_NULL_STDIN) != INHERITS_OR_NULL_STDIN, FALSE);
|
||
g_return_val_if_fail ((flags & INHERITS_OR_NULL_STDOUT) != INHERITS_OR_NULL_STDOUT, FALSE);
|
||
g_return_val_if_fail ((flags & INHERITS_OR_NULL_STDERR) != INHERITS_OR_NULL_STDERR, FALSE);
|
||
/* can’t use pipes and stdin/stdout/stderr FDs */
|
||
g_return_val_if_fail (stdin_pipe_out == NULL || stdin_fd < 0, FALSE);
|
||
g_return_val_if_fail (stdout_pipe_out == NULL || stdout_fd < 0, FALSE);
|
||
g_return_val_if_fail (stderr_pipe_out == NULL || stderr_fd < 0, FALSE);
|
||
|
||
if ((flags & INHERITS_OR_NULL_STDIN) != 0)
|
||
stdin_pipe_out = NULL;
|
||
if ((flags & INHERITS_OR_NULL_STDOUT) != 0)
|
||
stdout_pipe_out = NULL;
|
||
if ((flags & INHERITS_OR_NULL_STDERR) != 0)
|
||
stderr_pipe_out = NULL;
|
||
|
||
return fork_exec (!(flags & G_SPAWN_DO_NOT_REAP_CHILD),
|
||
working_directory,
|
||
(const gchar * const *) argv,
|
||
(const gchar * const *) envp,
|
||
!(flags & G_SPAWN_LEAVE_DESCRIPTORS_OPEN),
|
||
(flags & G_SPAWN_SEARCH_PATH) != 0,
|
||
(flags & G_SPAWN_SEARCH_PATH_FROM_ENVP) != 0,
|
||
(flags & G_SPAWN_STDOUT_TO_DEV_NULL) != 0,
|
||
(flags & G_SPAWN_STDERR_TO_DEV_NULL) != 0,
|
||
(flags & G_SPAWN_CHILD_INHERITS_STDIN) != 0,
|
||
(flags & G_SPAWN_FILE_AND_ARGV_ZERO) != 0,
|
||
(flags & G_SPAWN_CLOEXEC_PIPES) != 0,
|
||
child_setup,
|
||
user_data,
|
||
child_pid_out,
|
||
stdin_pipe_out,
|
||
stdout_pipe_out,
|
||
stderr_pipe_out,
|
||
stdin_fd,
|
||
stdout_fd,
|
||
stderr_fd,
|
||
source_fds,
|
||
target_fds,
|
||
n_fds,
|
||
error);
|
||
}
|
||
|
||
/**
|
||
* g_spawn_async_with_fds:
|
||
* @working_directory: (type filename) (nullable): child's current working directory, or %NULL to inherit parent's, in the GLib file name encoding
|
||
* @argv: (array zero-terminated=1): child's argument vector, in the GLib file name encoding;
|
||
* it must be non-empty and %NULL-terminated
|
||
* @envp: (array zero-terminated=1) (nullable): child's environment, or %NULL to inherit parent's, in the GLib file name encoding
|
||
* @flags: flags from #GSpawnFlags
|
||
* @child_setup: (scope async) (nullable): function to run in the child just before exec()
|
||
* @user_data: (closure): user data for @child_setup
|
||
* @child_pid: (out) (optional): return location for child process ID, or %NULL
|
||
* @stdin_fd: file descriptor to use for child's stdin, or `-1`
|
||
* @stdout_fd: file descriptor to use for child's stdout, or `-1`
|
||
* @stderr_fd: file descriptor to use for child's stderr, or `-1`
|
||
* @error: return location for error
|
||
*
|
||
* Executes a child program asynchronously.
|
||
*
|
||
* Identical to g_spawn_async_with_pipes_and_fds() but with `n_fds` set to zero,
|
||
* so no FD assignments are used.
|
||
*
|
||
* Returns: %TRUE on success, %FALSE if an error was set
|
||
*
|
||
* Since: 2.58
|
||
*/
|
||
gboolean
|
||
g_spawn_async_with_fds (const gchar *working_directory,
|
||
gchar **argv,
|
||
gchar **envp,
|
||
GSpawnFlags flags,
|
||
GSpawnChildSetupFunc child_setup,
|
||
gpointer user_data,
|
||
GPid *child_pid,
|
||
gint stdin_fd,
|
||
gint stdout_fd,
|
||
gint stderr_fd,
|
||
GError **error)
|
||
{
|
||
g_return_val_if_fail (argv != NULL, FALSE);
|
||
g_return_val_if_fail (argv[0] != NULL, FALSE);
|
||
g_return_val_if_fail (stdout_fd < 0 ||
|
||
!(flags & G_SPAWN_STDOUT_TO_DEV_NULL), FALSE);
|
||
g_return_val_if_fail (stderr_fd < 0 ||
|
||
!(flags & G_SPAWN_STDERR_TO_DEV_NULL), FALSE);
|
||
/* can't inherit stdin if we have an input pipe. */
|
||
g_return_val_if_fail (stdin_fd < 0 ||
|
||
!(flags & G_SPAWN_CHILD_INHERITS_STDIN), FALSE);
|
||
|
||
return fork_exec (!(flags & G_SPAWN_DO_NOT_REAP_CHILD),
|
||
working_directory,
|
||
(const gchar * const *) argv,
|
||
(const gchar * const *) envp,
|
||
!(flags & G_SPAWN_LEAVE_DESCRIPTORS_OPEN),
|
||
(flags & G_SPAWN_SEARCH_PATH) != 0,
|
||
(flags & G_SPAWN_SEARCH_PATH_FROM_ENVP) != 0,
|
||
(flags & G_SPAWN_STDOUT_TO_DEV_NULL) != 0,
|
||
(flags & G_SPAWN_STDERR_TO_DEV_NULL) != 0,
|
||
(flags & G_SPAWN_CHILD_INHERITS_STDIN) != 0,
|
||
(flags & G_SPAWN_FILE_AND_ARGV_ZERO) != 0,
|
||
(flags & G_SPAWN_CLOEXEC_PIPES) != 0,
|
||
child_setup,
|
||
user_data,
|
||
child_pid,
|
||
NULL, NULL, NULL,
|
||
stdin_fd,
|
||
stdout_fd,
|
||
stderr_fd,
|
||
NULL, NULL, 0,
|
||
error);
|
||
}
|
||
|
||
/**
|
||
* g_spawn_command_line_sync:
|
||
* @command_line: (type filename): a command line
|
||
* @standard_output: (out) (array zero-terminated=1) (element-type guint8) (optional): return location for child output
|
||
* @standard_error: (out) (array zero-terminated=1) (element-type guint8) (optional): return location for child errors
|
||
* @wait_status: (out) (optional): return location for child wait status, as returned by waitpid()
|
||
* @error: return location for errors
|
||
*
|
||
* A simple version of g_spawn_sync() with little-used parameters
|
||
* removed, taking a command line instead of an argument vector.
|
||
*
|
||
* See g_spawn_sync() for full details.
|
||
*
|
||
* The @command_line argument will be parsed by g_shell_parse_argv().
|
||
*
|
||
* Unlike g_spawn_sync(), the %G_SPAWN_SEARCH_PATH flag is enabled.
|
||
* Note that %G_SPAWN_SEARCH_PATH can have security implications, so
|
||
* consider using g_spawn_sync() directly if appropriate.
|
||
*
|
||
* Possible errors are those from g_spawn_sync() and those
|
||
* from g_shell_parse_argv().
|
||
*
|
||
* If @wait_status is non-%NULL, the platform-specific status of
|
||
* the child is stored there; see the documentation of
|
||
* g_spawn_check_wait_status() for how to use and interpret this.
|
||
* On Unix platforms, note that it is usually not equal
|
||
* to the integer passed to `exit()` or returned from `main()`.
|
||
*
|
||
* On Windows, please note the implications of g_shell_parse_argv()
|
||
* parsing @command_line. Parsing is done according to Unix shell rules, not
|
||
* Windows command interpreter rules.
|
||
* Space is a separator, and backslashes are
|
||
* special. Thus you cannot simply pass a @command_line containing
|
||
* canonical Windows paths, like "c:\\program files\\app\\app.exe", as
|
||
* the backslashes will be eaten, and the space will act as a
|
||
* separator. You need to enclose such paths with single quotes, like
|
||
* "'c:\\program files\\app\\app.exe' 'e:\\folder\\argument.txt'".
|
||
*
|
||
* Returns: %TRUE on success, %FALSE if an error was set
|
||
**/
|
||
gboolean
|
||
g_spawn_command_line_sync (const gchar *command_line,
|
||
gchar **standard_output,
|
||
gchar **standard_error,
|
||
gint *wait_status,
|
||
GError **error)
|
||
{
|
||
gboolean retval;
|
||
gchar **argv = NULL;
|
||
|
||
g_return_val_if_fail (command_line != NULL, FALSE);
|
||
|
||
/* This will return a runtime error if @command_line is the empty string. */
|
||
if (!g_shell_parse_argv (command_line,
|
||
NULL, &argv,
|
||
error))
|
||
return FALSE;
|
||
|
||
retval = g_spawn_sync (NULL,
|
||
argv,
|
||
NULL,
|
||
G_SPAWN_SEARCH_PATH,
|
||
NULL,
|
||
NULL,
|
||
standard_output,
|
||
standard_error,
|
||
wait_status,
|
||
error);
|
||
g_strfreev (argv);
|
||
|
||
return retval;
|
||
}
|
||
|
||
/**
|
||
* g_spawn_command_line_async:
|
||
* @command_line: (type filename): a command line
|
||
* @error: return location for errors
|
||
*
|
||
* A simple version of g_spawn_async() that parses a command line with
|
||
* g_shell_parse_argv() and passes it to g_spawn_async().
|
||
*
|
||
* Runs a command line in the background. Unlike g_spawn_async(), the
|
||
* %G_SPAWN_SEARCH_PATH flag is enabled, other flags are not. Note
|
||
* that %G_SPAWN_SEARCH_PATH can have security implications, so
|
||
* consider using g_spawn_async() directly if appropriate. Possible
|
||
* errors are those from g_shell_parse_argv() and g_spawn_async().
|
||
*
|
||
* The same concerns on Windows apply as for g_spawn_command_line_sync().
|
||
*
|
||
* Returns: %TRUE on success, %FALSE if error is set
|
||
**/
|
||
gboolean
|
||
g_spawn_command_line_async (const gchar *command_line,
|
||
GError **error)
|
||
{
|
||
gboolean retval;
|
||
gchar **argv = NULL;
|
||
|
||
g_return_val_if_fail (command_line != NULL, FALSE);
|
||
|
||
/* This will return a runtime error if @command_line is the empty string. */
|
||
if (!g_shell_parse_argv (command_line,
|
||
NULL, &argv,
|
||
error))
|
||
return FALSE;
|
||
|
||
retval = g_spawn_async (NULL,
|
||
argv,
|
||
NULL,
|
||
G_SPAWN_SEARCH_PATH,
|
||
NULL,
|
||
NULL,
|
||
NULL,
|
||
error);
|
||
g_strfreev (argv);
|
||
|
||
return retval;
|
||
}
|
||
|
||
/**
|
||
* g_spawn_check_wait_status:
|
||
* @wait_status: A platform-specific wait status as returned from g_spawn_sync()
|
||
* @error: a #GError
|
||
*
|
||
* Set @error if @wait_status indicates the child exited abnormally
|
||
* (e.g. with a nonzero exit code, or via a fatal signal).
|
||
*
|
||
* The g_spawn_sync() and g_child_watch_add() family of APIs return the
|
||
* status of subprocesses encoded in a platform-specific way.
|
||
* On Unix, this is guaranteed to be in the same format waitpid() returns,
|
||
* and on Windows it is guaranteed to be the result of GetExitCodeProcess().
|
||
*
|
||
* Prior to the introduction of this function in GLib 2.34, interpreting
|
||
* @wait_status required use of platform-specific APIs, which is problematic
|
||
* for software using GLib as a cross-platform layer.
|
||
*
|
||
* Additionally, many programs simply want to determine whether or not
|
||
* the child exited successfully, and either propagate a #GError or
|
||
* print a message to standard error. In that common case, this function
|
||
* can be used. Note that the error message in @error will contain
|
||
* human-readable information about the wait status.
|
||
*
|
||
* The @domain and @code of @error have special semantics in the case
|
||
* where the process has an "exit code", as opposed to being killed by
|
||
* a signal. On Unix, this happens if WIFEXITED() would be true of
|
||
* @wait_status. On Windows, it is always the case.
|
||
*
|
||
* The special semantics are that the actual exit code will be the
|
||
* code set in @error, and the domain will be %G_SPAWN_EXIT_ERROR.
|
||
* This allows you to differentiate between different exit codes.
|
||
*
|
||
* If the process was terminated by some means other than an exit
|
||
* status (for example if it was killed by a signal), the domain will be
|
||
* %G_SPAWN_ERROR and the code will be %G_SPAWN_ERROR_FAILED.
|
||
*
|
||
* This function just offers convenience; you can of course also check
|
||
* the available platform via a macro such as %G_OS_UNIX, and use
|
||
* WIFEXITED() and WEXITSTATUS() on @wait_status directly. Do not attempt
|
||
* to scan or parse the error message string; it may be translated and/or
|
||
* change in future versions of GLib.
|
||
*
|
||
* Prior to version 2.70, g_spawn_check_exit_status() provides the same
|
||
* functionality, although under a misleading name.
|
||
*
|
||
* Returns: %TRUE if child exited successfully, %FALSE otherwise (and
|
||
* @error will be set)
|
||
*
|
||
* Since: 2.70
|
||
*/
|
||
gboolean
|
||
g_spawn_check_wait_status (gint wait_status,
|
||
GError **error)
|
||
{
|
||
gboolean ret = FALSE;
|
||
|
||
if (WIFEXITED (wait_status))
|
||
{
|
||
if (WEXITSTATUS (wait_status) != 0)
|
||
{
|
||
g_set_error (error, G_SPAWN_EXIT_ERROR, WEXITSTATUS (wait_status),
|
||
_("Child process exited with code %ld"),
|
||
(long) WEXITSTATUS (wait_status));
|
||
goto out;
|
||
}
|
||
}
|
||
else if (WIFSIGNALED (wait_status))
|
||
{
|
||
g_set_error (error, G_SPAWN_ERROR, G_SPAWN_ERROR_FAILED,
|
||
_("Child process killed by signal %ld"),
|
||
(long) WTERMSIG (wait_status));
|
||
goto out;
|
||
}
|
||
else if (WIFSTOPPED (wait_status))
|
||
{
|
||
g_set_error (error, G_SPAWN_ERROR, G_SPAWN_ERROR_FAILED,
|
||
_("Child process stopped by signal %ld"),
|
||
(long) WSTOPSIG (wait_status));
|
||
goto out;
|
||
}
|
||
else
|
||
{
|
||
g_set_error (error, G_SPAWN_ERROR, G_SPAWN_ERROR_FAILED,
|
||
_("Child process exited abnormally"));
|
||
goto out;
|
||
}
|
||
|
||
ret = TRUE;
|
||
out:
|
||
return ret;
|
||
}
|
||
|
||
/**
|
||
* g_spawn_check_exit_status:
|
||
* @wait_status: A status as returned from g_spawn_sync()
|
||
* @error: a #GError
|
||
*
|
||
* An old name for g_spawn_check_wait_status(), deprecated because its
|
||
* name is misleading.
|
||
*
|
||
* Despite the name of the function, @wait_status must be the wait status
|
||
* as returned by g_spawn_sync(), g_subprocess_get_status(), `waitpid()`,
|
||
* etc. On Unix platforms, it is incorrect for it to be the exit status
|
||
* as passed to `exit()` or returned by g_subprocess_get_exit_status() or
|
||
* `WEXITSTATUS()`.
|
||
*
|
||
* Returns: %TRUE if child exited successfully, %FALSE otherwise (and
|
||
* @error will be set)
|
||
*
|
||
* Since: 2.34
|
||
*
|
||
* Deprecated: 2.70: Use g_spawn_check_wait_status() instead, and check whether your code is conflating wait and exit statuses.
|
||
*/
|
||
gboolean
|
||
g_spawn_check_exit_status (gint wait_status,
|
||
GError **error)
|
||
{
|
||
return g_spawn_check_wait_status (wait_status, error);
|
||
}
|
||
|
||
/* This function is called between fork() and exec() and hence must be
|
||
* async-signal-safe (see signal-safety(7)). */
|
||
static gssize
|
||
write_all (gint fd, gconstpointer vbuf, gsize to_write)
|
||
{
|
||
gchar *buf = (gchar *) vbuf;
|
||
|
||
while (to_write > 0)
|
||
{
|
||
gssize count = write (fd, buf, to_write);
|
||
if (count < 0)
|
||
{
|
||
if (errno != EINTR)
|
||
return FALSE;
|
||
}
|
||
else
|
||
{
|
||
to_write -= count;
|
||
buf += count;
|
||
}
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* This function is called between fork() and exec() and hence must be
|
||
* async-signal-safe (see signal-safety(7)). */
|
||
G_NORETURN
|
||
static void
|
||
write_err_and_exit (gint fd, gint msg)
|
||
{
|
||
gint en = errno;
|
||
|
||
write_all (fd, &msg, sizeof(msg));
|
||
write_all (fd, &en, sizeof(en));
|
||
|
||
_exit (1);
|
||
}
|
||
|
||
/* This function is called between fork() and exec() and hence must be
|
||
* async-signal-safe (see signal-safety(7)). */
|
||
static int
|
||
set_cloexec (void *data, gint fd)
|
||
{
|
||
if (fd >= GPOINTER_TO_INT (data))
|
||
fcntl (fd, F_SETFD, FD_CLOEXEC);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* This function is called between fork() and exec() and hence must be
|
||
* async-signal-safe (see signal-safety(7)). */
|
||
static void
|
||
unset_cloexec (int fd)
|
||
{
|
||
int flags;
|
||
int result;
|
||
|
||
flags = fcntl (fd, F_GETFD, 0);
|
||
|
||
if (flags != -1)
|
||
{
|
||
int errsv;
|
||
flags &= (~FD_CLOEXEC);
|
||
do
|
||
{
|
||
result = fcntl (fd, F_SETFD, flags);
|
||
errsv = errno;
|
||
}
|
||
while (result == -1 && errsv == EINTR);
|
||
}
|
||
}
|
||
|
||
/* This function is called between fork() and exec() and hence must be
|
||
* async-signal-safe (see signal-safety(7)). */
|
||
static int
|
||
dupfd_cloexec (int old_fd, int new_fd_min)
|
||
{
|
||
int fd, errsv;
|
||
#ifdef F_DUPFD_CLOEXEC
|
||
do
|
||
{
|
||
fd = fcntl (old_fd, F_DUPFD_CLOEXEC, new_fd_min);
|
||
errsv = errno;
|
||
}
|
||
while (fd == -1 && errsv == EINTR);
|
||
#else
|
||
/* OS X Snow Lion and earlier don't have F_DUPFD_CLOEXEC:
|
||
* https://bugzilla.gnome.org/show_bug.cgi?id=710962
|
||
*/
|
||
int result, flags;
|
||
do
|
||
{
|
||
fd = fcntl (old_fd, F_DUPFD, new_fd_min);
|
||
errsv = errno;
|
||
}
|
||
while (fd == -1 && errsv == EINTR);
|
||
flags = fcntl (fd, F_GETFD, 0);
|
||
if (flags != -1)
|
||
{
|
||
flags |= FD_CLOEXEC;
|
||
do
|
||
{
|
||
result = fcntl (fd, F_SETFD, flags);
|
||
errsv = errno;
|
||
}
|
||
while (result == -1 && errsv == EINTR);
|
||
}
|
||
#endif
|
||
return fd;
|
||
}
|
||
|
||
/* fdwalk()-compatible callback to close a fd for non-compliant
|
||
* implementations of fdwalk() that potentially pass already
|
||
* closed fds.
|
||
*
|
||
* It is not an error to pass an invalid fd to this function.
|
||
*
|
||
* This function is called between fork() and exec() and hence must be
|
||
* async-signal-safe (see signal-safety(7)).
|
||
*/
|
||
G_GNUC_UNUSED static int
|
||
close_func_with_invalid_fds (void *data, int fd)
|
||
{
|
||
/* We use close and not g_close here because on some platforms, we
|
||
* don't know how to close only valid, open file descriptors, so we
|
||
* have to pass bad fds to close too. g_close warns if given a bad
|
||
* fd.
|
||
*
|
||
* This function returns no error, because there is nothing that the caller
|
||
* could do with that information. That is even the case for EINTR. See
|
||
* g_close() about the specialty of EINTR and why that is correct.
|
||
* If g_close() ever gets extended to handle EINTR specially, then this place
|
||
* should get updated to do the same handling.
|
||
*/
|
||
if (fd >= GPOINTER_TO_INT (data))
|
||
close (fd);
|
||
|
||
return 0;
|
||
}
|
||
|
||
#ifdef __linux__
|
||
struct linux_dirent64
|
||
{
|
||
guint64 d_ino; /* 64-bit inode number */
|
||
guint64 d_off; /* 64-bit offset to next structure */
|
||
unsigned short d_reclen; /* Size of this dirent */
|
||
unsigned char d_type; /* File type */
|
||
char d_name[]; /* Filename (null-terminated) */
|
||
};
|
||
|
||
/* This function is called between fork() and exec() and hence must be
|
||
* async-signal-safe (see signal-safety(7)). */
|
||
static gint
|
||
filename_to_fd (const char *p)
|
||
{
|
||
char c;
|
||
int fd = 0;
|
||
const int cutoff = G_MAXINT / 10;
|
||
const int cutlim = G_MAXINT % 10;
|
||
|
||
if (*p == '\0')
|
||
return -1;
|
||
|
||
while ((c = *p++) != '\0')
|
||
{
|
||
if (c < '0' || c > '9')
|
||
return -1;
|
||
c -= '0';
|
||
|
||
/* Check for overflow. */
|
||
if (fd > cutoff || (fd == cutoff && c > cutlim))
|
||
return -1;
|
||
|
||
fd = fd * 10 + c;
|
||
}
|
||
|
||
return fd;
|
||
}
|
||
#endif
|
||
|
||
static int safe_fdwalk_with_invalid_fds (int (*cb)(void *data, int fd), void *data);
|
||
|
||
/* This function is called between fork() and exec() and hence must be
|
||
* async-signal-safe (see signal-safety(7)). */
|
||
static int
|
||
safe_fdwalk (int (*cb)(void *data, int fd), void *data)
|
||
{
|
||
#if 0
|
||
/* Use fdwalk function provided by the system if it is known to be
|
||
* async-signal safe.
|
||
*
|
||
* Currently there are no operating systems known to provide a safe
|
||
* implementation, so this section is not used for now.
|
||
*/
|
||
return fdwalk (cb, data);
|
||
#else
|
||
/* Fallback implementation of fdwalk. It should be async-signal safe, but it
|
||
* may fail on non-Linux operating systems. See safe_fdwalk_with_invalid_fds
|
||
* for a slower alternative.
|
||
*/
|
||
|
||
#ifdef __linux__
|
||
gint fd;
|
||
gint res = 0;
|
||
|
||
/* Avoid use of opendir/closedir since these are not async-signal-safe. */
|
||
int dir_fd = open ("/proc/self/fd", O_RDONLY | O_DIRECTORY);
|
||
if (dir_fd >= 0)
|
||
{
|
||
char buf[4096];
|
||
int pos, nread;
|
||
struct linux_dirent64 *de;
|
||
|
||
while ((nread = syscall (SYS_getdents64, dir_fd, buf, sizeof(buf))) > 0)
|
||
{
|
||
for (pos = 0; pos < nread; pos += de->d_reclen)
|
||
{
|
||
de = (struct linux_dirent64 *)(buf + pos);
|
||
|
||
fd = filename_to_fd (de->d_name);
|
||
if (fd < 0 || fd == dir_fd)
|
||
continue;
|
||
|
||
if ((res = cb (data, fd)) != 0)
|
||
break;
|
||
}
|
||
}
|
||
|
||
g_close (dir_fd, NULL);
|
||
return res;
|
||
}
|
||
|
||
/* If /proc is not mounted or not accessible we fail here and rely on
|
||
* safe_fdwalk_with_invalid_fds to fall back to the old
|
||
* rlimit trick. */
|
||
|
||
#endif
|
||
|
||
#if defined(__sun__) && defined(F_PREVFD) && defined(F_NEXTFD)
|
||
/*
|
||
* Solaris 11.4 has a signal-safe way which allows
|
||
* us to find all file descriptors in a process.
|
||
*
|
||
* fcntl(fd, F_NEXTFD, maxfd)
|
||
* - returns the first allocated file descriptor <= maxfd > fd.
|
||
*
|
||
* fcntl(fd, F_PREVFD)
|
||
* - return highest allocated file descriptor < fd.
|
||
*/
|
||
gint fd;
|
||
gint res = 0;
|
||
|
||
open_max = fcntl (INT_MAX, F_PREVFD); /* find the maximum fd */
|
||
if (open_max < 0) /* No open files */
|
||
return 0;
|
||
|
||
for (fd = -1; (fd = fcntl (fd, F_NEXTFD, open_max)) != -1; )
|
||
if ((res = cb (data, fd)) != 0 || fd == open_max)
|
||
break;
|
||
|
||
return res;
|
||
#endif
|
||
|
||
return safe_fdwalk_with_invalid_fds (cb, data);
|
||
#endif
|
||
}
|
||
|
||
/* This function is called between fork() and exec() and hence must be
|
||
* async-signal-safe (see signal-safety(7)). */
|
||
static int
|
||
safe_fdwalk_with_invalid_fds (int (*cb)(void *data, int fd), void *data)
|
||
{
|
||
/* Fallback implementation of fdwalk. It should be async-signal safe, but it
|
||
* may be slow, especially on systems allowing very high number of open file
|
||
* descriptors.
|
||
*/
|
||
gint open_max = -1;
|
||
gint fd;
|
||
gint res = 0;
|
||
|
||
#if 0 && defined(HAVE_SYS_RESOURCE_H)
|
||
struct rlimit rl;
|
||
|
||
/* Use getrlimit() function provided by the system if it is known to be
|
||
* async-signal safe.
|
||
*
|
||
* Currently there are no operating systems known to provide a safe
|
||
* implementation, so this section is not used for now.
|
||
*/
|
||
if (getrlimit (RLIMIT_NOFILE, &rl) == 0 && rl.rlim_max != RLIM_INFINITY)
|
||
open_max = rl.rlim_max;
|
||
#endif
|
||
#if defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__APPLE__)
|
||
/* Use sysconf() function provided by the system if it is known to be
|
||
* async-signal safe.
|
||
*
|
||
* FreeBSD: sysconf() is included in the list of async-signal safe functions
|
||
* found in https://man.freebsd.org/sigaction(2).
|
||
*
|
||
* OpenBSD: sysconf() is included in the list of async-signal safe functions
|
||
* found in https://man.openbsd.org/sigaction.2.
|
||
*
|
||
* Apple: sysconf() is included in the list of async-signal safe functions
|
||
* found in https://opensource.apple.com/source/xnu/xnu-517.12.7/bsd/man/man2/sigaction.2
|
||
*/
|
||
if (open_max < 0)
|
||
open_max = sysconf (_SC_OPEN_MAX);
|
||
#endif
|
||
/* Hardcoded fallback: the default process hard limit in Linux as of 2020 */
|
||
if (open_max < 0)
|
||
open_max = 4096;
|
||
|
||
#if defined(__APPLE__)
|
||
/* proc_pidinfo isn't documented as async-signal-safe but looking at the implementation
|
||
* in the darwin tree here:
|
||
*
|
||
* https://opensource.apple.com/source/Libc/Libc-498/darwin/libproc.c.auto.html
|
||
*
|
||
* It's just a thin wrapper around a syscall, so it's probably okay.
|
||
*/
|
||
{
|
||
char buffer[open_max * PROC_PIDLISTFD_SIZE];
|
||
ssize_t buffer_size;
|
||
|
||
buffer_size = proc_pidinfo (getpid (), PROC_PIDLISTFDS, 0, buffer, sizeof (buffer));
|
||
|
||
if (buffer_size > 0 &&
|
||
sizeof (buffer) >= (size_t) buffer_size &&
|
||
(buffer_size % PROC_PIDLISTFD_SIZE) == 0)
|
||
{
|
||
const struct proc_fdinfo *fd_info = (const struct proc_fdinfo *) buffer;
|
||
size_t number_of_fds = (size_t) buffer_size / PROC_PIDLISTFD_SIZE;
|
||
|
||
for (size_t i = 0; i < number_of_fds; i++)
|
||
if ((res = cb (data, fd_info[i].proc_fd)) != 0)
|
||
break;
|
||
|
||
return res;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
for (fd = 0; fd < open_max; fd++)
|
||
if ((res = cb (data, fd)) != 0)
|
||
break;
|
||
|
||
return res;
|
||
}
|
||
|
||
/* This function is called between fork() and exec() and hence must be
|
||
* async-signal-safe (see signal-safety(7)). */
|
||
static int
|
||
safe_fdwalk_set_cloexec (int lowfd)
|
||
{
|
||
int ret;
|
||
|
||
#if defined(HAVE_CLOSE_RANGE) && defined(CLOSE_RANGE_CLOEXEC)
|
||
/* close_range() is available in Linux since kernel 5.9, and on FreeBSD at
|
||
* around the same time. It was designed for use in async-signal-safe
|
||
* situations: https://bugs.python.org/issue38061
|
||
*
|
||
* The `CLOSE_RANGE_CLOEXEC` flag was added in Linux 5.11, and is not yet
|
||
* present in FreeBSD.
|
||
*
|
||
* Handle ENOSYS in case it’s supported in libc but not the kernel; if so,
|
||
* fall back to safe_fdwalk(). Handle EINVAL in case `CLOSE_RANGE_CLOEXEC`
|
||
* is not supported. */
|
||
ret = close_range (lowfd, G_MAXUINT, CLOSE_RANGE_CLOEXEC);
|
||
if (ret == 0 || !(errno == ENOSYS || errno == EINVAL))
|
||
return ret;
|
||
#endif /* HAVE_CLOSE_RANGE */
|
||
|
||
ret = safe_fdwalk (set_cloexec, GINT_TO_POINTER (lowfd));
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* This function is called between fork() and exec() and hence must be
|
||
* async-signal-safe (see signal-safety(7)).
|
||
*
|
||
* On failure, `-1` will be returned and errno will be set. */
|
||
static int
|
||
safe_closefrom (int lowfd)
|
||
{
|
||
int ret;
|
||
|
||
#if defined(HAVE_CLOSE_RANGE)
|
||
/* close_range() is available in Linux since kernel 5.9, and on FreeBSD at
|
||
* around the same time. It was designed for use in async-signal-safe
|
||
* situations: https://bugs.python.org/issue38061
|
||
*
|
||
* Handle ENOSYS in case it’s supported in libc but not the kernel; if so,
|
||
* fall back to safe_fdwalk(). */
|
||
ret = close_range (lowfd, G_MAXUINT, 0);
|
||
if (ret == 0 || errno != ENOSYS)
|
||
return ret;
|
||
#endif /* HAVE_CLOSE_RANGE */
|
||
|
||
#if defined(__FreeBSD__) || defined(__OpenBSD__) || \
|
||
(defined(__sun__) && defined(F_CLOSEFROM))
|
||
/* Use closefrom function provided by the system if it is known to be
|
||
* async-signal safe.
|
||
*
|
||
* FreeBSD: closefrom is included in the list of async-signal safe functions
|
||
* found in https://man.freebsd.org/sigaction(2).
|
||
*
|
||
* OpenBSD: closefrom is not included in the list, but a direct system call
|
||
* should be safe to use.
|
||
*
|
||
* In Solaris as of 11.3 SRU 31, closefrom() is also a direct system call.
|
||
* On such systems, F_CLOSEFROM is defined.
|
||
*/
|
||
(void) closefrom (lowfd);
|
||
return 0;
|
||
#elif defined(__DragonFly__)
|
||
/* It is unclear whether closefrom function included in DragonFlyBSD libc_r
|
||
* is safe to use because it calls a lot of library functions. It is also
|
||
* unclear whether libc_r itself is still being used. Therefore, we do a
|
||
* direct system call here ourselves to avoid possible issues.
|
||
*/
|
||
(void) syscall (SYS_closefrom, lowfd);
|
||
return 0;
|
||
#elif defined(F_CLOSEM)
|
||
/* NetBSD and AIX have a special fcntl command which does the same thing as
|
||
* closefrom. NetBSD also includes closefrom function, which seems to be a
|
||
* simple wrapper of the fcntl command.
|
||
*/
|
||
return fcntl (lowfd, F_CLOSEM);
|
||
#else
|
||
ret = safe_fdwalk (close_func_with_invalid_fds, GINT_TO_POINTER (lowfd));
|
||
|
||
return ret;
|
||
#endif
|
||
}
|
||
|
||
/* This function is called between fork() and exec() and hence must be
|
||
* async-signal-safe (see signal-safety(7)). */
|
||
static gint
|
||
safe_dup2 (gint fd1, gint fd2)
|
||
{
|
||
gint ret;
|
||
|
||
do
|
||
ret = dup2 (fd1, fd2);
|
||
while (ret < 0 && (errno == EINTR || errno == EBUSY));
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* This function is called between fork() and exec() and hence must be
|
||
* async-signal-safe (see signal-safety(7)). */
|
||
static gboolean
|
||
relocate_fd_out_of_standard_range (gint *fd)
|
||
{
|
||
gint ret = -1;
|
||
const int min_fileno = STDERR_FILENO + 1;
|
||
|
||
do
|
||
ret = fcntl (*fd, F_DUPFD, min_fileno);
|
||
while (ret < 0 && errno == EINTR);
|
||
|
||
/* Note we don't need to close the old fd, because the caller is expected
|
||
* to close fds in the standard range itself.
|
||
*/
|
||
if (ret >= min_fileno)
|
||
{
|
||
*fd = ret;
|
||
return TRUE;
|
||
}
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* This function is called between fork() and exec() and hence must be
|
||
* async-signal-safe (see signal-safety(7)). */
|
||
static gint
|
||
safe_open (const char *path, gint mode)
|
||
{
|
||
gint ret;
|
||
|
||
do
|
||
ret = open (path, mode);
|
||
while (ret < 0 && errno == EINTR);
|
||
|
||
return ret;
|
||
}
|
||
|
||
enum
|
||
{
|
||
CHILD_CHDIR_FAILED,
|
||
CHILD_EXEC_FAILED,
|
||
CHILD_OPEN_FAILED,
|
||
CHILD_DUPFD_FAILED,
|
||
CHILD_FORK_FAILED,
|
||
CHILD_CLOSE_FAILED,
|
||
};
|
||
|
||
/* This function is called between fork() and exec() and hence must be
|
||
* async-signal-safe (see signal-safety(7)) until it calls exec().
|
||
*
|
||
* All callers must guarantee that @argv and @argv[0] are non-NULL. */
|
||
static void
|
||
do_exec (gint child_err_report_fd,
|
||
gint stdin_fd,
|
||
gint stdout_fd,
|
||
gint stderr_fd,
|
||
gint *source_fds,
|
||
const gint *target_fds,
|
||
gsize n_fds,
|
||
const gchar *working_directory,
|
||
const gchar * const *argv,
|
||
gchar **argv_buffer,
|
||
gsize argv_buffer_len,
|
||
const gchar * const *envp,
|
||
gboolean close_descriptors,
|
||
const gchar *search_path,
|
||
gchar *search_path_buffer,
|
||
gsize search_path_buffer_len,
|
||
gboolean stdout_to_null,
|
||
gboolean stderr_to_null,
|
||
gboolean child_inherits_stdin,
|
||
gboolean file_and_argv_zero,
|
||
GSpawnChildSetupFunc child_setup,
|
||
gpointer user_data)
|
||
{
|
||
gsize i;
|
||
gint max_target_fd = 0;
|
||
|
||
if (working_directory && chdir (working_directory) < 0)
|
||
write_err_and_exit (child_err_report_fd,
|
||
CHILD_CHDIR_FAILED);
|
||
|
||
/* It's possible the caller assigned stdin to an fd with a
|
||
* file number that is supposed to be reserved for
|
||
* stdout or stderr.
|
||
*
|
||
* If so, move it up out of the standard range, so it doesn't
|
||
* cause a conflict.
|
||
*/
|
||
if (IS_STD_FILENO (stdin_fd) && stdin_fd != STDIN_FILENO)
|
||
{
|
||
int old_fd = stdin_fd;
|
||
|
||
if (!relocate_fd_out_of_standard_range (&stdin_fd))
|
||
write_err_and_exit (child_err_report_fd, CHILD_DUPFD_FAILED);
|
||
|
||
if (stdout_fd == old_fd)
|
||
stdout_fd = stdin_fd;
|
||
|
||
if (stderr_fd == old_fd)
|
||
stderr_fd = stdin_fd;
|
||
}
|
||
|
||
/* Redirect pipes as required
|
||
*
|
||
* There are two cases where we don't need to do the redirection
|
||
* 1. Where the associated file descriptor is cleared/invalid
|
||
* 2. When the associated file descriptor is already given the
|
||
* correct file number.
|
||
*/
|
||
if (IS_VALID_FILENO (stdin_fd) && stdin_fd != STDIN_FILENO)
|
||
{
|
||
if (safe_dup2 (stdin_fd, 0) < 0)
|
||
write_err_and_exit (child_err_report_fd,
|
||
CHILD_DUPFD_FAILED);
|
||
|
||
set_cloexec (GINT_TO_POINTER(0), stdin_fd);
|
||
}
|
||
else if (!child_inherits_stdin)
|
||
{
|
||
/* Keep process from blocking on a read of stdin */
|
||
gint read_null = safe_open ("/dev/null", O_RDONLY);
|
||
if (read_null < 0)
|
||
write_err_and_exit (child_err_report_fd,
|
||
CHILD_OPEN_FAILED);
|
||
if (safe_dup2 (read_null, 0) < 0)
|
||
write_err_and_exit (child_err_report_fd,
|
||
CHILD_DUPFD_FAILED);
|
||
close_and_invalidate (&read_null);
|
||
}
|
||
|
||
/* Like with stdin above, it's possible the caller assigned
|
||
* stdout to an fd with a file number that's intruding on the
|
||
* standard range.
|
||
*
|
||
* If so, move it out of the way, too.
|
||
*/
|
||
if (IS_STD_FILENO (stdout_fd) && stdout_fd != STDOUT_FILENO)
|
||
{
|
||
int old_fd = stdout_fd;
|
||
|
||
if (!relocate_fd_out_of_standard_range (&stdout_fd))
|
||
write_err_and_exit (child_err_report_fd, CHILD_DUPFD_FAILED);
|
||
|
||
if (stderr_fd == old_fd)
|
||
stderr_fd = stdout_fd;
|
||
}
|
||
|
||
if (IS_VALID_FILENO (stdout_fd) && stdout_fd != STDOUT_FILENO)
|
||
{
|
||
if (safe_dup2 (stdout_fd, 1) < 0)
|
||
write_err_and_exit (child_err_report_fd,
|
||
CHILD_DUPFD_FAILED);
|
||
|
||
set_cloexec (GINT_TO_POINTER(0), stdout_fd);
|
||
}
|
||
else if (stdout_to_null)
|
||
{
|
||
gint write_null = safe_open ("/dev/null", O_WRONLY);
|
||
if (write_null < 0)
|
||
write_err_and_exit (child_err_report_fd,
|
||
CHILD_OPEN_FAILED);
|
||
if (safe_dup2 (write_null, 1) < 0)
|
||
write_err_and_exit (child_err_report_fd,
|
||
CHILD_DUPFD_FAILED);
|
||
close_and_invalidate (&write_null);
|
||
}
|
||
|
||
if (IS_STD_FILENO (stderr_fd) && stderr_fd != STDERR_FILENO)
|
||
{
|
||
if (!relocate_fd_out_of_standard_range (&stderr_fd))
|
||
write_err_and_exit (child_err_report_fd, CHILD_DUPFD_FAILED);
|
||
}
|
||
|
||
/* Like with stdin/stdout above, it's possible the caller assigned
|
||
* stderr to an fd with a file number that's intruding on the
|
||
* standard range.
|
||
*
|
||
* Make sure it's out of the way, also.
|
||
*/
|
||
if (IS_VALID_FILENO (stderr_fd) && stderr_fd != STDERR_FILENO)
|
||
{
|
||
if (safe_dup2 (stderr_fd, 2) < 0)
|
||
write_err_and_exit (child_err_report_fd,
|
||
CHILD_DUPFD_FAILED);
|
||
|
||
set_cloexec (GINT_TO_POINTER(0), stderr_fd);
|
||
}
|
||
else if (stderr_to_null)
|
||
{
|
||
gint write_null = safe_open ("/dev/null", O_WRONLY);
|
||
if (write_null < 0)
|
||
write_err_and_exit (child_err_report_fd,
|
||
CHILD_OPEN_FAILED);
|
||
if (safe_dup2 (write_null, 2) < 0)
|
||
write_err_and_exit (child_err_report_fd,
|
||
CHILD_DUPFD_FAILED);
|
||
close_and_invalidate (&write_null);
|
||
}
|
||
|
||
/* Close all file descriptors but stdin, stdout and stderr, and any of source_fds,
|
||
* before we exec. Note that this includes
|
||
* child_err_report_fd, which keeps the parent from blocking
|
||
* forever on the other end of that pipe.
|
||
*/
|
||
if (close_descriptors)
|
||
{
|
||
if (child_setup == NULL && n_fds == 0)
|
||
{
|
||
if (safe_dup2 (child_err_report_fd, 3) < 0)
|
||
write_err_and_exit (child_err_report_fd, CHILD_DUPFD_FAILED);
|
||
set_cloexec (GINT_TO_POINTER (0), 3);
|
||
if (safe_closefrom (4) < 0)
|
||
write_err_and_exit (child_err_report_fd, CHILD_CLOSE_FAILED);
|
||
child_err_report_fd = 3;
|
||
}
|
||
else
|
||
{
|
||
if (safe_fdwalk_set_cloexec (3) < 0)
|
||
write_err_and_exit (child_err_report_fd, CHILD_CLOSE_FAILED);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* We need to do child_err_report_fd anyway */
|
||
set_cloexec (GINT_TO_POINTER (0), child_err_report_fd);
|
||
}
|
||
|
||
/*
|
||
* Work through the @source_fds and @target_fds mapping.
|
||
*
|
||
* Based on code originally derived from
|
||
* gnome-terminal:src/terminal-screen.c:terminal_screen_child_setup(),
|
||
* used under the LGPLv2+ with permission from author. (The code has
|
||
* since migrated to vte:src/spawn.cc:SpawnContext::exec and is no longer
|
||
* terribly similar to what we have here.)
|
||
*/
|
||
|
||
if (n_fds > 0)
|
||
{
|
||
for (i = 0; i < n_fds; i++)
|
||
max_target_fd = MAX (max_target_fd, target_fds[i]);
|
||
|
||
if (max_target_fd == G_MAXINT)
|
||
{
|
||
errno = EINVAL;
|
||
write_err_and_exit (child_err_report_fd, CHILD_DUPFD_FAILED);
|
||
}
|
||
|
||
/* If we're doing remapping fd assignments, we need to handle
|
||
* the case where the user has specified e.g. 5 -> 4, 4 -> 6.
|
||
* We do this by duping all source fds, taking care to ensure the new
|
||
* fds are larger than any target fd to avoid introducing new conflicts.
|
||
*/
|
||
for (i = 0; i < n_fds; i++)
|
||
{
|
||
if (source_fds[i] != target_fds[i])
|
||
{
|
||
source_fds[i] = dupfd_cloexec (source_fds[i], max_target_fd + 1);
|
||
if (source_fds[i] < 0)
|
||
write_err_and_exit (child_err_report_fd, CHILD_DUPFD_FAILED);
|
||
}
|
||
}
|
||
|
||
for (i = 0; i < n_fds; i++)
|
||
{
|
||
/* For basic fd assignments (where source == target), we can just
|
||
* unset FD_CLOEXEC.
|
||
*/
|
||
if (source_fds[i] == target_fds[i])
|
||
{
|
||
unset_cloexec (source_fds[i]);
|
||
}
|
||
else
|
||
{
|
||
/* If any of the @target_fds conflict with @child_err_report_fd,
|
||
* dup it so it doesn’t get conflated.
|
||
*/
|
||
if (target_fds[i] == child_err_report_fd)
|
||
{
|
||
child_err_report_fd = dupfd_cloexec (child_err_report_fd, max_target_fd + 1);
|
||
if (child_err_report_fd < 0)
|
||
write_err_and_exit (child_err_report_fd, CHILD_DUPFD_FAILED);
|
||
}
|
||
|
||
if (safe_dup2 (source_fds[i], target_fds[i]) < 0)
|
||
write_err_and_exit (child_err_report_fd, CHILD_DUPFD_FAILED);
|
||
|
||
close_and_invalidate (&source_fds[i]);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Call user function just before we exec */
|
||
if (child_setup)
|
||
{
|
||
(* child_setup) (user_data);
|
||
}
|
||
|
||
g_execute (argv[0],
|
||
(gchar **) (file_and_argv_zero ? argv + 1 : argv),
|
||
argv_buffer, argv_buffer_len,
|
||
(gchar **) envp, search_path, search_path_buffer, search_path_buffer_len);
|
||
|
||
/* Exec failed */
|
||
write_err_and_exit (child_err_report_fd,
|
||
CHILD_EXEC_FAILED);
|
||
}
|
||
|
||
static gboolean
|
||
read_ints (int fd,
|
||
gint* buf,
|
||
gint n_ints_in_buf,
|
||
gint *n_ints_read,
|
||
GError **error)
|
||
{
|
||
gsize bytes = 0;
|
||
|
||
while (TRUE)
|
||
{
|
||
gssize chunk;
|
||
|
||
if (bytes >= sizeof(gint)*2)
|
||
break; /* give up, who knows what happened, should not be
|
||
* possible.
|
||
*/
|
||
|
||
again:
|
||
chunk = read (fd,
|
||
((gchar*)buf) + bytes,
|
||
sizeof(gint) * n_ints_in_buf - bytes);
|
||
if (chunk < 0 && errno == EINTR)
|
||
goto again;
|
||
|
||
if (chunk < 0)
|
||
{
|
||
int errsv = errno;
|
||
|
||
/* Some weird shit happened, bail out */
|
||
g_set_error (error,
|
||
G_SPAWN_ERROR,
|
||
G_SPAWN_ERROR_FAILED,
|
||
_("Failed to read from child pipe (%s)"),
|
||
g_strerror (errsv));
|
||
|
||
return FALSE;
|
||
}
|
||
else if (chunk == 0)
|
||
break; /* EOF */
|
||
else /* chunk > 0 */
|
||
bytes += chunk;
|
||
}
|
||
|
||
*n_ints_read = (gint)(bytes / sizeof(gint));
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
#ifdef POSIX_SPAWN_AVAILABLE
|
||
static gboolean
|
||
do_posix_spawn (const gchar * const *argv,
|
||
const gchar * const *envp,
|
||
gboolean search_path,
|
||
gboolean stdout_to_null,
|
||
gboolean stderr_to_null,
|
||
gboolean child_inherits_stdin,
|
||
gboolean file_and_argv_zero,
|
||
GPid *child_pid,
|
||
gint *child_close_fds,
|
||
gint stdin_fd,
|
||
gint stdout_fd,
|
||
gint stderr_fd,
|
||
const gint *source_fds,
|
||
const gint *target_fds,
|
||
gsize n_fds)
|
||
{
|
||
pid_t pid;
|
||
gint *duped_source_fds = NULL;
|
||
gint max_target_fd = 0;
|
||
const gchar * const *argv_pass;
|
||
posix_spawnattr_t attr;
|
||
posix_spawn_file_actions_t file_actions;
|
||
gint parent_close_fds[3];
|
||
gsize num_parent_close_fds = 0;
|
||
GSList *child_close = NULL;
|
||
GSList *elem;
|
||
sigset_t mask;
|
||
gsize i;
|
||
int r;
|
||
|
||
g_assert (argv != NULL && argv[0] != NULL);
|
||
|
||
if (*argv[0] == '\0')
|
||
{
|
||
/* We check the simple case first. */
|
||
return ENOENT;
|
||
}
|
||
|
||
r = posix_spawnattr_init (&attr);
|
||
if (r != 0)
|
||
return r;
|
||
|
||
if (child_close_fds)
|
||
{
|
||
int i = -1;
|
||
while (child_close_fds[++i] != -1)
|
||
child_close = g_slist_prepend (child_close,
|
||
GINT_TO_POINTER (child_close_fds[i]));
|
||
}
|
||
|
||
r = posix_spawnattr_setflags (&attr, POSIX_SPAWN_SETSIGDEF);
|
||
if (r != 0)
|
||
goto out_free_spawnattr;
|
||
|
||
/* Reset some signal handlers that we may use */
|
||
sigemptyset (&mask);
|
||
sigaddset (&mask, SIGCHLD);
|
||
sigaddset (&mask, SIGINT);
|
||
sigaddset (&mask, SIGTERM);
|
||
sigaddset (&mask, SIGHUP);
|
||
|
||
r = posix_spawnattr_setsigdefault (&attr, &mask);
|
||
if (r != 0)
|
||
goto out_free_spawnattr;
|
||
|
||
r = posix_spawn_file_actions_init (&file_actions);
|
||
if (r != 0)
|
||
goto out_free_spawnattr;
|
||
|
||
/* Redirect pipes as required */
|
||
|
||
if (stdin_fd >= 0)
|
||
{
|
||
r = posix_spawn_file_actions_adddup2 (&file_actions, stdin_fd, 0);
|
||
if (r != 0)
|
||
goto out_close_fds;
|
||
|
||
if (!g_slist_find (child_close, GINT_TO_POINTER (stdin_fd)))
|
||
child_close = g_slist_prepend (child_close, GINT_TO_POINTER (stdin_fd));
|
||
}
|
||
else if (!child_inherits_stdin)
|
||
{
|
||
/* Keep process from blocking on a read of stdin */
|
||
gint read_null = safe_open ("/dev/null", O_RDONLY | O_CLOEXEC);
|
||
g_assert (read_null != -1);
|
||
parent_close_fds[num_parent_close_fds++] = read_null;
|
||
|
||
#ifndef HAVE_O_CLOEXEC
|
||
fcntl (read_null, F_SETFD, FD_CLOEXEC);
|
||
#endif
|
||
|
||
r = posix_spawn_file_actions_adddup2 (&file_actions, read_null, 0);
|
||
if (r != 0)
|
||
goto out_close_fds;
|
||
}
|
||
|
||
if (stdout_fd >= 0)
|
||
{
|
||
r = posix_spawn_file_actions_adddup2 (&file_actions, stdout_fd, 1);
|
||
if (r != 0)
|
||
goto out_close_fds;
|
||
|
||
if (!g_slist_find (child_close, GINT_TO_POINTER (stdout_fd)))
|
||
child_close = g_slist_prepend (child_close, GINT_TO_POINTER (stdout_fd));
|
||
}
|
||
else if (stdout_to_null)
|
||
{
|
||
gint write_null = safe_open ("/dev/null", O_WRONLY | O_CLOEXEC);
|
||
g_assert (write_null != -1);
|
||
parent_close_fds[num_parent_close_fds++] = write_null;
|
||
|
||
#ifndef HAVE_O_CLOEXEC
|
||
fcntl (write_null, F_SETFD, FD_CLOEXEC);
|
||
#endif
|
||
|
||
r = posix_spawn_file_actions_adddup2 (&file_actions, write_null, 1);
|
||
if (r != 0)
|
||
goto out_close_fds;
|
||
}
|
||
|
||
if (stderr_fd >= 0)
|
||
{
|
||
r = posix_spawn_file_actions_adddup2 (&file_actions, stderr_fd, 2);
|
||
if (r != 0)
|
||
goto out_close_fds;
|
||
|
||
if (!g_slist_find (child_close, GINT_TO_POINTER (stderr_fd)))
|
||
child_close = g_slist_prepend (child_close, GINT_TO_POINTER (stderr_fd));
|
||
}
|
||
else if (stderr_to_null)
|
||
{
|
||
gint write_null = safe_open ("/dev/null", O_WRONLY | O_CLOEXEC);
|
||
g_assert (write_null != -1);
|
||
parent_close_fds[num_parent_close_fds++] = write_null;
|
||
|
||
#ifndef HAVE_O_CLOEXEC
|
||
fcntl (write_null, F_SETFD, FD_CLOEXEC);
|
||
#endif
|
||
|
||
r = posix_spawn_file_actions_adddup2 (&file_actions, write_null, 2);
|
||
if (r != 0)
|
||
goto out_close_fds;
|
||
}
|
||
|
||
/* If source_fds[i] != target_fds[i], we need to handle the case
|
||
* where the user has specified, e.g., 5 -> 4, 4 -> 6. We do this
|
||
* by duping the source fds, taking care to ensure the new fds are
|
||
* larger than any target fd to avoid introducing new conflicts.
|
||
*
|
||
* If source_fds[i] == target_fds[i], then we just need to leak
|
||
* the fd into the child process, which we *could* do by temporarily
|
||
* unsetting CLOEXEC and then setting it again after we spawn if
|
||
* it was originally set. POSIX requires that the addup2 action unset
|
||
* CLOEXEC if source and target are identical, so you'd think doing it
|
||
* manually wouldn't be needed, but unfortunately as of 2021 many
|
||
* libcs still don't do so. Example nonconforming libcs:
|
||
* Bionic: https://android.googlesource.com/platform/bionic/+/f6e5b582604715729b09db3e36a7aeb8c24b36a4/libc/bionic/spawn.cpp#71
|
||
* uclibc-ng: https://cgit.uclibc-ng.org/cgi/cgit/uclibc-ng.git/tree/librt/spawn.c?id=7c36bcae09d66bbaa35cbb02253ae0556f42677e#n88
|
||
*
|
||
* Anyway, unsetting CLOEXEC ourselves would open a small race window
|
||
* where the fd could be inherited into a child process if another
|
||
* thread spawns something at the same time, because we have not
|
||
* called fork() and are multithreaded here. This race is avoidable by
|
||
* using dupfd_cloexec, which we already have to do to handle the
|
||
* source_fds[i] != target_fds[i] case. So let's always do it!
|
||
*/
|
||
|
||
for (i = 0; i < n_fds; i++)
|
||
max_target_fd = MAX (max_target_fd, target_fds[i]);
|
||
|
||
if (max_target_fd == G_MAXINT)
|
||
goto out_close_fds;
|
||
|
||
duped_source_fds = g_new (gint, n_fds);
|
||
for (i = 0; i < n_fds; i++)
|
||
{
|
||
duped_source_fds[i] = dupfd_cloexec (source_fds[i], max_target_fd + 1);
|
||
if (duped_source_fds[i] < 0)
|
||
goto out_close_fds;
|
||
}
|
||
|
||
for (i = 0; i < n_fds; i++)
|
||
{
|
||
r = posix_spawn_file_actions_adddup2 (&file_actions, duped_source_fds[i], target_fds[i]);
|
||
if (r != 0)
|
||
goto out_close_fds;
|
||
}
|
||
|
||
/* Intentionally close the fds in the child as the last file action,
|
||
* having been careful not to add the same fd to this list twice.
|
||
*
|
||
* This is important to allow (e.g.) for the same fd to be passed as stdout
|
||
* and stderr (we must not close it before we have dupped it in both places,
|
||
* and we must not attempt to close it twice).
|
||
*/
|
||
for (elem = child_close; elem != NULL; elem = elem->next)
|
||
{
|
||
r = posix_spawn_file_actions_addclose (&file_actions,
|
||
GPOINTER_TO_INT (elem->data));
|
||
if (r != 0)
|
||
goto out_close_fds;
|
||
}
|
||
|
||
argv_pass = file_and_argv_zero ? argv + 1 : argv;
|
||
if (envp == NULL)
|
||
envp = (const gchar * const *) environ;
|
||
|
||
/* Don't search when it contains a slash. */
|
||
if (!search_path || strchr (argv[0], '/') != NULL)
|
||
r = posix_spawn (&pid, argv[0], &file_actions, &attr, (char * const *) argv_pass, (char * const *) envp);
|
||
else
|
||
r = posix_spawnp (&pid, argv[0], &file_actions, &attr, (char * const *) argv_pass, (char * const *) envp);
|
||
|
||
if (r == 0 && child_pid != NULL)
|
||
*child_pid = pid;
|
||
|
||
out_close_fds:
|
||
for (i = 0; i < num_parent_close_fds; i++)
|
||
close_and_invalidate (&parent_close_fds [i]);
|
||
|
||
if (duped_source_fds != NULL)
|
||
{
|
||
for (i = 0; i < n_fds; i++)
|
||
close_and_invalidate (&duped_source_fds[i]);
|
||
g_free (duped_source_fds);
|
||
}
|
||
|
||
posix_spawn_file_actions_destroy (&file_actions);
|
||
out_free_spawnattr:
|
||
posix_spawnattr_destroy (&attr);
|
||
g_slist_free (child_close);
|
||
|
||
return r;
|
||
}
|
||
#endif /* POSIX_SPAWN_AVAILABLE */
|
||
|
||
static gboolean
|
||
fork_exec (gboolean intermediate_child,
|
||
const gchar *working_directory,
|
||
const gchar * const *argv,
|
||
const gchar * const *envp,
|
||
gboolean close_descriptors,
|
||
gboolean search_path,
|
||
gboolean search_path_from_envp,
|
||
gboolean stdout_to_null,
|
||
gboolean stderr_to_null,
|
||
gboolean child_inherits_stdin,
|
||
gboolean file_and_argv_zero,
|
||
gboolean cloexec_pipes,
|
||
GSpawnChildSetupFunc child_setup,
|
||
gpointer user_data,
|
||
GPid *child_pid,
|
||
gint *stdin_pipe_out,
|
||
gint *stdout_pipe_out,
|
||
gint *stderr_pipe_out,
|
||
gint stdin_fd,
|
||
gint stdout_fd,
|
||
gint stderr_fd,
|
||
const gint *source_fds,
|
||
const gint *target_fds,
|
||
gsize n_fds,
|
||
GError **error)
|
||
{
|
||
GPid pid = -1;
|
||
gint child_err_report_pipe[2] = { -1, -1 };
|
||
gint child_pid_report_pipe[2] = { -1, -1 };
|
||
guint pipe_flags = cloexec_pipes ? FD_CLOEXEC : 0;
|
||
gint status;
|
||
const gchar *chosen_search_path;
|
||
gchar *search_path_buffer = NULL;
|
||
gchar *search_path_buffer_heap = NULL;
|
||
gsize search_path_buffer_len = 0;
|
||
gchar **argv_buffer = NULL;
|
||
gchar **argv_buffer_heap = NULL;
|
||
gsize argv_buffer_len = 0;
|
||
gint stdin_pipe[2] = { -1, -1 };
|
||
gint stdout_pipe[2] = { -1, -1 };
|
||
gint stderr_pipe[2] = { -1, -1 };
|
||
gint child_close_fds[4] = { -1, -1, -1, -1 };
|
||
gint n_child_close_fds = 0;
|
||
gint *source_fds_copy = NULL;
|
||
|
||
g_assert (argv != NULL && argv[0] != NULL);
|
||
g_assert (stdin_pipe_out == NULL || stdin_fd < 0);
|
||
g_assert (stdout_pipe_out == NULL || stdout_fd < 0);
|
||
g_assert (stderr_pipe_out == NULL || stderr_fd < 0);
|
||
|
||
/* If pipes have been requested, open them */
|
||
if (stdin_pipe_out != NULL)
|
||
{
|
||
if (!g_unix_open_pipe (stdin_pipe, pipe_flags, error))
|
||
goto cleanup_and_fail;
|
||
if (_g_spawn_invalid_source_fd (stdin_pipe[0], source_fds, n_fds, error) ||
|
||
_g_spawn_invalid_source_fd (stdin_pipe[1], source_fds, n_fds, error))
|
||
goto cleanup_and_fail;
|
||
child_close_fds[n_child_close_fds++] = stdin_pipe[1];
|
||
stdin_fd = stdin_pipe[0];
|
||
}
|
||
|
||
if (stdout_pipe_out != NULL)
|
||
{
|
||
if (!g_unix_open_pipe (stdout_pipe, pipe_flags, error))
|
||
goto cleanup_and_fail;
|
||
if (_g_spawn_invalid_source_fd (stdout_pipe[0], source_fds, n_fds, error) ||
|
||
_g_spawn_invalid_source_fd (stdout_pipe[1], source_fds, n_fds, error))
|
||
goto cleanup_and_fail;
|
||
child_close_fds[n_child_close_fds++] = stdout_pipe[0];
|
||
stdout_fd = stdout_pipe[1];
|
||
}
|
||
|
||
if (stderr_pipe_out != NULL)
|
||
{
|
||
if (!g_unix_open_pipe (stderr_pipe, pipe_flags, error))
|
||
goto cleanup_and_fail;
|
||
if (_g_spawn_invalid_source_fd (stderr_pipe[0], source_fds, n_fds, error) ||
|
||
_g_spawn_invalid_source_fd (stderr_pipe[1], source_fds, n_fds, error))
|
||
goto cleanup_and_fail;
|
||
child_close_fds[n_child_close_fds++] = stderr_pipe[0];
|
||
stderr_fd = stderr_pipe[1];
|
||
}
|
||
|
||
child_close_fds[n_child_close_fds++] = -1;
|
||
|
||
#ifdef POSIX_SPAWN_AVAILABLE
|
||
if (!intermediate_child && working_directory == NULL && !close_descriptors &&
|
||
!search_path_from_envp && child_setup == NULL)
|
||
{
|
||
g_trace_mark (G_TRACE_CURRENT_TIME, 0,
|
||
"GLib", "posix_spawn",
|
||
"%s", argv[0]);
|
||
|
||
status = do_posix_spawn (argv,
|
||
envp,
|
||
search_path,
|
||
stdout_to_null,
|
||
stderr_to_null,
|
||
child_inherits_stdin,
|
||
file_and_argv_zero,
|
||
child_pid,
|
||
child_close_fds,
|
||
stdin_fd,
|
||
stdout_fd,
|
||
stderr_fd,
|
||
source_fds,
|
||
target_fds,
|
||
n_fds);
|
||
if (status == 0)
|
||
goto success;
|
||
|
||
if (status != ENOEXEC)
|
||
{
|
||
g_set_error (error,
|
||
G_SPAWN_ERROR,
|
||
G_SPAWN_ERROR_FAILED,
|
||
_("Failed to spawn child process “%s” (%s)"),
|
||
argv[0],
|
||
g_strerror (status));
|
||
goto cleanup_and_fail;
|
||
}
|
||
|
||
/* posix_spawn is not intended to support script execution. It does in
|
||
* some situations on some glibc versions, but that will be fixed.
|
||
* So if it fails with ENOEXEC, we fall through to the regular
|
||
* gspawn codepath so that script execution can be attempted,
|
||
* per standard gspawn behaviour. */
|
||
g_debug ("posix_spawn failed (ENOEXEC), fall back to regular gspawn");
|
||
}
|
||
else
|
||
{
|
||
g_trace_mark (G_TRACE_CURRENT_TIME, 0,
|
||
"GLib", "fork",
|
||
"posix_spawn avoided %s%s%s%s%s",
|
||
!intermediate_child ? "" : "(automatic reaping requested) ",
|
||
working_directory == NULL ? "" : "(workdir specified) ",
|
||
!close_descriptors ? "" : "(fd close requested) ",
|
||
!search_path_from_envp ? "" : "(using envp for search path) ",
|
||
child_setup == NULL ? "" : "(child_setup specified) ");
|
||
}
|
||
#endif /* POSIX_SPAWN_AVAILABLE */
|
||
|
||
/* Choose a search path. This has to be done before calling fork()
|
||
* as getenv() isn’t async-signal-safe (see `man 7 signal-safety`). */
|
||
chosen_search_path = NULL;
|
||
if (search_path_from_envp)
|
||
chosen_search_path = g_environ_getenv ((gchar **) envp, "PATH");
|
||
if (search_path && chosen_search_path == NULL)
|
||
chosen_search_path = g_getenv ("PATH");
|
||
|
||
if ((search_path || search_path_from_envp) && chosen_search_path == NULL)
|
||
{
|
||
/* There is no 'PATH' in the environment. The default
|
||
* * search path in libc is the current directory followed by
|
||
* * the path 'confstr' returns for '_CS_PATH'.
|
||
* */
|
||
|
||
/* In GLib we put . last, for security, and don't use the
|
||
* * unportable confstr(); UNIX98 does not actually specify
|
||
* * what to search if PATH is unset. POSIX may, dunno.
|
||
* */
|
||
|
||
chosen_search_path = "/bin:/usr/bin:.";
|
||
}
|
||
|
||
if (search_path || search_path_from_envp)
|
||
g_assert (chosen_search_path != NULL);
|
||
else
|
||
g_assert (chosen_search_path == NULL);
|
||
|
||
/* Allocate a buffer which the fork()ed child can use to assemble potential
|
||
* paths for the binary to exec(), combining the argv[0] and elements from
|
||
* the chosen_search_path. This can’t be done in the child because malloc()
|
||
* (or alloca()) are not async-signal-safe (see `man 7 signal-safety`).
|
||
*
|
||
* Add 2 for the nul terminator and a leading `/`. */
|
||
if (chosen_search_path != NULL)
|
||
{
|
||
search_path_buffer_len = strlen (chosen_search_path) + strlen (argv[0]) + 2;
|
||
if (search_path_buffer_len < 4000)
|
||
{
|
||
/* Prefer small stack allocations to avoid valgrind leak warnings
|
||
* in forked child. The 4000B cutoff is arbitrary. */
|
||
search_path_buffer = g_alloca (search_path_buffer_len);
|
||
}
|
||
else
|
||
{
|
||
search_path_buffer_heap = g_malloc (search_path_buffer_len);
|
||
search_path_buffer = search_path_buffer_heap;
|
||
}
|
||
}
|
||
|
||
if (search_path || search_path_from_envp)
|
||
g_assert (search_path_buffer != NULL);
|
||
else
|
||
g_assert (search_path_buffer == NULL);
|
||
|
||
/* And allocate a buffer which is 2 elements longer than @argv, so that if
|
||
* script_execute() has to be called later on, it can build a wrapper argv
|
||
* array in this buffer. */
|
||
argv_buffer_len = g_strv_length ((gchar **) argv) + 2;
|
||
if (argv_buffer_len < 4000 / sizeof (gchar *))
|
||
{
|
||
/* Prefer small stack allocations to avoid valgrind leak warnings
|
||
* in forked child. The 4000B cutoff is arbitrary. */
|
||
argv_buffer = g_newa (gchar *, argv_buffer_len);
|
||
}
|
||
else
|
||
{
|
||
argv_buffer_heap = g_new (gchar *, argv_buffer_len);
|
||
argv_buffer = argv_buffer_heap;
|
||
}
|
||
|
||
/* And one to hold a copy of @source_fds for later manipulation in do_exec(). */
|
||
source_fds_copy = g_new (int, n_fds);
|
||
if (n_fds > 0)
|
||
memcpy (source_fds_copy, source_fds, sizeof (*source_fds) * n_fds);
|
||
|
||
if (!g_unix_open_pipe (child_err_report_pipe, pipe_flags, error))
|
||
goto cleanup_and_fail;
|
||
if (_g_spawn_invalid_source_fd (child_err_report_pipe[0], source_fds, n_fds, error) ||
|
||
_g_spawn_invalid_source_fd (child_err_report_pipe[1], source_fds, n_fds, error))
|
||
goto cleanup_and_fail;
|
||
|
||
if (intermediate_child)
|
||
{
|
||
if (!g_unix_open_pipe (child_pid_report_pipe, pipe_flags, error))
|
||
goto cleanup_and_fail;
|
||
if (_g_spawn_invalid_source_fd (child_pid_report_pipe[0], source_fds, n_fds, error) ||
|
||
_g_spawn_invalid_source_fd (child_pid_report_pipe[1], source_fds, n_fds, error))
|
||
goto cleanup_and_fail;
|
||
}
|
||
|
||
pid = fork ();
|
||
|
||
if (pid < 0)
|
||
{
|
||
int errsv = errno;
|
||
|
||
g_set_error (error,
|
||
G_SPAWN_ERROR,
|
||
G_SPAWN_ERROR_FORK,
|
||
_("Failed to fork (%s)"),
|
||
g_strerror (errsv));
|
||
|
||
goto cleanup_and_fail;
|
||
}
|
||
else if (pid == 0)
|
||
{
|
||
/* Immediate child. This may or may not be the child that
|
||
* actually execs the new process.
|
||
*/
|
||
|
||
/* Reset some signal handlers that we may use */
|
||
signal (SIGCHLD, SIG_DFL);
|
||
signal (SIGINT, SIG_DFL);
|
||
signal (SIGTERM, SIG_DFL);
|
||
signal (SIGHUP, SIG_DFL);
|
||
|
||
/* Be sure we crash if the parent exits
|
||
* and we write to the err_report_pipe
|
||
*/
|
||
signal (SIGPIPE, SIG_DFL);
|
||
|
||
/* Close the parent's end of the pipes;
|
||
* not needed in the close_descriptors case,
|
||
* though
|
||
*/
|
||
close_and_invalidate (&child_err_report_pipe[0]);
|
||
close_and_invalidate (&child_pid_report_pipe[0]);
|
||
if (child_close_fds[0] != -1)
|
||
{
|
||
int i = -1;
|
||
while (child_close_fds[++i] != -1)
|
||
close_and_invalidate (&child_close_fds[i]);
|
||
}
|
||
|
||
if (intermediate_child)
|
||
{
|
||
/* We need to fork an intermediate child that launches the
|
||
* final child. The purpose of the intermediate child
|
||
* is to exit, so we can waitpid() it immediately.
|
||
* Then the grandchild will not become a zombie.
|
||
*/
|
||
GPid grandchild_pid;
|
||
|
||
grandchild_pid = fork ();
|
||
|
||
if (grandchild_pid < 0)
|
||
{
|
||
/* report -1 as child PID */
|
||
write_all (child_pid_report_pipe[1], &grandchild_pid,
|
||
sizeof(grandchild_pid));
|
||
|
||
write_err_and_exit (child_err_report_pipe[1],
|
||
CHILD_FORK_FAILED);
|
||
}
|
||
else if (grandchild_pid == 0)
|
||
{
|
||
close_and_invalidate (&child_pid_report_pipe[1]);
|
||
do_exec (child_err_report_pipe[1],
|
||
stdin_fd,
|
||
stdout_fd,
|
||
stderr_fd,
|
||
source_fds_copy,
|
||
target_fds,
|
||
n_fds,
|
||
working_directory,
|
||
argv,
|
||
argv_buffer,
|
||
argv_buffer_len,
|
||
envp,
|
||
close_descriptors,
|
||
chosen_search_path,
|
||
search_path_buffer,
|
||
search_path_buffer_len,
|
||
stdout_to_null,
|
||
stderr_to_null,
|
||
child_inherits_stdin,
|
||
file_and_argv_zero,
|
||
child_setup,
|
||
user_data);
|
||
}
|
||
else
|
||
{
|
||
write_all (child_pid_report_pipe[1], &grandchild_pid, sizeof(grandchild_pid));
|
||
close_and_invalidate (&child_pid_report_pipe[1]);
|
||
|
||
_exit (0);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Just run the child.
|
||
*/
|
||
|
||
do_exec (child_err_report_pipe[1],
|
||
stdin_fd,
|
||
stdout_fd,
|
||
stderr_fd,
|
||
source_fds_copy,
|
||
target_fds,
|
||
n_fds,
|
||
working_directory,
|
||
argv,
|
||
argv_buffer,
|
||
argv_buffer_len,
|
||
envp,
|
||
close_descriptors,
|
||
chosen_search_path,
|
||
search_path_buffer,
|
||
search_path_buffer_len,
|
||
stdout_to_null,
|
||
stderr_to_null,
|
||
child_inherits_stdin,
|
||
file_and_argv_zero,
|
||
child_setup,
|
||
user_data);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Parent */
|
||
|
||
gint buf[2];
|
||
gint n_ints = 0;
|
||
|
||
/* Close the uncared-about ends of the pipes */
|
||
close_and_invalidate (&child_err_report_pipe[1]);
|
||
close_and_invalidate (&child_pid_report_pipe[1]);
|
||
|
||
/* If we had an intermediate child, reap it */
|
||
if (intermediate_child)
|
||
{
|
||
wait_again:
|
||
if (waitpid (pid, &status, 0) < 0)
|
||
{
|
||
if (errno == EINTR)
|
||
goto wait_again;
|
||
else if (errno == ECHILD)
|
||
; /* do nothing, child already reaped */
|
||
else
|
||
g_warning ("waitpid() should not fail in 'fork_exec'");
|
||
}
|
||
}
|
||
|
||
|
||
if (!read_ints (child_err_report_pipe[0],
|
||
buf, 2, &n_ints,
|
||
error))
|
||
goto cleanup_and_fail;
|
||
|
||
if (n_ints >= 2)
|
||
{
|
||
/* Error from the child. */
|
||
|
||
switch (buf[0])
|
||
{
|
||
case CHILD_CHDIR_FAILED:
|
||
g_set_error (error,
|
||
G_SPAWN_ERROR,
|
||
G_SPAWN_ERROR_CHDIR,
|
||
_("Failed to change to directory “%s” (%s)"),
|
||
working_directory,
|
||
g_strerror (buf[1]));
|
||
|
||
break;
|
||
|
||
case CHILD_EXEC_FAILED:
|
||
g_set_error (error,
|
||
G_SPAWN_ERROR,
|
||
_g_spawn_exec_err_to_g_error (buf[1]),
|
||
_("Failed to execute child process “%s” (%s)"),
|
||
argv[0],
|
||
g_strerror (buf[1]));
|
||
|
||
break;
|
||
|
||
case CHILD_OPEN_FAILED:
|
||
g_set_error (error,
|
||
G_SPAWN_ERROR,
|
||
G_SPAWN_ERROR_FAILED,
|
||
_("Failed to open file to remap file descriptor (%s)"),
|
||
g_strerror (buf[1]));
|
||
break;
|
||
|
||
case CHILD_DUPFD_FAILED:
|
||
g_set_error (error,
|
||
G_SPAWN_ERROR,
|
||
G_SPAWN_ERROR_FAILED,
|
||
_("Failed to duplicate file descriptor for child process (%s)"),
|
||
g_strerror (buf[1]));
|
||
|
||
break;
|
||
|
||
case CHILD_FORK_FAILED:
|
||
g_set_error (error,
|
||
G_SPAWN_ERROR,
|
||
G_SPAWN_ERROR_FORK,
|
||
_("Failed to fork child process (%s)"),
|
||
g_strerror (buf[1]));
|
||
break;
|
||
|
||
case CHILD_CLOSE_FAILED:
|
||
g_set_error (error,
|
||
G_SPAWN_ERROR,
|
||
G_SPAWN_ERROR_FAILED,
|
||
_("Failed to close file descriptor for child process (%s)"),
|
||
g_strerror (buf[1]));
|
||
break;
|
||
|
||
default:
|
||
g_set_error (error,
|
||
G_SPAWN_ERROR,
|
||
G_SPAWN_ERROR_FAILED,
|
||
_("Unknown error executing child process “%s”"),
|
||
argv[0]);
|
||
break;
|
||
}
|
||
|
||
goto cleanup_and_fail;
|
||
}
|
||
|
||
/* Get child pid from intermediate child pipe. */
|
||
if (intermediate_child)
|
||
{
|
||
n_ints = 0;
|
||
|
||
if (!read_ints (child_pid_report_pipe[0],
|
||
buf, 1, &n_ints, error))
|
||
goto cleanup_and_fail;
|
||
|
||
if (n_ints < 1)
|
||
{
|
||
int errsv = errno;
|
||
|
||
g_set_error (error,
|
||
G_SPAWN_ERROR,
|
||
G_SPAWN_ERROR_FAILED,
|
||
_("Failed to read enough data from child pid pipe (%s)"),
|
||
g_strerror (errsv));
|
||
goto cleanup_and_fail;
|
||
}
|
||
else
|
||
{
|
||
/* we have the child pid */
|
||
pid = buf[0];
|
||
}
|
||
}
|
||
|
||
/* Success against all odds! return the information */
|
||
close_and_invalidate (&child_err_report_pipe[0]);
|
||
close_and_invalidate (&child_pid_report_pipe[0]);
|
||
|
||
g_free (search_path_buffer_heap);
|
||
g_free (argv_buffer_heap);
|
||
g_free (source_fds_copy);
|
||
|
||
if (child_pid)
|
||
*child_pid = pid;
|
||
|
||
goto success;
|
||
}
|
||
|
||
success:
|
||
/* Close the uncared-about ends of the pipes */
|
||
close_and_invalidate (&stdin_pipe[0]);
|
||
close_and_invalidate (&stdout_pipe[1]);
|
||
close_and_invalidate (&stderr_pipe[1]);
|
||
|
||
if (stdin_pipe_out != NULL)
|
||
*stdin_pipe_out = g_steal_fd (&stdin_pipe[1]);
|
||
|
||
if (stdout_pipe_out != NULL)
|
||
*stdout_pipe_out = g_steal_fd (&stdout_pipe[0]);
|
||
|
||
if (stderr_pipe_out != NULL)
|
||
*stderr_pipe_out = g_steal_fd (&stderr_pipe[0]);
|
||
|
||
return TRUE;
|
||
|
||
cleanup_and_fail:
|
||
|
||
/* There was an error from the Child, reap the child to avoid it being
|
||
a zombie.
|
||
*/
|
||
|
||
if (pid > 0)
|
||
{
|
||
wait_failed:
|
||
if (waitpid (pid, NULL, 0) < 0)
|
||
{
|
||
if (errno == EINTR)
|
||
goto wait_failed;
|
||
else if (errno == ECHILD)
|
||
; /* do nothing, child already reaped */
|
||
else
|
||
g_warning ("waitpid() should not fail in 'fork_exec'");
|
||
}
|
||
}
|
||
|
||
close_and_invalidate (&stdin_pipe[0]);
|
||
close_and_invalidate (&stdin_pipe[1]);
|
||
close_and_invalidate (&stdout_pipe[0]);
|
||
close_and_invalidate (&stdout_pipe[1]);
|
||
close_and_invalidate (&stderr_pipe[0]);
|
||
close_and_invalidate (&stderr_pipe[1]);
|
||
|
||
close_and_invalidate (&child_err_report_pipe[0]);
|
||
close_and_invalidate (&child_err_report_pipe[1]);
|
||
close_and_invalidate (&child_pid_report_pipe[0]);
|
||
close_and_invalidate (&child_pid_report_pipe[1]);
|
||
|
||
g_clear_pointer (&search_path_buffer_heap, g_free);
|
||
g_clear_pointer (&argv_buffer_heap, g_free);
|
||
g_clear_pointer (&source_fds_copy, g_free);
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* Based on execvp from GNU C Library */
|
||
|
||
/* This function is called between fork() and exec() and hence must be
|
||
* async-signal-safe (see signal-safety(7)) until it calls exec(). */
|
||
static gboolean
|
||
script_execute (const gchar *file,
|
||
gchar **argv,
|
||
gchar **argv_buffer,
|
||
gsize argv_buffer_len,
|
||
gchar **envp)
|
||
{
|
||
/* Count the arguments. */
|
||
gsize argc = 0;
|
||
while (argv[argc])
|
||
++argc;
|
||
|
||
/* Construct an argument list for the shell. */
|
||
if (argc + 2 > argv_buffer_len)
|
||
return FALSE;
|
||
|
||
argv_buffer[0] = (char *) "/bin/sh";
|
||
argv_buffer[1] = (char *) file;
|
||
while (argc > 0)
|
||
{
|
||
argv_buffer[argc + 1] = argv[argc];
|
||
--argc;
|
||
}
|
||
|
||
/* Execute the shell. */
|
||
if (envp)
|
||
execve (argv_buffer[0], argv_buffer, envp);
|
||
else
|
||
execv (argv_buffer[0], argv_buffer);
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* This function is called between fork() and exec() and hence must be
|
||
* async-signal-safe (see signal-safety(7)). */
|
||
static gchar*
|
||
my_strchrnul (const gchar *str, gchar c)
|
||
{
|
||
gchar *p = (gchar*) str;
|
||
while (*p && (*p != c))
|
||
++p;
|
||
|
||
return p;
|
||
}
|
||
|
||
/* This function is called between fork() and exec() and hence must be
|
||
* async-signal-safe (see signal-safety(7)) until it calls exec(). */
|
||
static gint
|
||
g_execute (const gchar *file,
|
||
gchar **argv,
|
||
gchar **argv_buffer,
|
||
gsize argv_buffer_len,
|
||
gchar **envp,
|
||
const gchar *search_path,
|
||
gchar *search_path_buffer,
|
||
gsize search_path_buffer_len)
|
||
{
|
||
if (file == NULL || *file == '\0')
|
||
{
|
||
/* We check the simple case first. */
|
||
errno = ENOENT;
|
||
return -1;
|
||
}
|
||
|
||
if (search_path == NULL || strchr (file, '/') != NULL)
|
||
{
|
||
/* Don't search when it contains a slash. */
|
||
if (envp)
|
||
execve (file, argv, envp);
|
||
else
|
||
execv (file, argv);
|
||
|
||
if (errno == ENOEXEC &&
|
||
!script_execute (file, argv, argv_buffer, argv_buffer_len, envp))
|
||
{
|
||
errno = ENOMEM;
|
||
return -1;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
gboolean got_eacces = 0;
|
||
const gchar *path, *p;
|
||
gchar *name;
|
||
gsize len;
|
||
gsize pathlen;
|
||
|
||
path = search_path;
|
||
len = strlen (file) + 1;
|
||
pathlen = strlen (path);
|
||
name = search_path_buffer;
|
||
|
||
if (search_path_buffer_len < pathlen + len + 1)
|
||
{
|
||
errno = ENOMEM;
|
||
return -1;
|
||
}
|
||
|
||
/* Copy the file name at the top, including '\0' */
|
||
memcpy (name + pathlen + 1, file, len);
|
||
name = name + pathlen;
|
||
/* And add the slash before the filename */
|
||
*name = '/';
|
||
|
||
p = path;
|
||
do
|
||
{
|
||
char *startp;
|
||
|
||
path = p;
|
||
p = my_strchrnul (path, ':');
|
||
|
||
if (p == path)
|
||
/* Two adjacent colons, or a colon at the beginning or the end
|
||
* of 'PATH' means to search the current directory.
|
||
*/
|
||
startp = name + 1;
|
||
else
|
||
startp = memcpy (name - (p - path), path, p - path);
|
||
|
||
/* Try to execute this name. If it works, execv will not return. */
|
||
if (envp)
|
||
execve (startp, argv, envp);
|
||
else
|
||
execv (startp, argv);
|
||
|
||
if (errno == ENOEXEC &&
|
||
!script_execute (startp, argv, argv_buffer, argv_buffer_len, envp))
|
||
{
|
||
errno = ENOMEM;
|
||
return -1;
|
||
}
|
||
|
||
switch (errno)
|
||
{
|
||
case EACCES:
|
||
/* Record the we got a 'Permission denied' error. If we end
|
||
* up finding no executable we can use, we want to diagnose
|
||
* that we did find one but were denied access.
|
||
*/
|
||
got_eacces = TRUE;
|
||
|
||
G_GNUC_FALLTHROUGH;
|
||
case ENOENT:
|
||
#ifdef ESTALE
|
||
case ESTALE:
|
||
#endif
|
||
#ifdef ENOTDIR
|
||
case ENOTDIR:
|
||
#endif
|
||
/* Those errors indicate the file is missing or not executable
|
||
* by us, in which case we want to just try the next path
|
||
* directory.
|
||
*/
|
||
break;
|
||
|
||
case ENODEV:
|
||
case ETIMEDOUT:
|
||
/* Some strange filesystems like AFS return even
|
||
* stranger error numbers. They cannot reasonably mean anything
|
||
* else so ignore those, too.
|
||
*/
|
||
break;
|
||
|
||
default:
|
||
/* Some other error means we found an executable file, but
|
||
* something went wrong executing it; return the error to our
|
||
* caller.
|
||
*/
|
||
return -1;
|
||
}
|
||
}
|
||
while (*p++ != '\0');
|
||
|
||
/* We tried every element and none of them worked. */
|
||
if (got_eacces)
|
||
/* At least one failure was due to permissions, so report that
|
||
* error.
|
||
*/
|
||
errno = EACCES;
|
||
}
|
||
|
||
/* Return the error from the last attempt (probably ENOENT). */
|
||
return -1;
|
||
}
|
||
|
||
/**
|
||
* g_spawn_close_pid:
|
||
* @pid: The process reference to close
|
||
*
|
||
* On some platforms, notably Windows, the #GPid type represents a resource
|
||
* which must be closed to prevent resource leaking. g_spawn_close_pid()
|
||
* is provided for this purpose. It should be used on all platforms, even
|
||
* though it doesn't do anything under UNIX.
|
||
**/
|
||
void
|
||
g_spawn_close_pid (GPid pid)
|
||
{
|
||
}
|